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In the in6nite-momentum frame a hadron may be viewed as a one-dimensional stringlike structure

composed of many constituents. We consider the dynamics of such a system and show how a
spontaneous breakdown of chiral symmetry may occur. The effect is very similar to ferromagnetism.

We formulate the theory of the distribution of quantum numbers in hadrons and establish the relation
between this theory, chiral magnetism, soft-pion theorems, Regge behavior, and duality. In particular
we show how the Harari-Gilman-Weinberg theory of chiral representation mixing follows from an
approximation analogous to the treatment of a magnetic impurity in a ferromagnetic system. The first

stage of approxinmtion, when applied to a quark-parton system leads to a qq meson model. We
demonstrate the need for spin-orbit coupling in the infinite-momentum quark system. Higher
approximations are expected to lead to exotic states. A necessary consequence of our theory of
spontaneous chiral-symmetry breakdown is the existence of a Pomeron-like vacuum trajectory with unit

intercept. The natural order of magnitude of high-energy meson-meson total cross sections turns out to
be f = 10 mb, as conjectured by Pagels. A specific model included in an appendix yields

c~(me) = 2f ~. We do not explicitly deal with strangeness, or SU3.

I. INTRODUCTION

The spontaneous breakdown of chixal symmetry
in hadron dynamics is generally studied as a vac-
uum phenomenon. ' Because of an instability of the
chirally invariant vacuum, the real vacuum is
"aligned" into a chirally asymmetric configuration.

On the other hand an approach to quantum field
theory exists in which the properties of the vacu-
um state are not relevant. This is the parton or
constituent approach formulated in the infinite-
momentum frame. ' A number of investigations
have indicated that in this frame the vacuum may
be regarded as the structureless Fock-space vac-
uum. Hadrons may be described as nonrelativistic
collections of constituents (partons). In this frame
work the spontaneous symmetry breakdown must be
attributed to the properties of the hadron's wave
function and not to the vacuum. '

The essential ingredient required for a sponta-
neous symmetry breakdown in a composite system
is the existence of a divergent number of constit-
uents. Indeed the SLAC-NIT experiments have al-
ready provided evidence in favor of a divergent sea
of low-momentum partons. 4

In this papex we idealize the parton dynamics
through the use of the string or one-dimensional
chain model of hadrons. 5 In Sec. II we explain in
a very qualitative and intuitive manner, the con-
nection between this model and spontaneous break-
down. In Sec. GI we review the pertinent facts
about the string model. Section IV introduces
specific assumptions about currents and charges.
Section V derives the connection between currents
and Regge parameters. The chiral spontaneous

breakdown is formulated in Sec. VI. A magnetic
analogy is used to help visualize the ideas. We
also derive soft-pion theorems from our assump-
tions.

In Sec. VII we consider the quark mode1. as a
specific realization of chiral magneti. sm. %e dem-
onstrate the need for spin-oxbit coupling in the
parton-parton interactions. An approximation
scheme for computing the low-lying hadronic states
and their pionic decays is introduced. In particu-
lar we show how representation-mixing schemes
such as those of Gilman and Harari~ and of Casher
and Susskind' may be understood. In Sec. VIII we
formulate some connections between the curx'ents
in previous sections and the coupling of the Pom-
eron trajectory. We also discuss the importance
and relevance of exotic trajectories. Sec. XK is
summary and conclusions.

In Appendix A we define the mathematical mean-
ing of certain limits which occur throughout. Ap-
pendixes B and C provide concrete models of our
assumptions and prove their consistency.

H. INTUITIVE DISCUSSION

A. The Parton Chain

According to Feynman and Bjorken and Paschos, 4

the results of deep-inelastic electroproduction can
be summarized in texms of a distribution function
which defines the number of partons per unit long-
itudinal momentum fraction g and behaves like
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In analyzing the infinite many-body system im-
plied by (2.l) we shall encounter questions which
concern the longitudinal motions of the partons
and those which concern transverse motions. As
we have learned over the past few years the trans-
verse motions of partons have a nonrelativistic
(Galilean) behavior which is very helpful in draw-
ing analogies and intuitions from nonrelativistic
quantum mechanics. The dynamics of the longi-
tudinal motions are more complicated. Since the
questions considered in this paper eoneern the
distributions of charges and currents in the trans-
verse plane we shall simplify the longitudinal dy-
namics. Fox our purposes we can imagine that
each parton has a definite nonfluctuating c-number
longitudinal fraction q. The most i.mportant prop-
erty of the infinite Feynman-Bjorken sea which
follows from (I) is that near q =0 the ratio of
neighboring g's is universal,

(2.2)

It is convenient to introduce the rapidity variable
y =lng. The partons are then uniformly distrib-
uted over the negative half of the y axis with a
uniform density.

In analyzing the transverse motions of the sys-
tem we will introduce the second simplifying as-
sumption —that each parton couples to a few near
neighbors on the rapidity axis. The center of the
resulting string is occupied by the "hard" partons
of large g. As we proceed away from the center
the longitudinal fraction decreases according to
Eq. (2.2). These assumptions are related in a
well-known way to the dual resonance model. '

In what follows we will often take an extreme
view, namely that each parton interacts only with
its two nearest neighbors. This assumption is
only introduced for notational convenience and

plays no essential role.

of a neighboring pair of partons. In writing H as
such a sum we are constrained by longitudinal
boost invariance' which requires the energy of a
subsystem with fraction g to be proportional to
q '. Thus, labeling the sites by an index (i),

p ~(4, K;+g)

g) +g)+~
(2.4)

Among the degrees of freedom & we have trans-
verse position X helicity 0'„ isospin ~, baryon
number B, and whatever else is required by the-
ory and experiment.

Another extreme assumption which we use
throughout is that H may be expressed as a sum
of an orbital term depending only on transverse
momentum and position, and a spin-isospin what-
ever-else part. We refer to this assumption as
spin-orbit decoupling. We shall see later that
this assumption is too strong if the individual
partons are ordinary spin--,' isospin- —,

' fermions.
However, it is not essential that the lattice sites
in our model refer to individual partons. We ean
relax our assumptions by allowing the sites (i) to
describe pairs or even clusters of partons and al-
low X(f) to describe the center of mass of such a
cluster. We can then simply require that the
clusters are chosen so that X satisfies spin-orbit
decoupling. Although a strong assumption is in-
volved in claiming this to be possible, it has some
experimental support. Firstly, the slopes of
Regge trajectories appear to be independent of
quantum numbers. This means that the oxbital
excitation energy required to increase I by one
unit is independent of the spin, isospin, baryon
content of the hadron. Secondly, the transverse-
momentum distributions of produced hadrons ap-
pear to be roughly independent of particle type.
From this we learn that the transverse forces,
acting on a chunk of matter, may not be sensitive
to its quantum numbers.

B. The Hamiltonian C. Energy Scales

In the infinite-momentum frame the Hamiltonian
is identified with the so-called transverse mass
squared. 2

s& =H=I + M

Here 7 is the dilated time variable of the in-
finite-momentum frame (IMP), P is the momentum
in the transverse (X, F) plane, and M is the rest
mass of the system. We assume IJ may be ex-
pressed as a function of the parton degrees of
freedom. More specifically we assume it is a sum
of terms, each containing the degrees of freedom

The hadronic string differs from the usual one-
dimensional systems studied in many-body theory
in that the explicit factor q, ' makes the Hamilto-
nian inhomogeneous. If the factor g

' were absent
then the local equations of motion would be invari-
ant under translations of the rapidity: y -y+ yo.
This corresponds to the transformation g - ag and
describes part of the action of a longitudinaJ.
boost. ' As it is, the factor (q, +g„,) ' destroys
this invariance of H. However, the equations of
motion have another invariance involving y trans-
lations. Consider the Heisenberg equation of mo-
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tion for some parton quantity f&,

(2.5)

Since g&/q, „is universal for low q, we may write

+[4-i~ 4~ 4+x)
8~ g~— (2.6)

This will be recognized as the full transformation
lam for longitudinal momentum and IMF time under
a longitudinal boost.

The increase of energy scales as we proceed
toward g =0 has important consequences for chiral
magnetism. Let us denote the ground state of the
chain by lG). We will consider all hadrons to be
excited states of lG) . Because of the factor g

'
in H me see that as me approach q =0 the energy
scale increases to infinity. Therefore the energy
needed to disturb the parton configuration near
g =0 is enormous. This implies that near g =0 all
hadrons look the same and are indistinguishable
from IG&.

A more quantitative statement may be made re-
garding the region of the g axis involved in the ex-
citation of states mith mass squared ~v. From the
form of H it is clear that the region q «v ' will
remain "frozen" and only the partons with g ~ v '
are significantly excited in these states. Restrict-
ing ourselves to the study of states with M' & v,
we define the region g &( v ' to be the frozen sea
and the remaining excitable yartons to be the
valence system. In an approximate sense the
degrees of freedom of the frozen sea may be
eliminated from H by replacing them by their
ground-state expectation values. The effective
Hamiltonian for states with M'& v involves only a
finite system of valence partons. Homever, as we
increase the energy of the states we wish to study,
the number of partons in the valence system in-
creases (logarithmically with v).

Now, it may happen that the gxound state of the
infinite one-dimensional chain is chirally asym-
metric throughout its length although the inter-
yarton forces are chirally symmetric. Roughly
speaking the envisioned situation is similar to
that of a one-dimensional Heisenberg ferromagnet
in which energy considerations favor the alignment
of spins along the chain. In the ehiral case me

Evidently Eq. (2.6) is invariant under simultaneous
rescaling of g and w. Thus the invarianee of the
hadronic chain is

(2.V)

expect that some chiral 4-vector [transforming
under the (z, z) representation'j is aligned. Be-
cause of the &

x factor in H the alignment of the
elementary "magnets" becomes more and more
difficult to break as q-0. If such a phenomenon
occurs then the effective Hamiltonian for the va-
lence system mill have the form

H=H +H, (2.8)

where B is the external magnetic field of the lat-
tice and p,, is the 3rd component of the impurity
magneti. e-moment opex ator. The effect of Hy is to
split and mix the rotational multiplets which diag-
onalize H, .

H, will also cause the chiral charge (angular mo-
mentum in the magnetic analogy) of the valence
system to become nonconserved. Changes of the
chiral charge will react back on the sea (lattice)
and create a source of magnonlike chiral waves.
These waves will propagate toward g =0, carrying
the ehixal charge lost by the valence system. Up-
on arriving at q = 0 they mill materialize as soft
pions. The proportionality constant between the
loss of ehiral charge and the soft'-pion amplitude
is the pion decay constant f, . Thus'

(2.10)

where T, is the emission amplitude for a pion
carrying zero longitudinal and transverse mo-
mentum.

The purpose of this paper is to give a mathemat-
ical formulation of these ideas.

III. THE STRING MODEL

We assume that a hadron in the infinite-momen-
tum frame is a stringlike collection of partons'

where H, represents the interaction of the valence
partons among themselves and H, represents the
interaction of the valence system with the frozen
"magnetized" sea. Because the sea is chirally
aligned H, mill break the chiral symmetry of Ho.

