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Electromagnetic mass differences, the pion mass, and the p-A, mass splitting
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We discuss sevexal problems related to the particle mass and mass differences in the
framework of renormalizable gauge theori5s. We Qrst explicitly calculate the hard-pion
and the p-meson electromagnetic mass differences based on the chiral SU(2) & SU(2) gauge
model of Bardakci. In both cases the neutral particles receive infinite mass shifts, thus
rendering the mass differences finite. This is compaxed with the Schwinger-Yan approach
and with the recently proposed model for electromagnetic form factors and the p' meson.
We also estimate the effects of the p' meson on the pion mass based on the soft-pion method
and field algebra. We then attempt to obtain the small pion mass by means of an approximate
algebraic x'ealization of the chiral symmetry at high energies using a generalization of the
Bardakci model. We also discuss the effects of heavier vector and axial-vector mesons on
the p and A& mass splitting. It is shown that heavier mesons help to preserve the p-meson
universality.

I. INTRODUCTION

Following the present theoretical interest' in
spontaneously broken gauge theories, many cal-
culations of various electromagnetic mass dif-
ferences' ' and the pion mass'9 have been at-
tempted. As for the nucleon mass difference the
situation does not appear to be quite as encour-
aging; either the mass difference diverges or the
finite mass difference tends to appear with the
vrrong sign. Although it may in principle be pos-
sible to give a reasonable mass difference for
the nucleon based on a gauge model, it seems to
be always necessary to include tadpole diagrams. "
The physical meaning of these tadpoles is not
clear and they may just represent an interesting
phenomenological observation rather than a basic
dynamical scheme. The inclusion of the weak
interaction does not change these basic features;
in many cases it just provides an effective cutoff
for divergent electromagnetic mass shifts
Therefore it gives only a minor contribution (i.e.,
weak correction in the conventional sense). This
is particularly true in view of the precocious
scaling in SLAC experiments. " The hadronic
mass scale seems to be extremely small com-
pared with the hypothetical intermediate-vector-
meson masses.

On the other hand the calculation of the pion
mass based on the pseudo-Goldstone mechanism
proposed by %'einbergs is dynamically more at-
tractive. Calculations performed so far, however,
either give an unrealistically large pion mass' or
sometimes even a negative pion mass. Although

it is very attractive to imbed the pion-mass-
generating mechanism in the unified model of
weak and electromagnetic interactions, it is not
clear whether this is a good vray to generate a
pion mass which exhibits almost perfect isospin
symmetry; the weak and electromagnetic inter-
actions strongly violate isospin symmetry unless
the tadpole diagrams dominate.

Based on these observations me attempt to re-
turn to the more conventional approach. %'e con-
sider a model of electromagnetic interactions
which gives a finite mass difference and neglect
w'eak interactions. For this purpose are use the
chiral SU(2) &SU(2) gauge model of Bardakci. '
This model is semirealistic and rich in dynamical
content. Every isospin mass splitti. ng in this
model is finite. ' We explicitly calculate the hard-
pion and p-meson mass differences based on this
model. %'e also generalize the model and discuss
the pion mass and p-A, mass splitting.

H. PION AND p-MESON MASS DIFFERENCES

The first reliable calculation of the pion mass
difference w'as performed by Das et aE. '3 based on
the PCAC soft-pion method and current algebra.
The result of this calculation gives a fairly good
agreement w'ith experiment. When the calculation
w'as extended to include hard-pion effects" the
result was show'n to diverge. In a theory with a
cutoff, the numerical value turned out not to be
sensitive to the cutoff mass, however. In the
advent of the gauge theory, Dicus and Mathur"
recently have reexamined the soft-pion calculation
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including the effects of weak interactions.
The calculation of the p-meson mass difference

has no such reliable physical basis. Nevertheless
Kaganovich, "for example, recently performed a
calculation of the pion and p-meson mass differ-
ences in the spirit of the effective-Lagrangian
method including the effects of weak interactions.
He derived conditions for obtaining finite ansmers.
On the other hand, Yan" performed those calcula-
tions following the suggestion of Schminger. The
finite values mere obtained by assuming a rapid
decrease of form factors.