A good analogy for this effect is to consider the
valence system to be like a magnetic impurity in
a ferromagnetic lattice. In the absence of the lat-
tice the impurity Hamiltonian Ho is rotationally
symmetric. We may also add that the lattice dy-
namics and the lattice-impurity interaction are
rotationally invariant. Homever, the ground state
of the lattice is magnetized, say in the 3 direction.
Therefore there will be an effective symmetry-
breaking term in the Hamiltonian of the impurity
of the form

(2.9)
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parametrized by a string variable 8 which varies
from 0 to w. The number of partons contained in
the string element d8 localized near 8 is

dN = (A.osine) ', (3.1)

q(8) = a sine.
7r

(3.2)

Clearly near 8 = 0, s we may approximate q(8) by

8-0. g=~8

where A., is a dimensionless constant. The density
of longitudinal momentum is uniform on the 8 axis
so that the longitudinal fraction per parton near 8
1S

an idealization applicable only to wavelengths
much larger than the spacing of lattice points on
the 8 axis. A simple procedure which accounts
for the discrete character of the hadron is to cut
off those normal modes with wavelength smaller
than the spacing. Thus we define the cutoff l

l = (A.,sine) '. (3.10)

([x(e)-x, ]2&=4+ ';

We now summarize the main features which
characterize the orbital motions:

(1) The mean-square transverse distance of
partons at 8 from the center of mass of the hadron
s at1S f les

(3.3) = -4 ln(sine)

= -41ng. (3.11)

dN dN d8
dg de dg ' (3.4)

where the factor 2 accounts for the two ends of
the string. Thus

dNg-0: —=2(z,q) '. (3.6)

The transverse position of a parton near 8 is
called X(8) and the part of If governing the orbital
motions is

(3.6)

Thus near the ends we find an accumulation of
low-momentum partons. The number of partons
with longitudinal fraction between q and g+ dg (for
low g) is

Thus the partons of low g are found at large
distances and those of large g are found near the
center of mass. We have described this effect in
detail elsewhere. ' Here we only remark that the
logarithmic increase in the size of the low-g par-
ton cloud accounts. for Regge behavior and poles
in form factors.

(2) The theory is invariant under the so-called
Mobius mappings. ' ' These are defined by first
"Euclideanizing" the equations of motion by gsing
an imaginary time'0 r' =is. In the (v', 8) space the
Mobius mappings are the conformal mappings
which leave the strip 0 & 8 & n, -~ & w' & ~ invari-
ant. Among these mappings is the class which
leaves the point v'= 8=0 fixed. Locally, near the
fixed point, these mappings are dilations of the
(7', 8) space. Thus the action of these mappings is

We refer the reader to Ref. 5 for a discussion
of (3.6) and its approximation by a continuum sys-
tem. It is found that the equations of motion,
boundary conditions, and normal-mode expansion
of X(8) are

or

T ~ A7'

8 e8 for 8 0,

(3.12)

(8,'- se'}X(8,v) =0,

8gx~e 0 0

(3.7)

(3.6)

X(8, v) =X, (~)+i WRQ ~ [ag (7)-ag(r)],

(3.9}

where the various constants are absorbed into the
choice of mass scale (namely 1=Regge slope).

It should be noticed that the replacement of the
discrete index i by the continuous parameter 8 and
of discrete equations by differential equations is

Using (3.3) we find that these Mobius mappings
have the same effect on the low-q partons as the
longitudinal boosts in (2.V). The remaining set of
Mobius mappings is connected with invariance
under the rest of the Lorentz group and particu-
larly the notorious angular conditions. However
they will play almost no role in our theory.

(3) For later reference we list two formulas.
The vertex operator for the absorption of a trans-
verse momentum Q by a parton at 8 is
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T{q 8) ei 0 X(e)
sg xt'8) .cos le

(3.15)

=e ~™exp v 2 q'~ (0) 0() ~
4Q Xc cos f8

To compute matrix elements of T(q) it is nec-
essary to normal order the expression. For this
purpose we use the formula

e- t'A, B]Q A~B ~A+ B

to get

The operator: exp[iq X(8)]:is well behaved and
has regular nonzero matrix elements at 8 = 0, m.

The factor

cos Eg

is the only factor which is sensitive to the cutoff
procedure. Cutting off the divergent sum at l ~
gives

= -ln(vk, sin8)
cos E8

xexp 2 Q' cg

~exp 2 Q' cg ~

cos l8
i

(3.14)

Thus

r„(q, 8) =6(»(Z, + q-Zf) (W~, sin8)0': e"~(') .

(3.16)

The factor exp(iq X, .) is trivial and gives a ()

function for over-all transverse-momentum con-
servation. The remaining factor will be written

Equation (3.16) will play an important role in
studying hadronic form factors.

The last formula we quote is useful in deriving
dual amplitudes from the string model. ' It reads

g(O j(e 0f'&cm. (0) ~ e f'x(o 0)~ ){e&0j'&cm.(~) ~ e(0('&(0») ~ )drjOP - 6(&)(P + q ~ q )((-&+4) -l{1 s)-20f'0(d

(3.1V)

where jO() and j Of) are orbitally unexcited hadrons
of transverse momentum P, and P&,

Sec. HB. ) The discrete part of H will be called
Hf,

Sy 9+1

l j+ lj+J,
(4.1)

s=M~ —Qy -2PI 'Qf

= hI] —Q; —2P)'Q).

The vector and axial-vector charge densities
On the sA ing a,re defined by averaging these
charges over small intervals of 8. Thus

%e also may define s as the usual Mandelstam
invariant. p = —+i&"U),

dj9 ~e (4.2)

IV. CURRENTS AND DENSITIES

A. Currents on the String

Apart from the orbital degrees of freedom we
shall equip each parton with a set of discrete
quantum numbers ($] consisting of helicity (0, ),
isospin (r"), and baryon number (b). The baryon
number b will be given the values +1 for partons
and antipartons, respectively. Strangeness will
be ignored throughout.

Assume H contains a term which is nearest
neighbor coupled in the discrete quantities (t').
Assume also that this term is independent of the
orbital degrees of freedom. (See discussion in

66

[p (8), pa(8')]=ie 8&p"(8)5(8-8'),

[p (8), '(p)]8=i'"'"p)'(8)&(8 8'), —

[p, (8), p 8(8')] =ie "s)'p)'(8)()(8 —8') .
(4.4)

where v, is that combination of the operators $
which describes the axial charge of a single par-
ton. For example in the usual spin--,', isospin--, '
quark model&a

r."U) =&U)o.U)r"U).

It is evident that p" and p, satisfy SU, x SU, com-
mutation relations:
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Let us temporarily assume that the parton-parton
interaction is exactly invariant under SU, x SU, .
In this case the Heisenberg equations for p and

p, will have the form of continuity equations. For
example the equations for ~ and v, will have the
form

n( )
~"0 j+I) ~ 0 - l,j)

fj@ Oj+g 1j-y+Rj
(4.5)

s,p (8, r)+se J (8, r) =0,

s,p, (8, r)+BeJ, (8, 7') =0.
(4.6)

We shall group p and J' into a 2-vector in 'the (8, v)
space:

~a Va

Similarly

Ja —Vae ~ (4.7a)

~a ga Ja —ga (4.7b)

When not distinguishing between vector and axial-
vector quantities we will denote the currents and
densities by

(&„8e) .
The symbol v will be used to indicate derivatives
with respect to (8, v):

p=-(8„8,).
Thus (4.6) is written

v' V=O,

v A=O,

(4.8)

(4.9)

or

v /=0 (4.10)

The concept of a spontaneous symmetry break-
down entails the existence of an instability of the
symmetric ground state under small perturbations
which explicitly violate the symmetry. For the
ferromagnet the small perturbation could be a
weak external magnetic field which serves to de-
fine the direction of magnetization. Of course any
explicit symmetry violation will cause an asym-
metry of the ground state of a system. The special
feature of spontaneous symmetry breakdown is that
the asymmetry persists even as the perturbation
tends to zero.

In the real world the role of the external mag-
netic field is replaced by the small pion mass.

where J (j,j+1}depends on $& and $,+,. Averaging
over small intervals and defining

Z (7 j + 1)
lj + 1j+j

leads to

Accordingly we expect the exact interparton forces
to violate chiral invariance by terms of order m, '.
Equation (4.9) will be modified by the presence of
a source term proportional to m, ',

V A~=c4)~(8, v), c- m„'. (4.11)

Here 4 is a local operator on the string which re-
mains finite as c-0.

The continuity equation does not tell the entire
story even when 8 is conserved. Boundary con-
ditions on ge must be specified in order to know
whether charges may be lost at the endpoints
8 =0, m. The vector current is expected to satisfy'

Vela, )t =0. (4.12)

We shall see that as long as cx0, Ae~, ~, van-
ishes. However in the limit c-0 this condition
cannot be maintained. In fact we shall see that
spontaneous symmetry breakdown implies an in-
stability with respect to leakage of current across
the "ends" of the hadron. ' However as long as
c 40 we may write (see Appendixes 8 and C for
examples)

c40: Ae)o „=0. (4.13}

B. Currents in Space- Time

We shall now connect the string currents g(8, 7)
with the corresponding space-time current oper-
ators j(x). We restrict ourselves to purely trans-
verse-momentum-transfer matrix elements in the
infinite-momentum frame. This is because we
have been treating the longitudinal momenta of
partons as fixed c numbers, and the absorption of
a longitudinal momentum would obviously excite
these degrees of freedom: We therefore define the
longitudinally integrated currents in the IMF,"

(xt, ) ftd e t (ex=(), . , ,
(4.14)

j (x, t)=fee e"j (e, Kt), ,

where j„are the 4-dimensional space-time current
components and (d is the hyperbolic angle which
describes the boost to the IMF. The matrix ele-
ments of j, and j vanish unless the spatial mo-
mentum transfer is purely transverse.

The charge density operators v, (X, r) and

a, (X, v) are given by a simple summation over the
contributing partons:

c, (x, r) =g —,
' ~, (~}d'&(x,(r) -x),

(4.15)
e) (X T) =Q T (T}d2)(x,(r) -X),

where Xis a c-number field position and X,(v) is
the q-number position of the kh parton.
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Alternatively we may Fourier transform {4.15)
to get

(4.24)

t;(9, ~)=g k~F(v)exp[i@ Xi(~)],

a "(q &) =Q a & i(r) exp[i' X'i(7')] ~

The continuum version of (4.16) is

j,(Q, r) = d8 J„(8,7)exp[iq X(8, 7)].
0

(4.16)

(4.1 I)

For our purposes it will be sufficient to study
the convective part of the current so that (4.22)
may be used.

The convective part of the axial-vector current
may be defined by

a, (q, 7.)=J d8&,(8, ~)e'o
(4.25)

a, (q, r) = ,' d-8&(8, ~) ~ (m(8, ~), e"'x"].
Next consider the transverse components of e.

In the IMF the continuity equation becomes"
Evaluating B,c„+iQ ' a~ by integration by parts

we find

B~ e„+B~ ' e~ = 0 ~ (4.16) B 6 + lQ' 6 =
~

d8V'A8
We use the notation ex=(8„,8,). In momentum
space, Using (4.11) the continuity equation for a becomes

v~+ g@'v

From (4.1'I and (4.10) we obtain

(4.19) e, a, +iq e, =cJI d84{8, r)e~ x&"&'.
(4.26)

Be =- d8e'' BV
0

+
Jt

d8 V„-,'[iq 8,X, e"'g, (4.20)

V. CURRENTS AND RESIDUES

A. Definition of Operator Dimensions

d8 V [Q 8 X, e'o'x) . (4.21)

e v eq f ee X=-'(vx, e«e)

and we may identify

v, ())e)=!JXe v(e) (vx(e e), e«'""').
(4.22)

Obviously we may add any term of the form 8~,
where

where we have used

e, e'e x=(iq 'Pq ', e~' ]
=-,'(iq e, x, e'e' ).

Integrating the first term on the right-hand side of
(4.20) by parts and using (4.12) gives

X(8}-X(o8),
P(8) -P(n8),
o(8)-o(a8), (5 1)

In this section we derive the relations between
local distributions, spectrum of states and Regge
parameters. We define a local dynamical variable
E(8) as one which is built out of the degrees of
freedom which pertain to the partons at or near 8.
These operators may be assigned a transformation
law under the transformation defined by (3.12).
These transformations are closely related to
longitudinal boosts of the low-g partons. Thus
these transformation laws will be chosen so as to
reflect the boost properties of the parton degrees
of freedom.

For example, the transverse position operator,
the helicity and isospin will transform according
to:

f), =iq„m(q, ~),
6„= iq. ~(q,-r)

(4.23)
r(8) - r{a8),

v, (8)-~,(n 8) .
The term in Eq. (4.22) may be called the convec-
tive part of the current and the term in (4.23) the
spin or magnetic current. To specify the operator
M we can assume that v couples to the electromag-
netic field minimally. Then if the partons are
scalar bosons we find &=0, while for spin-& fer-
mions M is a magnetic-moment-like operator:

Qr

8, (8)(f8-8,(«)d(«)

&, (8)-~4, (o8).
(5.2)

The corresponding densities however, will trans-
form with an extra power of n namely,
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4()(8)- (r4()(«) (5.3)

The continuity equation for the axial charge dic-
tates the transformation law of the source 4:

C (8)- n'4 ((}.8) .
This indicates that 4}(8) is of the form

(5.4)

Similarly, the fluxes will acquire the same power
of (r, because of the explicit factor )) ' in Eq. (4.5):

will be to one of the quantities F, (8). For example,
in Sec. IV we have seen how electromagnetic fields
couple to the hadron. Let us suppose the external
field is a space-time tensor with any number of
transverse indices and a number I of longitudinal
or time-like indices. For example the quantities
j~ have I.=0 while j, has L, =1. Scalar fields al-
ways have I.=O.

Longitudinal boost invariance requires" the ver-
tex to have dimension I.—1

(5.5)

where ((}(8)depends on local parton degrees of
freedom such as those in (5.1). All the operators
which we consider will transform according to

ry(Q) g F(f}fj 1+5--d eiQ x(l)

where F(l) has dimension d.
The continuum analog of (5.9) is

(5.9)

F, (8)-u-'(F, (n8), (5.6} T(Q) = d8F(8)(sin8) 2' e'Q'r(e .
J

(5.10)

F,.(8) = (sin8) ~'F, (8), (5.V)

where F;(8) is an operator whose matrix elements
are generally finite nonzero numbex"s for 8=0,w.

We call F{8)the residue of F(8) and define its
dimension

and the power d, will be called the dimension of
E,. These dimensions should not be confused with
the field-theoretic naive dimensions which refer
to space-time dilations.

Another important property of F(8) is the be-
havior of its matrix elements as sin8-0. This
behavior is dynamical and cannot be deduced froxn
the dimension. For example we consider the crea-
tion of an isospin-one state by flipping the isospin
of a parton in an isospin-zexo state. The flipped
parton will x eact on its neighbors and cause the
isospin to be distributed over the chain. The pre-
cise distribution of isospin in stationary states
will be controlled by the interparton dynamics.
Generally we will assume that each local variable
F, (8) tends to a power law near 8 =O, s (see Ap-
pendix A):

The dimension of the vertex is therefore insured
to be (J -1}.Equations (4.17}, (4.22), (4.24},
(4.25), and (4.26) are all examples of (5.9) and
(5.10). In (4.1'l) we are coupling to an external
time-component of a vector potential so that L =1.
Clearly E is given by 4, which has d=-1. Hence
(5.10) is satisfied. For the transverse currents
L, =O and E=J VXwhich has 4=-2. Finally in
(4.26) we consider, the form for a field which cou-
ples to the divergence of the axial-vector current.
Since the divergence is a scalar, I.=O. Equation
(5.10) is satisfied since 4 has dimension -2.

We shall now consider the singularities in T(Q)
as a function of Q'. These singularities will be
identified with the spectrum of hadrons which have
the quantum numbers of the external field. For
the vector current this includes the p meson and
for the axial-vectox current, the n and A, mesons.
We work with Eq. {5.10) and make the substitution
indicated by (5.7) and (5.8).

}'((}}=Jdc(sin(}}" *~~

= tfg —y (5.8) x F(8) ~ eiQ'x(e) ~ eiQ'xc. m. (5.11)

An an example we consider the operator
exp[iQ X(8)]. Formally this operator has dimen-
sion zero. As we have seen,

eiQ x((}) (s.n8)Qi eiQ +(8) ~ ecQ'xc.m. ,

where:exp[iQ X(8)]: is a finite operator near
e =O, m. Evidently e'~'x' .:e'~'x"': is the residue
of the operator and the power y is identified as
Q'. The dimension of: e Q'r: is thus d(e'Q'") =-Q'. or (5.12)

Since E and: e'': have regular finite matrix
elements, the singularities of T(Q) must arise
from the factor {sin8) " ")'~. Clearly a pole
will occur from divergences of the integral near
sin8 = 0, when -2+ I - d+ y+ Q = -1. Thus the
position of the lowest mass singularity in T(Q) is

B. Vertices

Next consider the coupling of a local external
field to the parton system. In general the coupling

The residue of the pole is easily seen to be

[F(0) e' ' " +F(m) e' ' ":]e' ' '- .. (5.13)
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Thus we see that the on-mass-shell coupling
matrices for hadrons are functions of the degrees
of freedom of the ends of the hadronic string.

C. Reise Residues

We next consider an amplitude A+i-B+j,
where A, i, B,j are hadrons. A and Bare arbi-

trary except that for simplicity we assume they
are orbitally unexcited. The hadrons i and j are
coupled to the operators

jPj sx.y , ejPj x, F~ j p ~

as in Eq. (5.13). We consider the process" where
i is absorbed at (0, t) and j is subsequently emitted
at point (0, 0). This is given by

7 BA(~) (B~. B-iQt'X(2)1. B-iQt Xs m(o)E (0 0) . BtQt'X(pt'), BtQt'Xtss(t')E (0 v))A) (5.14)

We shall consider only the case in which Fj and
Fj are independent of orbital degrees of freedom.
Then the expression in (5.14) factorizes into an
orbital and internal factor. Using (3.17) and inte-
grating over T we get

t 1
ZrBA t duu-s-t+ttA (1 u)2Qi'Qt

Jp

an operator-product expansion when 7 -0. The
motivation for Wilson's expansion is the possible
dilatation invariance of quantum field theory at
small distances. The analogous symmetry which
motivates our expansion is the local dilatation in-
variance indicated in Eq. (2.7) and (3.12). We now
write the expansion:

&& (B~Et(00)E,(02)[A)u=-e".

Let us next use (5.12) to write

2(t)t ~ (2)t = ((t)t+ (t)t} -(L)t - (L)t

=-t+ Lj+Lj -dj -dj.
Then Tis givenby

(s.is) (5.18)E,(00)Et(0v) =p c„,E,(00) 2 ttt t'.
k

The summation is over all Fk's which are not
forbidden by quantum-number considerations. In
general the unit operator may be included among
the E,'s in which case I, is zero.

Let us now insert (5.18) into (5.16) to obtain

7 BA d -s-t+ttA 1 )-t+Lt+Lt -tt tt 2--~1 2
dQQ 1-Q

ZvBA ~ Q duu-s(1 u)-t-2-ds+Lt+Lt

X ctts(B)E„(00))A) . (5.19)
x (B Et (00)Ei (OT) [A) . (5.16)

Evidently the high-energy behavior is

tx(t) = (1+if, +dt —Lt —Lt —a)+ t. (s.i7)

The amplitude will be proportional to the numerical
coefficient of 7 in the small-& expansion of
(B~Et(00)Et(02))A). Thus in order to properly un-
derstand the high-energy behavior of T we must
develop a theory for E(0)E(v) for small 7.

D. The Operator Residue Expansion

Following ideas developed by Wilson in quantum
field theory we propose that the residues F satisfy

To extract the Regge parameters from (5.16) we
consider the high-energy limit in which s- ~ with
t fixed. Since Q = e'" it is evident that the impor-
tant region of integration is v-s '.

The behavior of T for s-~ will therefore depend
on the behavior of (B~Et.(00)Et(0v)~A) as 7'-0 Let.
us suppose this matrix element behaves as &.
Then the integrand behaves like

A A
-s(~ i t+Lt+L -ttt--4 +s-21-Q) j j

and the form of the amplitude for s ~ is P(t}s ")
with

PBA sak( t)-Lj ~jjjk

o,(t) = (1+d, )+t,

Pt'is = ct; s&BIE2(00)(A&P(t),

(s.20)

where P(t} is independent of A, B, i, j and may be
computed from (5.19).

Evidently (5.20) describes the coupling of a fac-
torizable Regge pole with intercept

(22(0) =1+d, . (5.21)

Let us apply these arguments to the important
case of the isospin distribution V, (8). The parti-
cle which couples to isospin is the p meson whose
intercept is tx2(0}=2. Using (5.21), we find
d(V, )=-—,'.

Since V has dimension -1 Eq. (5.8) gives

(5.22)

This indicates that the isospin per unit 8 (or t))
varies as 8 't2 (or t) 't2). Equivalently the isospin
per parton varies as g' '. This fact has important
phenomenological consequences for deep-inelastic
scattering and multiparticle production. '



CHIRAL MAGNETISM (OR MAGN E TOHADROCHIRONICS )

These connections between local currents on the
string-like hadron and Regge trajectories may be
a powerful tool for exposing the relations between
current algebra and Regge theory. In Sec. VI
we show how chiral symmetry may be formulated
as a theory of string currents and residue oper-
ators.