S,, =(-Si)6'(0) Jd'x)n[N(x)'-N(x)). (2.4)

I,=I,'+ a,
N~=N,'+P. (2.5)

The field-mixing-type coupling is obtained from
the last three terms in Eq. (2.1):

&)., = ——(kfP)'V') B" &(afP-)&a&'„B"

In Eqs. (2.1) and (2.2), the fields M, and N, have
the vacuum values

A. Chiral model of Bardakci &hfP-)N &),B" . (2.6)

,'(8qV„—-8„V„fVqx V-„fA„&&A-„)

——,'(8qA„8, A„--fAq &&V„fVq &&A„)-I

+ ,'[8qM, f—(V„XM—, —AqM, )]'

+ ~(8qMR fAq ~ M,-)'+ g(8~%~) + g(8qN4)

+ 2 [g (fVq eBq)Ns +—~fA„N4]
'

+ 2 [2fAqN~+ 2(fVq eBq)N~]—
—~ (8pB„8„8q) -V(N, M—) (2.1)

A renormalizable version of the chiral SU(2)
X SU(2) gauge model was given by Bardakci. '
Every isospin mass splitting in this model is
finite. ' Here me just quote his Lagrangian. %'e

briefly discuss some of the mathematical struc-
ture of this model in Sec. IO when me discuss the
pion mass.

The Lagrangian reads

8„B"(x) =0. (2 7)

The "photon" field B& in Eq. (2.1) is not quite
massless, but it does not affect the calculations
which follow. If an infrared problem arises the
complete diagonallzatlon of the (photon) mass
matrix is required. The gauge (2.V) helps to
make various integrals more convergent.

The special feature of the gauge in Eq. (2.3) is
that it is (global) chiral-invariant, and the fields
M, and A„mix with each other; M, and N, gener-
ally mix regardless of the gauge condition. This
complication, however, does not give rise to any
difficulty in the general framework of the gauge
theory in the manner of Faddeev and Popov. " We

summarize the Feynman rules and the definition
of the amputated T matrix in this gauge in Appen-
dix A. The gauge (2.3) makes it easier to com-
pare the following calculations with the conven-
tional ones. For the photon field 8„, we use the
Landau gauge

—V(N, M) =().,(M, + M~')+().2(N, +N4 )

—X,(M,'+M, ')' —4X,(N,N, )'

—X6(NS +N4 )

—X,(M,'+M2') (N, '+ N, ')

+().9M2(N, —N~ ), (2.2)

8. Pion mass difference

We complete the hard-pion calculation of Bar-
dakci, 8 It is easy to see that the ordinary hard-
pion calculation of Lee and Nieh" is modified in
the present gauge by the extra diagrams shown

in Fig. 1. (We omit tadpole diagrams which do

where V„,A& and f are vector and axial. -vector
fields, and their gauge coupling constant, re-
spectively B„ is th. e photon field (O, Q, B„). M, and
M, correspond to the ordinary m, o system, and N,
and N, are extra scalar mesons required by the
Higgs mechanism. ' Some of the potential terms
which do not give rise to nem terms have been
omitted in Eq. (2.2).

The gauge condition we employed is

A

+ N4

A

A

(2.3)

namely, the gauge I of Bardakci. ' The gauge-
compensating effective action is given by

FIG. 1. Scalar-meson contribution to the pion mass
difference.
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not contribute to the mass difference. ) These diagrams give rise to

mg' —mp', d'k p' —(k p)'/k'
2

2(mA' —mp')mp' d'k p' —(k p)'/k'
m„' i(2s} k [(k+p) -m~ ] m~' i(2v) k (k —mp2} [(k+p)2- m„']

(2 8)

(2 9)

, (m„' —mp')mp' d'k p' —(k p)'/k'
m„' i(2v)' k'(k' —mp')'[(k+P)'-m„']

-'—:-'(=::)i-:"(-".) --:(-.-''-. ) ("-. -''-. ) '"(:;:)-'
where m„and m„correspond to the mass of the pion and N„respectively. The result of Lee and Nieh'
based on the ordinary chiral model is

5m ~ ——m 2ln2+ ln +~ln2- —+31nsa, [ m„' m, ' A2

m' m' 4 m '
p p

where use has been made of the relation m&'
=2mp'. We also confirmed this result in our
framework by using a cutoff procedure identical
to that used in (2.8); the finite part in general
depends on the cutoff procedure. The logarithmic
divergence cancels between Egs. (2.8) and (2.9),
as demonstrated by Bardakci. e The numerical
coefficients of various finite terms in (2.8) are
very small even compared with the I/Igrd-pion
part of (2.9) for reasonable values of m~' in the
range 16m„'&~. The only effect of (2.8} is there-
fore to provide a logarithmic cutoff to (2.9). The
numerical value of the mass difference is there-
fore given by 6m, = 6MeV. '4 The N4 meson strong-
ly decays into a pm system as is clear from Fig. 1.
Therefore it cannot be g or q'. In the framework
of SU(2) or SU(2) &&SU(2), the current is purely
isovector and we cannot handle problems like

q decay or mo decay which depend on the inter-
ference between isoscalar and isovector electro-
magnetic currents.