VI. CHIRAL SYMMETRY AS A SPONTANEOUSLY

BROKEN SYMMETRY

A. Spontaneous Symmetry Breakdown

We assume that the interparton forces are in-
variant or almost invariant under transformations
generated by the chiral charges (—,'7 „,—,'r, ). Ordi-
narily, for a system of'a finite number of degrees
of freedom this implies that the ground state is
either a singlet or a member of a degenerate
chiral multiplet of finite multiplicity. Fox a sys-
tem of infinitely many degrees of fxeedom, a
spontaneous breakdown may occur. This happens
when energy considerations favor a nonzero ex-
pectation value for some noninvariant quantity
throughout the system. Fox example the finite-
energy states of a ferromagnet have a nonvanish-
ing magnetization (o) throughout most of the sys-
tem. This is true in spite of the fact that no di-
rection is favored by the local spin-spin interac-
tions.

The group of interest'4 in strong-interaction
physics is SU, x SU,. This group is locally iso-
morphic to the group of 4-dimensional rotations
(0,) and for our purposes they are identical. The
representations of SU, x SU, that will occur in our
study are tensors of 0,. Thus we will speak of
scalars, vectors, tensors etc. under the chiral
group.

We assume that it is possible to form a chiral
4-vector with components (p (8), y4(8)) from the
local parton variables near 8. We also assume
that y is invariant under spatial rotations about
the longitudinal direction in the infinite-momentum
frame. (This is to avoid a spontaneous breakdown
of rotational symmetry. ) The q's are to be thought
of as combinations of the f(l)'s and therefore have
dimension zero in the sense of Sec. V. Our funda-
mental assumption is that the spontaneous break-
down is due to a nonzero expectation value of y'(8)
for the enormous number of partons of low q.
Thus (y4(8)) P 0 when sin8-0. The other three
components of y are assumed to tend to zero in
order to avoid a breakdown of isospin symmetry.
The similarity with ferromagnetism suggests that
we call the local degrees of freedom from which

y is formed by the name "chiral magnets. "
We shall next argue that the alignment of chiral

r(y"~ +qV). (6.1)

Since (6.1) is chirally symmetric the total chiral
charge should be conserved.

Now let us assume that (y4(8, ))x 0 and (p (8,)&=0
for the low-lying energy levels. (Recall that the
coupling is not strong enough to appreciably excite
states with energy -80 '.) The effective coupling
can then be approximated by

g(q'&y'. (6.2)

Next consider the equation of motion for the
chira1 charge, q, of the extra magnet. Since q
= ag3"y

2~ n +2(+4&I~a

(6.3)

(6.4)

Clearly the extra chiral magnet precesses in the
external field of the partons ne.~r 8,. The periodic
increase and decrease of q est be compensated
by a periodic flux of chiral charge into and out of
the point 8,. Indeed, the conservation of charge
near 8O reads

-A, )',0", = s,q". (6.5)

so that we find that a low-energy perturbation at
the point 8, can cause a current to flow with mag-
nitude of order (p~&.

Since p4 does not tend to zero for sin8-0 we
discover that the low-energy matrix elements of
Ae cannot in general tend to zero. This phenom-

magnets near 8=0, I causes a breakdown of the
boundary conditions (4.13).' Thus we will find that
indefinite quantities of chiral charge may be lost
across the "wee" parton ends of the hadron. At
this point the reader should consult Appendix A
for the precise meaning of boundary conditions
near 8=0,m.

To prove that limA 40 we resort to an artifice
of allowing the hadronic stxing to interact with a
second system whose states form a finite repre-
sentation of SU, & SU,. For definiteness we will
allow the extra chiral magnet to be described by
a Dirac matrix representation of SU, x SU,. The
extra chiral magnet will be coupled to the degrees
of freedom at point 80 where 8, is chosen very
neax zero. Thus the local energy scale for distur-
bances near 8, is extremely large. (See IIC.)
However, we shall couple the extra chiral magnet
with a coupling constant g- I (as opposed to g- 8, ')
so that it be incapable of significantly exciting
high-energy excitations.

The coupling of the extra chiral magnet (y", y4)

to the degrees of freedom near 8, will be
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enon indicates that the system is subject to a
spontaneous current loss which can be written in
the form

Evidently we may identify the source e4 of
(4.11)with

8, Q,
"= Ag~o, e0. (6.6)

@a
sin'8 (6.10)

The reason for the existence of a nonvanishing

Q, in a symmetric theory is that we have not real-
ly accounted for all the degrees of freedom by
considering partons with g & 0. As emphasized by
Feynman, the existence of a g ' parton distribu-
tion means that no matter how much momentum
we give to a hadron, it always has a tail of finite-
momentum partons. These partons can interact
and get mixed up with the virtual pairs in the vac-
uum. Thus the vacuum may be regarded as a
source or sink for the ehiral charge which disap-
pears into the end points at 8=0, m. However, as
we shall see, it is not necessary to know the de-
tails of this source and all the relevant informa-
tion is contained in the parton-parton interactions.

We would also like to point out that according to
Feynman the g ' parton distribution is connected
with the constancy of hadronic cross sections at
high energy. We may speculate then that the exis-
tence of constant cross sections is a prerequisite
for spontaneous symmetry breakdown. In Sec. VIII
we will in fact see that (y ) should be proportional
to the asymptotic cross section for ns scattering.

Let us now write

Ce" = (sin8)&4~ e

so that (6.9) becomes

(6.11)

8, Q, =cJt d8(sin8)&4e~. (6.12)

In order that the matrix elements of iII, be finite
the constant y must satisfy

(6.13)

as long as c40. However, as c-0 Eq. (6.6) in-
dicates that Q, should remain finite. It is easily
seen that this may occur if and only if y tends «
-2 linearly miIh e. Thus we write

y = -1+y, (c) (6.14)

B~Q5~= p, d8 sjn8 ~+&C~ 8 . (6.15)

and require p, to tend linearly to zero with c. For
convenience we normalize (y", p4) so that p, = c for
small c.

Equation (6.12) then becomes

B. The Behavior of y~

It is helpful to introduce a small explicit chiral-
symmetry breaking into the Hamiltonian. The
asymmetry may eventually be allowed to tend to
zero or it may be retained to describe the small
pion mass. The perturbation is analogous to an
external magnetic field imposed on a ferromagnet.
We write

& =&8)mmIf'+& ~

To take the symmetry limit we note that

lim p(sin8)" '=6(sin8).

Thus in the limit

s, Q~ =4e (0)+4» (v).

From (6.6) we make the identification

Ag(8=0) =4e~(0) e

X",(8=v)=-e (0).

(6.16)

(6.1V)

(6.18)

dg

,.„,8 q (8),

(6.V)

(6.8)

Since {{{e4(8)is a component of a chiral 4-vector,
-i[@{";e{I{ ]= {I{' . Thus

d8
(6.9)

where e is a small symmetry-breaking parameter.
Next consider the time derivative of the total

axial charge Q,",
8 Q5 = d88~&~ 8

C. The Pion

The spontaneous breakdown of chiral symmetry
entails the existence of a massless pion which
plays the role of a {GldsSone-NNmmb boson. To
see how our parton dynamics yields this result
consider the space-time divergence of the axial-
vector current. From Eq. (4.26) we find

{f{eeee{{&=e(fJ eee'e' "'e {e) ' .

Now since 4~ has dimension -2 and ~„a" is a
Lorentz scalar Eq. (5.12) indicates that the matrix
element has poles at -Q =y+1. Using (6.14) we
find
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Thus in the limit of chixal symmetry we find
na„~ Q.

In deriving (6.19) we have used nr„' = c.
Now, allow Q -0 so that

3if„T, (Q = 0) = 4 (0)+4(e) .
D. Soft-Pion Emission Using (6.1V),

(Q xla' (6.19)

According to Nambu, ' any change in the chixal
ehax'ge of a fast moving hadron is aeeompanied by
the emission of soft pions. ' To see why this is so
we consider the residue of the pion pole in (6.15).
The residue is

c4(0} e'o' ")+c4(s) e~'"(').

The pole residue must factor into two factors;
one expressing the coupling of the axial-vector
current to a pion and the other being the on-shell
coupling of the pion to the hadronic system. The
coupling of the pion to the axial-vector current is

~ m„'f, (f, =190 MeV}.

The coupling matrix of pions to hadrons we eall
T„(Q). Thus,

-'if, T„~(Q)= I"(0):e o x(0) .+ 4a(r) . e e x(r) .

T, (0=0)=—()~Q. . (6.20)

Equation (6.21) is a generalization of the Gold-
berger- Treiman relation.

The Adler-Weisberger-%'einberg soft-pion the-
orems may also be easily proved. We briefly
sketch the argument. Consider an amplitude

,&f, w li, v &,
.„, where If& and li) are members of

a common isospin multiplet. The amplitude is
proportional to

Thus we see that the emission of pions always ac-
companies a change in Q, .

One final expression fox pion emission amplitudes
is obtained by taking matrix elements of (6.20) and
using ig, =[@„HJ. Since the eigenvalues of Ii are
transverse mass-squared we get

&flT. (0)l & =-2f. '( '- *)&flQ"I &.
(6.21)

(6.22)

where we have used (6.19) to express the on-shell
pion vertices. The symbol T indicates chronolog-
ieRl ordering,

The amplitude is expanded in powex s of Q and

Q & and after some algebra and partial Y integx'a-
tions we obtain T„()to first order in Q„and Qe,

—,. 4f. *(0 +Q())'(I' +&) &fl[Q„Q,'jl&
1

(6.23)

Since [Q,",Q, ] is the total isospin operator we re-
plRce

&f1[~;,~.']I&

to obtain Weinberg's fox"m of the Adler-Weisberger
relation.

E. Cutoff Procedure

proximations using finite systems if they ax'e cor-
rectly constructed. The trick is to replace the
effect of the eliminated degrees of freedom by a
suitable external symmetry-breaking fieM. Con-
sider, for example, some problem involving a
particular small portion of R fex'x'omRgnet. Let
us divide the infinite ferromagnet into a finite re-
gion A~ containing the region of interest and a
second part 0, consisting of the rest of the ferro-
magnet. Assuming the intex actions are near-
neighbor, the effect of 0, on 0, is mainly to align
the spins near the boundaxy of 0,. Our point is
that to a good approximation, the same effect ean
be achieved by replacing 0, by a magnetic field
near the boundary of 0,.

Let us consider an approximation to the hadxonie
chain in which we "chop off" the ends, thus legving
R finite numbex" of partons. %Ye mill remove those
partons with sine &r. This px'ocedure should allow
a reasonable description of states with 3f~ less
than some value v(e). As we have argued in Sec.
HC, we expect

Although spontaneous breakdown is associated
with infinite systems, it is possible to make ap-

1v(e)- —. (6.24)
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Write the Hamiltonian as

H =H(~)+H(&e)+H(c), (6.25)

where we have used (6.10) and (6.11) to relate q
and 4.

Let us write
where H(&e) involves only those degrees of free-
dom with sin8& e, H (&e }involves the region
sin8&e, and H(e) is the interaction between the
two regions.

For those states with m' «v the region sin8&e
remains frozen in its ground state since the ener-
gy needed to excite this region is @v. Thus me

may replace H(&e) by an additive constant. We
may also replace H(e) by an effective interaction
in which the degrees of freedom (sin8&e) do not
explicitly appear. In general they will be re-
placed by a few ground-state expectation values
including (p4) (see Appendixes A and 8). Further-
more, since the configuration of the subsystem
(sin8& e) is chirally asymmetric, the effective
interaction between the two regions will break the
chiral symmetry of the valence (sin8» &) system.
Thus we may write

Heff =H + H~, (6.26)

where H, is chirally symmetric, and &~ breaks
the symmetry. Both terms include only the de-
grees of freedom (sin8& e), but H~ includes only
those at sin8=e.

The symmetry-breaking operator H~ gives rise
to a nonconservation of the axial charge in the re-
gion (sin8& e). In order to properly approximate
the physics of the complete chain, the time deriv-
ative of this portion of the axial charge should
satisfy

s, q, = (A)e-A(r-e) {6.2V)

i[q,",H, ]=4 (E.)+4 (w —e)= + + +

(6.29)

The left-hand side of (6.2V) is defined by the low-
energy («e ') matrix elements of the truncated
system. The right-hand side is defined by corre-
sponding matrix elements of the untruncated sys-
tem. The equality supplies the constraint on the
operator + ff which insures the validity of the ap-
proximation procedure. (The sequence of approxi-
mations in which & 0 is an elaboxate form of the
self-consistent-field approximation. "}The pro-
cedure me have defined works well when the ratio
of neighboring longitudinal fractions g&+~/g; = A. is
small. To further deal with (6.2V) we use (6.1V)
and the continuity of 4 and Ae to replace the right-
hand side by

8, Q, = 4(e ) + C (w - e ) . (6.26)

Thus II~ must satisfy

p (f ) + g(7l —e ) + ~ (6.30)

(p (e)+ p (7f E)'
eff 0+ (6.31)

Thus we see that me can account for the aligning
forces exerted by the frozen sea by the presence
of a chixally asymmetxic term in H,«.

F. Representation-Mixing Schemes

Let us suppose that me have solved for the eigen-
vectors of H~. These eigenvectors will obviously
form SU2&& SU, multiplets. We shall label an eigen-
vector by a multiplet (A) and an index (i) which dis-
tinguishes states within the multiplet. Thus a typ-
ical eigenvector of Ho is written ~A, i),. Since in
the cutoff model only a finite number of partons
are present the multiplets are finite dimensional.

We can estimate the size of the multiplets which
will be required to account for the levels with
m' & e '. The partons involved in the excitation of
these states are found in the interval sin8&e and
their total number is

d8
H{c)~ . --Inc .

A,0sin8 (6.32)

Each parton is an n-dimensional representation of
SU, ~ SU, so that the largest representation that
can be built has multiplicity

n"&'& = n-"' = ~ "". (6.33)

Thus as we try to understand the chiral prop-
erties of increasingly heavy states, the represen-
tations we mill need to describe these states mill
grow as a power of the mass.

This does not mean that it is the heavy states
that me will have to assign to large multiplets. On
the contrary, it is the light states sohich soil/ be-
long to the largest rePresentations. Consider for
example the ground state or some very low lying
excitation. Every time we add a pair of partons
to the end of the chain we increase the size of the
representation that describes the ground state.
This is because the added partons are not in a sin-
glet but are aligned with a nonvanishing (y'). This
situation is similar to what happens if we consider
larger and larger portions of a ferromagnet. Here,

Since y4 is the 4th component of a chixal 4-vector
&[+ g Qs] = Ip~, so that H must commute with Qs.
We therefore absorb H' and H, into the chirally
symmetric term H, :
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even in the ground state, the angular momentum
of the subsystem grows.

On the other hand the small representations cor-
respond to configurations in which chiral magnets
are antialigned and therefore must have large en-
ergy. Thus we come to the surprising conclusion
that at each level of approximation, the largest
multiplets correspond to low-energy states while
the smallest multiplets have the largest energy.
Furthermore, there is no absolute meaning to say-
ing that a particular hadron is a superposition of
some particular chiral multiplets since adding
partons to the description will change the multi-
plets involved.

Nevertheless there is a meaning to the represen-
tation content of a hadron. Let us consider a had-
ron with mass squared = v «& ~. From what we
have said previously, we can expect the state vec-
tor to approximately factorize

(6.34)

where g„describes the partons with sine& I/v and

g, describes the ground-state configuration of par-
tons with c '&sin8&v '. The chiral content of g,
may consist of a few finite representations of SU,
x SU~. However the representations describing g,
increase with decreasing e. In a sense the repre-
sentations included in f„ar ea minimal description
of the hadron ~g&.

Let us return now to the eigenvectors of IIO which
we have labeled ~Ai&, . These of course are not the
actual eigenfunctions of H,«because of the sym-
metry-breaking term in (6.31). In general the
physical eigenvectors of H,«are related to those
of IIO by a unitary transformation which will mix
and split the multiplets. Thus we define physical
eigenvectors by

(6.35)

The matrix V contains a great deal of useful
physics. Suppose, for example, we are computing
the width of a transition (Ai) -(Bj )+ w. According
to (6.20) we have

rate according to",

where A. is the helicity and J'„ the spin of A.

VII. QUARK MODELS

A. The Need for Spin-Orbit Coupling

In this section two questions are considered.
We first discuss the possibility of realizing our
assumptions within the conventional quark-parton
model" without, spin-orbit coupling. We find that
we cannot. In fact it is necessary to introduce
some spin-orbit coupling in order to produce a
spontaneous breakdown of the desired kind, or the
model must include quarks and pseudoquarks
(quarks of opposite parity).

The second question involves the possibility of
extracting useful information without solving the
dynamics of the entire hadronic string. We sug-
gest that it may only be necessary to study the
dynamics of a few quarks of maximal g to under-
stand the pattern of low-lying hadrons. Our ap-
proximation, when applied to a specific model,
naturally leads to the Gilman-Harari' theory of
chiral representation mixing.

8. A No-Go Theorem

The space of states of a single quark (ignoring
orbital motions and strangeness) is described in
terms of isospin and spin indices acted upon by 7

and o matrices. The 7 matrices represent the
isospin, and o, the helicity or spin along the lon-
gitudinal axis. The matrices o, and o„are helic-
ity-flip operators which form a transverse 2-vector.

Another equivalent representation is to use a
Dirac-like spinor space to describe the SU, x SU,
properties of each quark. We make the identifica-
tions

Smce we know the action of q, on the states ~Ai&,
and not ~Ai& it is essential to expand the physical
states in SU, x SU, multiplets. Using (6.35) for
this purpose we get'

The amplitudes T„(q=0) for all helicity states
are sufficient for computing the relevant decay

v = —e &y y&ae 8

2i
1 4ko'gT =T5 = —,

where the plus (minus) applies to quarks (anti-
quarks). In describing a whole string of quarks
we build an infinite product of such Dirac spaces
with y matrices for each quark (or antiquark).

Let us now consider the possible objects which
can be used to describe (y, y4). The conditions
we require are
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IIfy, (I) = xpl-,
' gy, (I)]. (V.3)

Thus anything which commutes with Qy, also
commutes with IIy5. Now for a single y space,
y, is the unitary operator representing that rota-
tion (in the 4-dimensional space) which reflects
all coordinates. Therefore in the product space
this rotation is represented by IIy, . Thus it fol-
lows that the unitary operator IIy, reverses the
sign of every 4-vector function of the y's.

y ++04 y ~ p'+14

This completes the proof that no (y", rp ) can com-
mute with Qo, .

One way out is to enlarge the space of states of
a single quark so as to include quarks of positive
and negative parity. In our opinion this would
probably add too many unwanted low-lying states
to the hadron spectrum. We shall therefore adopt
the spin-orbit alternative.

It is not altogether clear how large the spin-or-
bit coupling must be in the underlying parton-par-
ton interaction. What is clear is that y4 must be
composed of spin-isosyin quantities together with
orbital variables. Thus it is certain that the ef-
fective Hamiltonian in (6.31) for the cutoff system
is spin-ox'bit coupled. In other w'ox'. ds any nlodel

(1) (q, y') is a chiral 4-vector function of the
y's near e.

(3) (y", y ) commutes with the total angular mo-
mentum about the s axis, J,. If this were not so
then a nonvanishing (p'& would spontaneously break
rotational invariance. For similar reasons g
should commute with reflections about a trans-
verse axis and charge conjugation.

(3) A less fundamental restriction follows from
the assumption of no spin orbit coupling. This re-
quires p to be built from the internal degrees of
freedom (7', o}without dependence on orbital vari-
ables. This is the only assumption which can rea-
sonably be questioned.

It follows from (2) and (3) that y commutes with
the sum of all 0','s,

I:ego.1=0

(V 3)

h, gy. 1 =0

Theorem: There does not exist a 4-vector func-
tion of the y's which satisfies (V.2). This includes
operators which are formed from the degrees of
freedom of several yartons.

Proof: Suppose such a p existed. Then it would
have to commute with Q, y (i). This is because
iy'=exp(-,'i vy), so that

which represents the low-lying hadrons as finite
coQections of quarks must contain spin-orbit cou-
pling in the IMP.

C. A Meson Model

y(x, —g, q, /q,-),
ri-, +ri, =g(8).

(V.5)

We shall further simplify the orbital motions by
allowing only four possible orbital states, all
others being assumed to have much higher energy.
We label the states It&, IP, lz&,

I t) and I )&: These states have +1 unit of orbital
helicity (orbital angular momentum about the z
axis).

L.lt&= It&,

They are assumed to be symmetric under the in-
terchange of g, and g~.

lz&: This state has I,=0,

I, Iz) =0. (V.V)

It is assumed to be antisymmetric under q, @-, .
is): This state also carries I; =0

I„Is&=0. (7.6)

It j,s assumed symmetric under g,
Our next assumption should really only be cor-

rect if the ratio of neighboring energy scales (ra-
tios of g's} is large. Namely, we assume that the
lowest-energy mesons can be treated by cutting
off the entire chain except for one chiral magnet
near 8 =

& m. The rest of the chain is then replaced
by a symmetry-breaking interaction according to
the prescription of Sec. VI E.

According to Sec. VIE the first step is to con-
struct the eigenvectors of H, which form irreduc-
ible chiral multiylets of definite charge conjuga-
tion, parity and helicity. We shall denote the
states of a qg system as follows:

We proceed by assuming that the elementary
systems which behave with little or no spin-orbit
coupling are clusters of partons. More explicitly
we will assume the 8 axis is populated by qq pairs.
Within a pair we allow spin orbit coupling but we
assume that it is absent or weak between pairs.
Thus the elementary chiral magnets are qg pairs
whose orbital excitations are now included as in-
ternal degrees of freedom.