C. p-meson mass difference

In this calculation we can also consider two
contributions, the conventional part and the part
which depends on the scalar mesons. The con-
ventional part contains two diagrams (see Fig. 2)

5m~ =—m2
P 4

2

+—m -~+~ I'-~ lns A
4m P " ~ ' m'L P

=—m -~+~I'- —, ln
Q A'

4m
' m P

(2.10)

where I'=2m/42V ~1.2.
The extra contribution from the Higgs scalar

meson is given by (see Fig. 8)

Om o =—m ~I'-~-4ln
4m P s2 " ' m'L P

A'
=—m ' ~I'-~ ——' ln

4 p S2 48 4 M2

for M'»mp', (2.11)

where M is the mass of the ¹,meson.
The divergent parts in Eqs. (2.10) and (2.11)

again cancel each other. The contribution from

Q Q Q

I
N3

Q

FIG. 2. Conventional diagrams for the p-meson
mass difference.

FIG. 3. Scalar-meson contribution to the p-meson
mass difference.
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"spring" diagrams arising from the field mixing

p ~ y~ p gives rise to
perimental value'9

Cm. = 4.6 Mev (2.19)

x
P 4 P fo/4 (2.12) and with the conventional chiral model result'4

(this is also the result of Sec. II 8)
where f'/4m= 2.5-3.

The final result from Eqs. (2.10)—(2.12) is

5(m&o-mo~)=0. 15 MeV for M'=no' (2.13)

5(m, o-m, ~)=0.66 MeV for M'=10m, '.
(2.14)

The neutral p appears to be slightly heavier. The
mass difference is, however, very small. The
experimental value'9 is

(2.20)

%e note that the Schminger -Yan approach corre-
sponds to the weak coupling limit, i.e. , foi/f o«1,
in the framework of the chiral gauge theory (in
this limit the effects of the heavier axial-vector
meson "A'," are negligible). An example of the
chiral gauge theory with p' and A', is discussed
in Sec. ID. In view of the controversial status of
the A, meson itself, a quantitative discussion of
the "3,', "meson contribution to the pion mass
difference is rather difficult at the present stage.

6(moo —mo~) =2.4+2.1 MeV. (2.15)

Considering the large width of p mesons, the
theoretical value appears to be consistent mith

experiment. The choice M'=mp'is favored by
the gauge model for the p' meson. ~ As me note
in Appendix A, mixing between the o field and the
Higgs scalar field is neglected in this calculation
of the p-meson mass difference; provided their
masses are not too different, the effect of such
mixing on the mass differences is small.

D. The p' model and the Schwinger- Yan model

The calculation of the pion and p-meson mass
differences has been performed by Yan" based
on slightly different assumptions. He took the
coupling between y and p to be

('2. 16)

The extra factor M'/(q'-M') compared with the
conventional field-mixing-type coupling provides
an ultraviolet cutoff, thus making the mass dif-
ference finite. Equation (2.16) automatically
arises in the recently proposed gauge model for
the p' meson. '0 The mass M' corresponds to mz~'

in this gauge model. The numerical results by
Van indicate (we just extrapolate his results to
the point M'= 5mo'),

5m, = 3 MeV,

5(moo -mo~)=0. 45 MeV.

(2.17)

(2.18)

%'e note that the p-meson mass difference is fairly
sensitive to the exact value of f'/4v; Eq. (2.18)
still seems to be consistent with Eqs. (2.13) and
(2.14).