We assume that the total longitudinal fraction of
a chiral magnet is given by A., sin8/w =q(8). The
internal orbital wave function of the pair is writ-
ten
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TABLE I. Breakdown of qg states into SU2 &SU2 mul-
tiplets for the helirity-0 sector.

as in Sec. VIIB except that Ecl. (V.2) is replaced by

(7.9}
Chiral

property

Xp

7t o

0'o

«do
lpl

(Ag)o

{P)o
(A2)p

Bp
fo
Co

(do

Do

Configuration

(1/~2)(t t~ t tf)T
(I/&2)(t tl+ t t f)8
(1/v 2 ) (t t $ + t t f )T
(1/ 2)(tt$ —h $$)S
(1/~2) (» —»)s T
{1/W2)(»+ ~t)s T
(1/W2)(»+ & ~)z T
(1/v 2)(t ) —h t)z T
(1/&2)(t 5+ h t)z8
(1/&2)(t k —) t)z8
(1/vY)(& & + & &)s8
(1/W2)(S & —t &)~8

where J, includes the orbital as well as spin he-
licity. In our case (7.9) becomes

[V', o.(~)+o.(V)+21;]=o. (V.10)

B' = ls&& ) l+ I f &&s I, B = (B')f'
(7.11)

In fact there are 12 independent 4-vectors which
satisfy (V.10) and the parity, charge conjugation
requirements. In order to conveniently express
them we will define a few more operators which
act on the orbital degrees of freedom,

l.'=lz&& )l+ lf&&zl, L-=(1')t

(1) orbital: The orbital state is either l f &,

lz&, or is).
(2) spin: The spin content of the qf system is

denoted by small arrows indicating the eigenval-
ues of c, . Thus there are 4 spin states given by

lb&& with spin-helicity 1, -1, 0,
0, respectively.

(3) isospin: The isospin configuration of a pair
is either triplet (T}or singlet (8).

Thus typical states are labeled (t0 f) T, (40)}S,
(t4z) T etc. We shall also indicate the transforma-
tion properties of a multiplet by a symbol X, X„,
or X„„.These symbols denote chiral singlets,
4-vectors and antisymmetric tensors. In Tables
I, II, and III we give the eigenvectors of H, (chiral
multiplets of definite helicity, parity, and C).
They are named according to the quantum numbers
of theix real mesonic counterparts. In some cases
there is ambiguity. For example the m and A, la-
bels can be interchanged in the helicity-zero sec-
tor. Since however, the physical eigenvectoxs will
be superpositions of these states there is no par-
ticular need to resolve these ambiguities.

Our next task is to find a suitable choice for the
operator y4. The constraints on y4 are the same

also define the combinations

O'V=U V +U V

1—Ux V= (tf+ V

(V.12)

The 12 opexators which are candidates for q4
are then:

(o, -cr-, )x B,

(o, —o-, ) x B7, ' rr,
(cr, —o,—) BZ,
(o, —o~) 'BJ, t

(o~
-o&)x BJ~

(o, -o,)xBJ,2t-, r„
~ ~X

(V.13)

(7.14)

We have previously' made an analysis of meson
transitions using (6.37) and assuming that the
chirally symmetric breaking term in H, ff is a lin-
ear superposition of the operators in {V.13) and
(7.14). The results of our analysis included those
of Gilman and Harari. Furthermore our study
indicated that the largest term in the symmetry-
breaking part of H,« is probably

TABLE II. SU2 x SU2 multiplets for helicity-1 sector. c(o, - o-, ) x B= cc/p4, (7.iS)

Chir al
property

Xp

X
X

Name

Po
coo

(A2)o

(f)p
(Ag)o

)o

Do
C

Configuration

(t ~)s T
(f t)88
() t)zT
(& t)zs

(1/~2)(& &+ &&)0T

(1/~2)(t 4 —4 t)fT
(1/~2)(» + ~ ~)48
(1/~2)(t ) —) t))S

TABLE III. , SU2x SU2 multiplets for helicity-2 sector.

Chiral
pr operty Configuration

(A2)o
fo

(t t))T
(t t)f s

where c is a constant.
We shall illustrate the use of (7.15) by applying

it to the n, A„p, o system in the helicity-zero
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m, '(A, ) = m, '(p),

m, '(v) = m, '(o) . (7.16)

Now inspection of the operator in (7.15) shows
that Ip), and lo&, are eigenvectors with eigenvalue
zero. Thus the symmetry-breaking term will
leave Ip), and lo), as eigenvectors and m, '(p),
mo'(o) as eigenvalues. Harari and Gilman assume
that the o and p are experimentally degenerate
with M' of order 0.5 GeV'. From this it follows
that the eigenvalues mo'(p), m, '(o), m,'(A, ),
m, '(v) are all equal.

Now let us turn on the symmetry-breaking part
of H.ff given by (7.15). It is easy to see that

m'IAi&0= ls&0

~'lv&. = IA.&0 ~

(7.17)

Thus cy~ is merely an off-diagonal matrix in the
(v, A, ) subspace and will induce (v, A, ) mixing.
The physical eigenvectors of H,ff are

sector to derive the Gilman-Harari model. From
Table I we see that p and A, form a chiral tensor
and that (s, o) form a chiral 4-vector. The eigen-
values of Ho (called mom} must satisfy

2
Tg, =—(mg'- m&')&flQ, If&.f.

The predicted rates are in impressive agreement
with experiment.

The analysis has been extended' to include the
remaining mesons indicated in Table I. We find
that small admixtures of the operators in (7.13)
and (7.14}are required. Good general agreement
with experimental widths is obtained except for
the D and E widths which seem to come out too
large. Since the D and especially the E are rather
heavy it is likely that we cannot maintain the ap-
proximation that only one chiral magnet is in-
volved in their excitation.

It should be noted that every step of our proce-
dure would be required in computing the proper-
ties of an impurity in a ferromagnet. The com-
putation would begin with the eigenvectors and
eigenvalues of the free impurity in the absence of
the ferromagnetic system. Rotational configura-
tion mixing would then be induced by the magnetic
field of the lattice. Finally we would compute the
lifetime of the excited impurity states by assum-
ing an amplitude for spin wave emission. The
amplitude would be proportional to the time deriv-
ative of the angular momentum of the impurity.

Iw& = (Iw&, —IA,&,),

IA,) = (IA,),+ lv), ),
(7.18)

and the eigenvalues are

m =mo—2 2
fr 0

2 2m~ =m0 +c1

m 2=m2=m 2
0 0

(7.19)

Thus we see that v and A, are split from (p, o) by
equal amounts. Using schematic masses

m m(7 2 p

we find

2 1 1m =2 C=2 ~ ('l. 20)

Harari and Gilman also compute the decay rates
o-mn, p-mm, and A, -pn by evaluating the ma-
trix elements

&vI@.l~&, &sl@.lp&, &ply, IA &

and using

VIII. SPONTANEOUS BREAKING
AND THE POMERON

In Sec. VI we hinted about a possible connection
between spontaneous symmetry breaking and the
constancy of asymptotic cross sections. In this
section we will derive the connection. Our view
of the Pomeron is an extreme one and therefore
requires discussion.

In the usual approach to duality it is assumed
that only the nonexotic channels are populated by
resonant structures. The Regge trajectories built
from these nonexotic resonances are also assumed
nonexotic. On the other hand the high-energy con-
stant cross sections are built from a nonresonant
background which can be exotic. Now unfortunate-
ly mathematical models of duality do not support
such a view. Instead they stubbornly insist on
producing an ordinary even signatured trajectory
with o.(0) =1 in addition to lower lying p's, v's,
etc. This suggests to our mind an even more ex-
treme approximation in which all of Hilbert space
including exotic states is filled with narrow reso-
nances.

This view is also indicated by the parton-string
model. Given a system of many partons it is only
reasonable that its excited states will include
quantum number excitations.

On the other hand we have argued that the struc-
ture of H is such that only a small number of par-
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tons is important at low energies. In particular,
if the ratio of longitudinal fractions of neighbors
is small then the energy required to excite 4-par-
tons will be much larger than the 2-parton ener-
gies. This could easily explain the absence of
prominent low-lying exotics. In any case we sus-
pect that it is somewhat a matter of taste and
preference whether to populate all Hilbert space
with resonant levels describing the average level
density or to classify states as resonant and back-
ground.

The advantage of a pure resonant model is sim-
plicity and solvability and we feel that it is signif-
icant that in such models, the level structure is
always just sufficient to build an even-signatured
trajectory with u(0) =1.

The disadvantage is that phenomenologically it
seems to be a badly contaminated or distorted ap-
proximation. Thus phenomenologically on the
positive side we have:

(1) np(0) =1. This seems required by a pure
dual resonance interpretation.

(2) Factorization of the Pomeron vertex sup-
ports a Regge-pole interpretation.
On the negative side:

(a) o.p (0) appears to be —,
' or smaller instead of

equaling unity.
(b) Neither the exotic or vacuumlike resonances

required by a dual interpretation seems to exist
in a prominent way.

In what follows it will be seen that our assump-
tions necessarily lead to the existence of an even-
signatured, n(0) =1 trajectory and that its coupling
is of similar order of magnitude to the observed
Pome ron.

Consider the scattering of a pion of'f a target
hadron ~A). Using the vertex given in (6.19) we
encounter expressions like

(m„'=0),
ptr(mA -s) (1 ptr) t- (8.3)

To compute the amplitude for s-~ we require the
value of

(AiC "(0, 0)Ct (0, 7)iA) (8.4)

C (0 0)4t e(0, r) = p» 5 + (8.5)

We have used the fact that the dimension of
4 [=q(sin8) '] is -1. The contribution of (8.1)
then behaves like

0
5tx 8 f d trS(] 'lr) t 2 (8.6)

For 1=0 this behaves like

~8 4» (-s)
f 2 t (8 'I)

We may double this in order to account for the
interaction at ~ =m.

The term (8.2) is obtained by interchanging
(a —P) and s —u. Thus we get

5a8 [( ) +tt( ) +ttJ (s.s)

For large s we may replace u by (-s) to get

s"'
8 8» 8

(1 trt
)

.5tte SF» t+t (8.9)

for w- '. For this purpose we shall use the op-
erator-product expansion in Eq. (5.18). We assume
the expansion begins with a singular c-number
term followed by less singular 1=0 and 1 oper-
ators. Exotic contributions to the product, if they
are present at all, should be less singular as
v -0. Thus

4 0 A

dv(A~4t "(0, 0):e to&'x":qua(0, v)
which by the optical theorem gives

s -~ o „-stt»f, '. (8.10)
x: etos' ":(Q)e" ~~ ' . (8.1)

This term describes the emission and absorption
of the pion from the 8=0 end of the target hadron.
In addition a similar term

Q~P g~g (8.2)

describes a process in which the time sequence of
emission and absorption are interchanged. Two
more terms describe the emission and absorption
from the e=n end of the target.

We may also consider processes in which one
pion interacts at ~=0 and the other at 8=@. How-
ever such processes are not important at high en-
ergies and may be ignored for our purposes.