As was noted by Yan, the pion mass difference
is substantially modified by the extra form factor.
Equation (2.17) can be compared with the ex-

III. PION MASS AND p-A, MASS SPLITTING

In this section we discuss the effects of the p'
meson on the masses of the m and the p mesons.
This investigation is motivated by the phenome-
nologj, cal success of the gauge model ' for the
p' meson. For this purpose me mainly utilize a
generalization of the Bardakci model. Although
the field-theoretical approach to strong inter-
actions may not be quite reliable, it is hoped
that some of the features me discuss below may
be of more general validity than the specific under-
lying Lagrangian. The success of ordinary vector
dominance and its universality, which mas sug-
gested by a simple Lagrangian, '2 strengthens this
hope. In this x'espect me mould like to comment
on the potential terms in the model. These po-
tential terms are strongly restricted by the gauge
invariance and they are limited to dimension less
than or equal to four by the requirement of re-
normaliz ability. Although the requirement of
renormalizability may mell turn out to be ix'rele-
vant, me believe that the scale dimension of four
or less together with gauge invariance have a more
fundamental meaning. The suppression of the 2m

decay mode of the p' meson relative to the 47'

mode was determined essentially by this scale
dimension of interaction terms. '~ The successful
description of various form factors, ' and the
absence of any othex plausible physical picture
for this 2m mode suppression motivate us to in-
vestigate the further implications of gauge models'
for low'-lying vector and scalar mesons.

A. Pion mass

Folloming the gauge model for the p' meson, 0

me assume that the p' couples to the hadronic
system just like the photon does in the chiral
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model in Eq. (2.1). The effects of the p' meson
on the pion mass can then be estimated in a fairly
model-independent manner by using the PCAC
soft-pion method and field algebra. In the follow-
ing we first present a simple-minded treatment

of this problem, and later discuss it in more
detail based on the renormalizable gauge theory.

Following the calculation of Dicus and Mather"
we get (only the neutral-pion case is considered
because of isospin symmetry)

p a

i 1 . de 2~en -p~m

4 1
d 2 pym -pg???

(3 I)

where f' is the gauge coupling constant of the p'
meson. If one approximates p~ and p„by single
poles atmp' and m&, ', respectively, and uses the
Weinberg's first and second sum rules, "which
are valid in the field algebra model, one gets

p2 2
3 f 2 m~~

mQ mp

21n2 —,', ln ', , (3.2)
mg mp mp

where the KSRF (Kawarabayashi -Suzuki -Riazuddin-
Fayyazuddin) relation, m~' = 21&'f,' and m„' = 2m&',
was also used. It is interesting to observe that

the Weinberg first spectral sum rule [i.e. , the
vanishing of the first term in Eq. (3.1)] guarantees
the non-Abelian gauge invariance" of the mass
shift.

In the framework of the gauge model for the p'
meson, "experiment" indicates that the coupling
constant fz. is comparable with f~, as is expected
for strongly interacting particles. Equation (3.2)
then gives

(3.3)

This result may indicate that there is an axial-
vector spectral weight to cancel the p' contribution.
In this connection it is interesting to see that

. g~" -u~n"/m„. '
f„m'= .'f" -. ,(-f)g, "' dxe"*g(v'~T(A'„(x)A„(0))[~'&

k2 m~, 0

4 3
i l dk

d 2 pram -pram
(3 4)

In this simpLe-minded treatment the algebraic
realization of the chiral symmetry for heavier
mesons, m&. =mp, gives rise to

6ym'+6gm'=0 (3 5)

and the pion stays massless. If one takes the
viewpoint that the chiral symmetry breaking is
approximated by the asymmetry in the part of
vector and axial-vector spectral weights, the
present calculation indicates that the symmetry
breaking by p' without an effective A', is too strong.
Being a perturbative calculation in strong inter-
actions, these formulas may not be so accurate.
[E.g. , the numerical value is rather sensitive to
whether one uses the "zeroth-order" masses or
the physical masses for vector mesons (cf. Sec.
III C).) It is, however, still interesting to see
that a reasonable choice of heavier vector-meson
masses, e.g. , [see Eq. (3.14)]m~

' = 6m~' and
m,„=Bmz' combined with Eqs. (3.2) and (3.4)

give rise to (assuming f~ =f~)

~ '-~m 2.
2Q p (3 6)

Here p' and A', represent a/E the effects of heavier
mesons. If the qualitative feature of this calcu-
lation is trusted, it suggests that the chiral sym-
metry approaches an almost algebraic realization
(i.e. , mv=mz) at high energies. This is in line
with general beliefs about the strong interaction
symmetries. The finiteness of the pion mass
calculation in Eqs. (3.2) and (3.4) can be under-
stood as the pseudo-Goldstone mechanism' in the
framework of renormalizable field theories. %e
can thus justify the naive manipuLations in these
equations.