As usual the orbital part of (8.1) is given by

We shall next show that the constant w is propor-
tional to the symmetry-breaking parameter (y ).
To prove this we require a slight generalization of
(8.5) in which one of the operators 4 is evaluated
slightly away from 8 =0. Our expansion will be
written for the chronologically ordered operator:

T(4t (0, 0)48(8, r)) 5 e
+ &E(e/r)+

(8.11)

This is the most general form consistent with
dt, = -1. The function E(e/r) must equal unity for
8 =0 in order to agree with (8.5).

Now it can be shown that if the equations of mo-
tion possess the full Mobius invariance' necessary
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for duality and crossing symmetry then E(8/r)
must be independent of 8/v'. Thus, assuming
Mobius invariance,

Regge slope which would require cross sections of
order 0.5 mb.

T(4"(0, 0}4 (8, r))=5" + (8.12}
IX. SUMMARY AND CONCLUSIONS

Now using (6.17) allows (8.12) to be written in
the form

T(Q, (0)C 8(8, r)) -1(4 (K, 0)4 (8, v) }
ga j5~

+ + . (8.13)

Since 4 (v, 0)4 (8, r) is not expected to be singular
when r 0 and 0-0 we ignore it. Integrating
(8.13) over r and retaining only the most singular
pieces as ~-0 gives

gn8 7TK

8
(8.14)

The commutator on the left-hand side of (8.14)
can be computed since 4 is assumed to transform
as a chiral 4-vector. Using (6.10) we thus get

[qa 48(8)] 'P ( }5a8
sin0 (8.15)

7fK6 (P (8)) a8
8 sin8 (8.16}

Thus in the limit 8-0,

Combining (8.17) and (8.10) yields

8(y'}
otot

(8.1V)

(8.18)

Thus the asymptotic total cross sections should
be of order f 2 with a proportionality factor 8(y4).
We see that the existence of a spontaneous break-
down requires a nonvanishing high-energy cross
section. Numerically we would expect (p') to be
of order unity since it is built of spin and spinlike
quantities. In fact if we suppose o„,=20 mb then
we find (io ) = r' (as found in the model of Appendix
C).

Perhaps the most interesting consequence of
this line of reasoning is that the scale of strong-
interaction cross sections" is set by f„'=10.'l mb.
Two other possible length scales are available,
neither of which seems a reasonable candidate.
The first is the pion mass which is numerically
satisfactory. However it seems unreasonable to
us that o- as m„'-0. The other scale is the

In the preceding we have attempted to present
a unified approach to hadronic phenomena associ-
ated with the structure of low-lying hadrons and
forward high-energy collisions.

Our approach was motivated by the need to syn-
thesize the following:

(1) Bjorken scaling of the deep-inelastic electro-
production structure functions.

(2) Quark-model phenomenology.
Property (1) suggests that hadrons are composed

of a, large number of pointlike (on the scale of had-
ronic physics) partons. The usual quark model on
the other hand, implies that only a small number
(2 for mesons, 3 for baryons) of partons are in-
volved in the low-lying excitation spectrum. The
remaining infinity is thus to be identified with the
"frozen sea."

(3) Constant total cross sections, the Feynman
scaling of inclusive spectra, and the observed
flattening of vW, (e- ~). These properties imply
the drj/q distribution of partons.

(4) Limited (&0.3 GeV) transverse momentum of
produced hadrons.

(5) Regge behavior and duality.
(4) and (5) supply the main evidence" for the

stringlike structure of hadrons.
(6) Current algebra, partial conservation of

axial-vector current (PCAC), and their saturation
by finite-dimensional representation-mixing
schemes.

These indicate a chiral alignment of the "frozen
sea, " which is manifested as an "external" SU,
x SU, -breaking field acting on the valence partons.

The dominant configuration of the hadronic IMF
wave function thus describes a string of partons,
wiggling in the transverse plane. The string pa-
rameter corresponds to the average longitudinal
fraction carried by the parton, and provides an
energy scale of internal motions which rises ex-
ponentially as we move away from the spatial
center of the hadron. The phenomenon of "chiral
magnetism" realizes the spontaneous breakdown
of SU, & SU, and causes the appearance of the
chiral "order parameter" (p'). The latter is the
agency through which information is transmitted
to and from the active central partons. In partic-
ular, the order parameter provides the link be-
tween low-energy pionic amplitudes and high-en-
ergy total cross sections and sets their scale at
f 2

Our treatment is evidently incomplete and some
important questions have been ignored. In partic-
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ular, no attempt was made to deal with the dynam-
ics of the longitudinal momentum. The c-number
approximation we have used is of course incon-
sistent with Lorentz invariance and makes it im-
possible to treat processes which involve longitu-
dinal momentum transfers. A second subject
which was ignored is SU, structure. We believe
that an extension from SU, to SU, involves more
than a trivial renaming of indices and the addition
of a A. -quark mass term. In fact, such problems
as the instability of objects with the quantum num-
bers of one quark, and the g —g' mixing would
have to be faced. We also note that our treatment
of the Pomeron cannot be the full story. There is
obviously much more to understand about the
Pomeron and the related issue of exotic states.

Finally, we wish to point out that even when
these issues will have been satisfactorily settled,
there will remain the unsolved fundamental prob-
lem of "deriving" the model from a relativistic
quantum field theory. We emphasize that this is
an entirely open problem and involves much more
than the selection and iteration of a class of dia-
grams. Presumably something like a proof that
one-dimensional configurations dominate the path
integrals of the appropriate quantum field theory
is needed.

AQKNOVfI. EDGMENT

g„(j). The Hamiltonian as usual is

(A2}

The basic assumption used in the following is that
the ratio X which sets the local scale of energy is
sufficiently small. By this we mean that the eigen-
values of

~ ~

N-

~-'UU, j+1)

are small compared to those of X "U(P, N+ 1), so
that the Nth parton cannot be appreciably excited
by the rest of the chain.

(a) We now turn to the problem of finding the
spectrum of low-lying states and their associated
transition amplitudes. Specifically, suppose we
are interested in the states whose enexgy is
bounded by

&&A. ".
The structure of the Hamiltonian indicates that if
we want to compute the properties of these states
to order A.

" it should suffice to cut off the chain at

N(v, n}=v+n. (AS)

We thank Shmuel Nussinov and John Kogut for
many fruitful and stimulating discussions. We
would also like to thank Miss Pamela Donbrow for
her diligence and patience during the preparation
of the manuscript.

APPENDIX A

The aim of this Appendix is to formulate some of
the general properties possessed by near-neighbor
coupled systems with an increasing energy scale.
In particular we discuss: (a) the systematic con-
struction of the low-energy states and (b) the com-
plementary issue of the behavior of local quantities
as q-O, Some of the statements made here are
illustrated by a soluble model in Appendix B.

A parton at the jth site will be equipped with an
E-dimensional state space and its associated oper-
ator algebra represented by the dynamical vari-
ables t, (j), a=1, . . . , l'. It will also prove con-
venient to introduce a notation for "quasilocal"
operators,

In fact, the problem may be approached by defin-
ing an effective Hamiltonian" H„„[f,(1).. . g(v)]
which acts only on the first v partons. The eigen-
values and eigenvectors of H„„, when supplemented
by renormalization factors are sufficient for com-
puting all amplitudes to the desired order. H
can be built in steps by first diagonalizing
A. "U(N, M+I}, then treating A.

~" '~U[g„, g„]as a
perturbation, and so on, till the vth site has been
reached. This results in a pattern of split and re-
split levels as in Fig. 1. As we are interested
only in the levels whose energy is smaller than
A, ", until the vth site has been reached, only the
ground-state splitting need be considered.

We exhibit without proof" the effective II to or-
der A.',

More genera11y, the set of opex ators associated
with a cluster (j, . . . ,j+ C) will be designated

FIG. 1. Splitting and resplitting of the levels of a
chain with a geometrically increasing energy scale.
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geg=g G N g E )G N Nq(q N-1

g-(&-&)
+«(&)I((N)lv(&)&~ ~ (w(N)14(&)I ((&)&Ms..., (())- &)((iv ))+-((iv-))u ,((i.v &)I-.

(AB)

Here G(N) and y(N) are the ground state and ex-
cited states of X "U[&(N}, f(M+1)]. We remark
that for simple systems the operators f, in gen-
eral transform in a definite way under the sym-
metry group of U. Thus, if ~G) is a singlet, then
the first term vanishes. Moreover, the second
term is a simple one-particle invariant operator
which in many cases is just a c number. We thus
see that the leading term in a symmetric system
will be the third term, which in fact means that
the chain might as well have been cut off at the
(N-1) site. In other words, the structure of the
low-lying states will be independent of the rest of
the chain. Qn the other hand, if 6 is not a singlet
and u„(G~J(&~G)w0 for some a, then the first term
of (AB) will supply the "external field*' which po-
larizes the low-lying states.

(b) We now turn to the opposite problem, namely,
that of deriving the behavior of low-energy matrix
elements of the operators f„(j)defined in (Al), as
j «oo

Consider the Heisenberg equation for &,(j),
tt&, f,U) = & f,&,&, i(,&, (j,j+I)

(A 7)

x'ta, g„U) = z„,t,(j)

+ Z„,g,(j+1)+G,g,(j —1). (AB)

The crucial point is that due to the progressive
energy scale, Eq. (AB) will in most cases be ef-
fectively cut off to leading order in A, after a finite
number of steps C. To see this, note that to first
order in A, the low-energy state ~e) can be repre-
sented by

(AB)

where X„ is the ground state of the subchain
(N, . . ., »), N being the terminal cutoff point and
A. "&e. Thus, if in Eq. (AB} every term can be
broken into a product,

where f and g are determined by commuting g with
II. By commuting g„(j,j + 1) etc. with H, a se-
quence of equations is generated which involves
longer and longer operator chains g, (j.. . ). In
general the operators {t,(j)) pertaining to a cluster
will satisfy,

Z... . .. g... ... 0, .",i- s)=[ZP. . .,C... ....,(j, , j —C)]

(A10)

such that the first factor on the right-hand side
has a nonvanishing ground-state expectation value,
then to first order in A, this factor may be replaced
by a c number,

[ZI.'&}&& }(j,. . . ,j —C)]-&}t.l[]IX.) (All)

This procedure cuts off (AB) and effectively turns
the matrices I', G, K into finite-dimensional ones.
We now remark that when sandwiched between low-
energy states the left-hand side of Eq. (AB) may
be neglected so that the equation turns into an en-
ergy-independent recursion relation for the matrix
elements

(A12)

where T(X) is a transfer matrix. The behavior of
g(j) as j-~ will be determined by the eigenvalues
t(A.) of T. We thus arrive at

(A13}

The operators g do depend on the low-energy
structure and should be determined by matching
the recursion relation (A12) with the values of
(e(f(j)~e') for X '-e, e', thus providing Eq. (A12)
with boundary conditions.

One other consequence of the cutoff Eq. (AB) is
that for short times 7 ~ ~'=Rosin~, the behavior
of the cluster (j, . . . ,j —C) is effectively indepen-
dent of its neighbors. In other words, the algebra
formed by the operators (f„(j,r)) for rs X' is a
closed finite linear algebra of dimension -l~ .
Evidently this property is the origin of the oper-
ator-product expansion introduced in Sec. V C.
The coefficients c,~, of Eq. (5.18}are determined
by the transfer matrix T.

Finally, we rema, rk that to first order in X, Eq.
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(A12) simulates a differential equation if A.
' is

treated as a continuous parameter. This is the
origin of the "continuum" notation used in the text.
To summarize, the considerations used in the text
concerning operators f(8}are meaningful only when
used for the leading terms of low-energy matrix
elements when sin8-0.

id (j)=[a (j),H+6H]

where J' (j,j+ 1) is the flux of the (-) component
of spin:

APPENDIX B: THE FERROMAGNETIC MODEL

The model of a ferromagnetic hadron involves a
set of fictitious spinlike variables which we label
0 y 02 03 The o' s are Pauli matrices but should
not be associated with real spin or isospin. The
internal SU, symmetry of the system provides a
simple example of a spontaneous breakdown. Thus
consider the one-dimensional ferromagnetic Ham-
iltonian:

J U,j + I) = —[a U)o.u + I) -o U + I}o.(i)].
(»)

. o )c4 ~ —2lc (.p (BS)

Equation (B6) is the discrete form of the continuity
equation for o . The equation is of the form (4.5)
with an extra source term. It may be approxima-
ted by a continuity equation of the form (4.11)with
the source term defined by

where

g g oU) CU+ 1)

1 1 2 2 3 3

(Bl}
We will use (B6) to find the eigenfunctions and en-
ergy eigenvalues of the one spin-wave excitations.
We define the energy of the state lG) to be zero by
subtracting a constant from H. We shall consider
a one spin-wave excitation with energy e,

We shall be interested in the properties of the
system as r7-0 (or j-~). As usual [Eq. (2.2)] we
assume that ratios of neighboring g's become con-
stant and thus

(B2)

with A. &1.
We allow j to range between unity (fast partons

with large r)) and ~ (wee partons). This is a slight
departure from the usual string model which has
two wee ends but will suffice for our purposes.

The Hamiltonian (Bl) is rotationally symmetric
but its ground state is totally aligned. The direc-
tion of alignment is arbitrary and will be chosen
to be the 3 direction. We do this by introducing a
small symmetry-breaking term of the form

Substituting in (B6) gives

ea(j) = —a(j)+ —[a(j) -a(j+ 1)]
2c . 1

1j Qj

[a(j —1)-a(j)].1

~j-1
(B9)

a(j)-r) r =8" . (B10)

We find an equation for y which is independent of

(The constant g was absorbed into the scale of e
and c.)

Using r)~ =Ar (A. &1), we may solve (B9) in the re-
gion j—~ by a power behavior

5H=c

[See (6.7)]. The ground state is thus

(B3)

(B4)

2c+[1—e '](1 —X}=0.

For c-0, we find

2c
(1 —A.)ink.

(sll)

(B12)

(c,& =1 (B5)

The symmetry-breaking parameter analogous to
y is o3. Since the ground state is independent of
c we have

The coefficients a(j) control the behavior of ma-
trix elements of local quantities analogous to those
studied in Sec. V. In particular the matrix ele-
ments of J, a, 0, and 4 are:

even in the symmetry limit c-0.
Consider the Heisenberg equation for

a U)=-'[o, U) -~a.U)J,

«lo U)l» =aU),

(G lJ (j,j + I)Je& = —[a(j ) -a(j + 1)J,

(B13)

(B14)



AHARON CASHER AND LEONARD SUSSKIND

(816)

(816)

We find that as g-0,
o,(q) -1,
o (q)-q",
~ (q)-n" ',
@ (q) n" '-,

(slv)

(816)

(s19)

(820)

Note that in the symmetry limit Eq. (812) gives
y-1 linearly with c. Thus J tends to a nonzero
limit as q-0 [compare with (6.6)]. Moreover
(814) insures that as c OZ (q 0) =4, where 4
is the coefficient of q" ' in (820) [compare Eq.
(6.15)].

Let us next illustrate the cutoff procedure de-
fined in Sec. VI E and used in Sec. VII. We shall
work in the symmetry limit c =0.

Consider the recursion relation (89) for the
amplitudes a(j). Rewrite Eq. (89) in the form

a(j + 1) = a(j)(1+ A, -ex~}-za(j —1) .
Let us concentrate on the region where cA,' «A, .
(This is the region we termed the frozen sea in
the text. ) We may evidently ignore ed to a first
approximation and we are thus left with an e -in-
dependent linear recursion relation which deter-
mines the properties of local quantities in this re-
gion. Note that to this approximation Eq. (89) is
satisfied by a(j) = CA~, where G is an arbitrary
constant. The constant C should be determined by
continuing the equation to small j's and nox malizing
the state le& according to

(821)

C will thus depend on the energy e. In order to
determine the energy eigenvalues c a cutoff pro-
cedure should be formulated. Imagine terminating
the chain at the Nth site. The eigenvalue condi-
tion for e is just the determinantal equation which
results from Eq. (89). We thus get e = lim„„e„,
where c„solves

Det = d„(e)=0. (822)

For A, «1 it is natural to expand e in powers of A,.
In oxder to compute c up to order A,", the terms
zA~ for j&n can be neglected in the expansion of

It is easily verified that this corresponds to
truncating 4„at the site which contains eA."; thus

a„(e)=0 (822)
gives e correctly to order A.". The sequence of
equations 4„=0 corresponds to the eigenvalue
equations for a sequence of finite chains of length
n whose last spin i s acted upon by an external
"magnetic field" of strength —,'A. ". This statement
may be verified by inspecting the recursion rela-
tions which follow from the Hamiltonian:

puted to order A,
" it may be substituted into the

recursion relation for the au)'s which will thus
also be computed to this order. In particular, the
value of (GIJ' (n, n+ 1)le& and the associated
a, &GI Qo (j)le& will have been correctly evaluated
to this order. Note that the value of the "external
field" is just ~ A. '(Glo'BIG&, and may be interpreted
as the effective field which the "frozen sea" exerts
on the "valence system. "

To illustrate the ideas of Sec. ~, let us apply
the cutoff procedure to the first two spins. If
A, «1, this is an adequate approximation to the
first four energy levels. We thus have

o,(n)&.=&0+
2A,

(824) ff.ff = -ko(1) ' o(2) +

~amos(2)

-&Glff.fflG& . (826)

where H, is the unperturbed Heisenberg Hamilto-
nian for n spins. Evidently, once c has been com-

The eigenstates and their energies are (for
A. «1}:
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0,

le&=lt}+(I -x)ls}: 1,

lu} = it)&

(826)

freedom by using the Jordan-Wigner trick."
Define the 2-dimensional Dirac matrices

(Cl)

where lf& and ls} are the triplet and singlet combi-
nations of vanishing total o,. It is evident that to
order 1, the splitting between the two low-lying
states IG) and l~} could have been gotten by con-
sidering the cutoff problem of one spin in an ex-
ternal field of strength I/2A. , namely,

(827)

sin8 (C2)

The fields g also carry an isospin index acted on

by v matrices. We shall introduce two such I= —,
'

Dirac fields called g" and g which have opposite
relative parity. The equations satisfied by f '

are of the form (C2):

and Dirac field g(8) satisfying the Mobius-invari-
ant Dirac equation

The eigenstates and eigenvalues of (82'I) are of
course the state lG) and le} when & is neglected.
The results summarized by Eq. (829) are the
analogs of the procedure used in Sec. VII for the
qq system Not. e that the coefficient (1-X) sup-
plies here the mixing angle between the singlet
and triplet representations of the total spin c(l)
+ o(2).

Finally we may compute (Glb (1)+ d (2)le& to
order A.

' and compare with the values of 4 (1, 2).
It is readily verified that to order A,

o both are
given by

~
$C

y v- '=0

Multiplication of (C2) by y V gives

(
2 2)~

c(c+ E'/e cos 8
sin'8

Requiring a solution of the form

j. g t QJT

(C3)

=-f&Gl[o (I)c,(2)-& (I)&-(2)]le&.

(829)

Note that by treating c,(2) in Eq. (830) as a c
number and fixing its value at unity, the results
of the single-spin problem are recovered, which
proves the consistency of the approximation pro-
cedure to this order. Moreover, the order Ao re-
sults would evidently not change by including more
spine, so that the single spin Hamiltonian (827) in
fact approximates mell the properties of the first
pair of low-lying states as long as order A. effects
are neglected.

implies

c(c+cos8)
sin'8

( g 8 2)~
c(c cos8)

~Sin

(C3)

8l c

Near e=n the solutions behave like

Under reflection of the 8 interval about 8 =~@
the equations for g, and tl, are interchanged.

Near 8=0 the solutions behave like

APPENDIX C: AN SU2 X SU2 MODEL
y, -(w-8)' ',
iI, -(v-8) '. (C V)

%e consider a model of SU, x SU, currents due
to the'authors and J. Kogut. " The model can be
formulated as the smoothed continuum limit of a
discrete system similar to the ferromagnetic mo-
del. We shall give the continuum formulation
which is based on the use of anticommuting Fermi
fields on the 8 axis. It should be recalled that in
one dimension, any Fermi field may be reformula-
ted in terms of commuting spinlike degrees of

Explicit solutions can be constructed in terms of
Bessel functions. The eigenfrequencies turn out
to be

(CS)

Equations (C6), (CV), (CS) may be applied directly
to the fields g", g by substituting c =c and c =c.
Thus
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g 0" (s g)1 0"

glc" ( g)c"
yB g cs (s g}1 ce

ye gl ce (v g) cs

(C9)

Using (C9) we find

c4 e, c(sing)' '4

[see Eq. (6.11)].

Ae~e-o(sing) Ae ~

(C16)

(C17}
The isospin currents are defined by

A,"=Pay, —,'~ g +A —B,

Ae =i+eye ,'r"g-+A —B

(C10)

(C11}

The components of the currents obviously satisfy
SU, x SU, commutation relations. The vector cur-
rent is exactly conserved and A satisfies the con-
tinuity equation:

Using the explicit form of the operators it is easily
found that in the limit c-0

Ae(0) =@(0),

Ae(w) =-4(w). (C18)

V, -(sing) '+
V,

Finally the position of the p pole may be adjusted
by varying c„. Assuming the symmetry limit c„
+ c~ =0 we find that by setting c„=& the vector cur-
rent satisfies

V' A =c4

where
1c — e(c"+ca) ~

(C12)

(C18)

which according to (5.12) is equivalent to m '= —,'.
Explicit computation shows that

~'=(0"e"+P~');, . g
C = . (par"pe+A B).sin8 (C14}

(C15)

By explicitly commuting 4 with A, we find that
C is a member of a chiral 4-vector with 4th com-
ponent

has a c-number piece which behaves like (sing)
near sine-0. Thus defining the dimension-zero
operator y4 = sin'844 we obtain a nonvanishing
ground-state value for (y'). (rp4) turns out to be &.
Using (8.18), we obtain

o,„~=-2f„e=21.4 mb.
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