B. Chiral SU(2) X SU(2) model with p' and A'I mesons

We discuss a simple example of the chiral SU(2)
&SU(2) gauge model with p' and A', mesons, and
comment on why a finite result for the pion mass
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was obtained in Eqs. (3.2) and (3.4).
Following Bardakei' we define the following

objects:

M-=(M, .y.y. %y, ) ("")("'),
1+Z~

N=[(N, ~ ~+N, 7y,)a, +(N, +N,y,)o,]

(3.7)

Tr(M)2 Tr(M')2.

These terms may be treated as renormalization
counterterms. In that case we take Fig. 4 as the
basic coupling scheme.

We make vector mesons, W„and W„', massive
by giving vacuum values to N, and ¹,[see Eq.
(3.9)). The pion multiplet which arises from M
can be made massless by assigning a vacuum
value to M„but one may give a chiral-invariant
positive mass term to the ~'multiplet. We then
break the chiral symmetry explicitly by a potential
term (i.e. , chiral-time component)

Tr ~~/ 3 3 + N (3.11)

(y' -=[(N[ y N,' yy[z, + ((((l+yy,'y)yd ( & '),

&(I + Xs). (3.8)

By forming suitable covariant derivatives (the
trace covers all the matrix indices)

~Tr(v„M)'=+ Tr(s qM —i —,
' f[Sq,M] }',

~2 Tr(V„N)'= —,', Tr(s„N —i ,'f[W„,N]—
i &fy[Wy N]}2 (3.9)

,8 Tr(&qM') =~~ Tr(sqM' —i 'f'[W' M']}2, —

—,', Tr(V„¹)'=—,', Tr(s„¹—i ((f'[W&, N']

- i —.'e[a„,¹]}',

where 8'„, M, and N stand for the same particles
as in Bardakci's model [see Eq. (2.1)], and W„',

~', and N' correspond to heavier partners of these
particles. The field B& corresponds to the photon.
In Eq. (3.8) 7, o, and 5 all obey the algebra of
the Pauli matrices. What we are doing is to form
a multiple cross product of the chiral SU(2) XSU(2)
group by utilizing the projection operators —,(1+a,)
and —,'(1+5,). See also Ref. 8. Schematically this
is shown in Fig. 4. The ordinary chiral symmetry
is generated by

This is analogous to the A term in Eq. (2.2). Due
to this term the degeneracy among 8& multiplet
and also among M' multiplet is removed. It is
easy to cheek that the explicit pion mass term in
the potential is prohibited (a sort of pseudo-
Goldstone mechanism') if one imposes the extra
reflection symmetry

(M„M2) (-M/„-M ) (3.12)

on the Lagrangian. This is so because all the
allowed potentials then contain the I field in the
combination M'fx: M, '+M, '; the elimination of the
g tadpole simultaneously removes the pion mass
term. Potential terms are listed in Appendix B.
The reflection symmetry (3.12) is broken sponta-
neously, but the Lagrangian and all the Feynman
amplitudes preserve it [the gauge we defined in
Eq. (2.3) is also invariant under this symmetry].

The effects of Eq. (3.11), of course, propagate
to the pion multiplet via vector-meson interactions
(the symmetric potentials do not propagate such
symmetry breaking). The lowest-order pertur-
bation then gives rise to the result in Sec. IDA.
See Appendix C. In this ealeulation a tadpole
diagrams introduce some complications (i.e. ,
renormalization counterterms) for the axial-
vector meson contribution. The gauge defined in
Eq. (2.3) simplifies this calculation.

If one removes M' and all the terms proportional
to y, in W„' and N' from Eq. (3.7), one gets a model

——,', Tr(s„W„-s„W„-i—,'f[W„,W„]}',
rT( sW~ - „s„W-i ,' f [W„W„']-}y, 2

it is straightforward to write down a "renormaliz-
able" Lagrangian. The potential terms (see Ap-
pendix B) which have dimension less than or equal
to four can directly mix ~and ~', for example,
through the terms FIG. 4. Coupling scheme for the model in Eq. (3.7).
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where the p' triplet is added to the Bardakci mod-
el. It is again not difficult to check that the re-
flection symmetry (3.12) still prohibits the zeroth-
order pion mass term. (See the potential terms
in Appendix B.) This explains the finite result
in Eg. (3.2).

C. p and A I mass splitting

As we explained elsewhere, "the ordinary chiral
SU(2) &&SU(2) field algebra model"' may have a

difficulty related to the ratio f p, „lfp„ if the mp
and m„difference is entirely generated by the
vacuum value of the 0 field. The present model
offers a possible solution to this problem.

Due to the field mixing between W„and W„' in
the second term in Eq. (3.9}, the heavier mesons
p' and A', influence the masses of p and A, . The
mass splitting among p' and A', also induces fur-
ther mass splitting among p and A,. The physical
particle masses are given by

pn m ~ = —(M +M ~ vf(M +M ) 4[M M ( fP) ('f'P) ] j'~ )

m„,',m„, =-,(M„, +MA, w((M~, +MA, ) —4[M~, M~; —(2f8) (2f 8) ]]'
(3.13)

mg mp g
"

p

(3.14)

Here p' and A', represent all the effects of heavier
vector mesons.

The on-shell coupling constant fp„„ is given by

f;.=
(
' —— "',' '. )f .

This is valid when the mixing between the pion
and A', is small, as is the case in our model. See
also Ref. 26. If one accepts the above mechanism
of generating the masses of the p and the A, me-
sons the deviation of fp„ from f is small, and
Eq. (3.15) combined with the p' meson propagator
gives an almost identical result for the ratio of
fp, to fp„as our previous study. " Namely

)
1, 1 mp'-m''

4g P " 4m P~ m "
P

(3.15)

(3.16)

We can therefore maintain a satisfactory agree-
ment with experiment. "

If one accepts this mechanism the electromag-
netic form factor we discussed previously, i.e. ,

where

Mp'= (-'.fP)',

M '=(-'f')'(8'+ 8")
M. ,'= (-'f )'(8'+ 4~'),

M, .'= (-.'f ')'(8'+8" + 4a"),
with e, P, a', and P' the vacuum values of M„
N„M,', and N,' in Eq. (3.7}, respectively. The
vacuum value a' may be generated by the explicit
chiral symmetry breaking [see Eq. (3.11)]. It
can be checked that the zeroth-order masses

together with f =f ' give rise to a reasonable mass
spectrum;

m '= m ' m s'= 6m '
P P ' P P

2 f2
( 2) pnp mp'

q2-m ' q'
P P

(3.17)

FIG. 5. Coupling scheme for the model with many
vector and scalar mesons.

is also correctly described by the present gauge
model in the small q' region. If fp„„substantially
deviates from f, the gauge condition necessitates
a direct coupling between the pion and the p' and
also between the pion and the photon. A double
pole form factor (3.17) cannot be described by
the present gauge model in such cases. The p
meson universality is also significantly modified
in such cases. Note that the deviation of fp, „
from the universal value f is caused by the field
mixing between w and Ay.

Finally we comment on the generalization of
the model (3.7) by adding further multiplets W„",
M", and lP' etc. [one can obviously continue the
procedure we used in Eg. (3.7)]. See Fig. 5. If
one assumes that the particles which are connected
by a verticle line in Fig. 5 are approximately
degenerate in mass, this scheme may simulate
some of the features of the dual-resonance mod-
el." The massless pion due to the spontaneous
chiral symmetry breaking and an algebraic re-
alization of heavier mesons give a particularly
simple model.
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IV. CONCLUSION

In the present note we investigated the impli-
cations of renormalizable gauge models for low-
lying vector and scalar mesons. Our study in-
dicates that this approach provides a consistent
description of those low-lying mesons and their
electromagnetic properties in the low-energy
region. One of the interesting results of the pre-
sent study is that the heavier vector and axial-
vector mesons help to restore the p-meson uni-
versality. This universality was partly sacrificed

in the past" when one tried to explain the small
pion mass as a consequence of the spontaneous
breaking of chiral symmetry.
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APPENDIX A

We summarize the Feynman rules and the definition of the amputated T matrix. The quadratic part of
the Lagrangian in Eq. (2.1) is given by

,'(e-„V-„-s„V„)'——,'(s „A„-s„A„)'+-,'(s „M,)'+ -,'(8 „M,')'+-, (fa)'A„A"

where

+(fa)s„M, A" +-,'(s„N', )'+-,'(s„N,)'+ (-,' fp)'(A„A" + V„V~) —V„„„,

2

4a + ~~ —M2' — —M, —4A.~ N3 —4A.S p + 2A,9(y N4

(A1)

+ 2X~P (M, ~ Nz) —(4A7aP —2X~P)N~MI + z5g, 2[2aM''+ (M~')2+ (M,}2]

+ z5p2 [2pN~'+ (N~) +(N, )2+(N2) +(N~) ] ~ (A2)

ln Eq. (A2) we wrote explicitly N, and N, fields and also tadpole counterterms (in our gauge N, = N, =0).
To simplify the situation we adjust A,, in the following such that

43.7ap —2XQ p =0 (A3}

and remove the mixing between M,' and N,' There are. several ways to quantize Eq. (Al). One way is to
treat homogeneous terms as free parts and field mixing terms as interactions (i.e. , summation of "spring"
diagrams). We, however, employ the path integral method "This. method offers a systematic treatment
of the amputated T matrix. Equivalence of these two methods is important because algebraic properties
are usually discussed based on the first method. '

A straightforward calculation gives the following propagators:

g""—a"k"/m ' . a"k"
(

*'-m. ')A: (-i) +f
P ' y2 m 2 Q2 m 2 m Qm 2

A

(A4}

1 ~ 2 y2 m 2

(m '-m ')"' }t
A„ to M, transition:

ppgp m ff

(A5)

I

All other propagators have the standard form. It
should be noted that the apparent mass term for
M, in Eq. (A2) and the actual pion mass in Eq.
(A7) are different.

Equation (A5) indicates that a two-point M, am-
putated amplitude, for example, is given by"

where

(zfP)'+ (f&)'-
mp'= ( '.fP)*, --

(A6) lim ~ — . t",=,T, ,

with

z"'-=m /m

(A8)

(A9)

m, ' =- A,(P'+ 4a')/a . where T, is the amputated T matrix in the ordinary
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sense and t 2 the Qreen's function. It is sufficient
just to insert a wave-function normalization factor
for external M, particle legs.

Although the above simple gauge is sufficient
in our applications, one may also use a slightly
more complicated gauge such as the R& gauge. 2~

It should be noted that we can generate all the
necessary vacuum values without the terms in
Eg. (B3). All these potentials in Egs. (Bl)-(83)
are invariant under the reflection symmetry (3.12).
The potential (3.11) is also invariant under this
symmetry.

Finally we have the term
APPENDIX 8

Tr(MNM 'N) . (B4)

[Tr(M")]', [ Tr(N")]',
Tr(M"), Tr(¹') .

(B2)

The third group contains the mixing between theI and N fields and the M' and N' fields

Tr(M'}Tr(M "},Tr(M}Tr(N i '),
Tr(N') Tr(M "), Tr(N'} Tr(¹'),
Tr(N N' ), Tr(N M' ).

(83)

We list all the allowed potentials for the model
discussed in Sec. III. See Eg. (3. I).

The first group contains only the M and N fields

Tr(M), Tr(tf'),

Tr(M') Tr(N ), Tr(M N'),

[Tr(M)]', [ Tr(N)]',

Tr(M ), Tr(N').

The second group contains only the M' and ¹ fields

Tr(M'2), Tr(¹2),

Tr(M") Tr(N") Tr(M''N")

This violates the symmetry (3.12). This term
has an effect on the subsystem M, N, and W„of
fields similar to the A., term in Eg. (2.2).

APPENDIX C

Vfe perform the lowest-order perturbation cal-
culation of the pion mass using the model dis-
cussed in Secs- II and III. As we observed in the
text, the symmetric potentials do not propagate
the symmetry-breaking effects. This is due to
the fact that the M field appears always in the
combination M'fx: M,'+I,'. This property com-
bined with the derivative mixing between A and
s in Eq. (AV) suggests that we should use the
Landau gauge~ for the heavier vector mesons,
p' and A', . We then eliminate all the derivative
couplings and the m-A, mixing together with un-
physical scalar" contributions from our soft-Pion
calculation.

The relevant interaction terms for p' and A. ',

are given by [see the second term in Eq. (3.9),
and also the last three terms in Eq. (2.1)],

&
g =2[2(fVp-f'Vp) (Ng+tf)+k(fA„f'A„')N j'+-2[g(fV„f'V„'}N-,+ ', (fA„-f'A„') (N,'+-p)]'

I Is=-'—vga'(V„' ~ V" +A„' ~ A")+ 4" N,'[(V„')'+(A„')']+ (Cl)

In the following calculations ¹,and M,' stand for the shifted Parts of N, and M„respectively [see Eq. (2.5)].
The last two terms in Eg. (Cl) do not contribute to the pion mass. The ¹,tadpole contribution from these
terms is absorbed by the renormalisation counterterm in Eq. (A2), and it causes an infinite mass shift
for the ¹,and N, fields. All other necessary couplings are found in Ec[s. (2.1) and (2.5).

g~ = ,'f2(V„xM,)' f'~—(A„xV„)~ M, + ,' f'(A„M, )'+f -'a(A„)'Mml . (C2)

The last term in (C2}, combined with the tadpole counterterm in Eg. (A2), gives rise to an effective inter-
action

2aAP2 M12=-21 2AP2 M12 (C3)

in our calculation.
The p' contribution is given by [see also Eg. (A8)]
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@ms &s +k
(2 fs) ( i)s

8" (guv kvkv/k
m ' (-i) (2v)' (k'-m ')' k'-m, '

pv

— -'-')'
(g„„-k„k„/ks) .f '

=6 "m 'm„' dk 1
(-i) (2w)' (k' -mp') (k' -m ') (k'-mp ')

The factor m& '/mz' comes from Eqs. (A7) and (A9); Eq. (A7) gives (mz /m~)' and Eq. (A9) gives (m~/m„)s.
(Xs =0 in the present case. ) Equation (C4) agrees with Eq. (3.2) if one uses the KSRF relation.

The A', contribution is given by

2 ( kk ~k

I 2

(-i) (2v)' (k'-mp') (k'-mg, ') (k'-m~i') '

Finally the explicit evaluation of Eq. (C4) gives

(C5)

2g 4g m -m m -mi m m m, m m &

We note that all the masses in these equations are the "zeroth-order" masses. See Sec. III C.
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Dynamics in Minkowski space is discussed in terms of an eight-parameter extended Galilej,
group, a subgroup of the Poincarh group. This method —Galilean subdynamics —is developed
and discussed in detail and applied to the construction of two explicit models having four-
point amplitudes of the Veneziano type. There are no difficulties with unphysical states.

I. INTRODUCTION

The present paper is an application of the "meth-
od of Galilean subdynamics, " to the problem of
constructing a consistent basis for the dual reso-
nance model.

Galilean subdynamics, developed in connection
with our interpretation of Dirac's positive-energy
wave equation, "is another attempt to describe
relativistic dynamics. Dynamics in Minkowski
space has been conventionally described as the
chRDge with time of R conf lgux'Rtlon glveD Rt oDe

instant of time in a particular reference frame in
Minkowski space. There have always been diffi-
culties with this approach for both classical theory
and quantum theory. One of the difficulties is the
proper description of a composite particle. As a
suitable reference frame, one might choose, for
example, a rest frame of the particle. If the con-
stituents of the particle move slowly then one can
use nonrelativistic mechanics for the description-
at least approximately. In the general case, how-
evex", this clearly does not work, and it seems un-
likely that proceeding in this way one can ever find
a relativistic descxiption of a hadron.

Much more successful have been attempts at an
over-all Minkowski space-time viewpoint. At the
classical level such theories do allow one to de-
scribe, and to develop models for, composite sys-
tems. At the quantum level there are still diffi-
culties despite the remarkable results of, say, the

dual resonance model within the S-matrix frame-
work.

There exists a potentially important alternative
to this over-all space-time viewpoint. For clas-
sical.'physics this alternative was introduced by
Dirac' and designated the f~cmt form of dynamics.
Dix'ac proposed to consider a family of paxallel
tangent spaces to the light cone instead of the usual
family of parallel spaces at various instants of
time (called by Dirac the instant form of dynam-
ics). Superficially, for classical theory, it is not
clear that the front form of dynamics is any better
than the instant form of dynamics. However, the
quantum version of the front form shows an im-
portant distinction from the classical case. This
follows from the fact that of the three coordinates
in the front-x„x„x„(with x being the coor-
dinate specifying the front)-the coordinate x„un-
like x, and x» has the nature of a time, that is,
the momentum conjugate to x, (denoted by P ) has
a spectrum confined to the open positive half-line.
It is accordingly not permitted in the quantum ver-
sion to assume a kinematics based upon specifying
a point within the front. A way out of this funda-
mental difficulty is afforded by the fact that there
exists an eight-parameter subgroup of the Poincaxe
group which adjoins the operator P to the seven
generators that leave the front invariant. This
subgroup has the group structure of nonrelativistic
(Galilean) dynamics in two space dimensions, to-
gether with a scaling operator. The momentum


