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Finiteness of radiative corrections to semileptonic decays in unified gauge theories
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Using current algebra and Bjorken-Johnson-Low techniques we exhibit the finiteness of
second-order radiative corrections to strangeness-changing and strangeness-preserving
semileptonic weak processes in the context of an SU(2)& && U(1) gauge model (with the hadronic
extension as suggested by Glashow, Iliopoulos, and Maiani) with strong interactions accounted
for to all orders.

It is important' to estimate the higher-order
weak and electromagnetic radiative corrections to
weak semileptonic decays to check the Cabibbo
form of universality. In the current-current' [or
universal Fermi interaction (UFI) j or old intermedi-
ate-vector-boson' (IVB) models of weak-interac-
tion calculations, the second-order electromagnet-
ic corrections lead in general to divergent results.
With the recent progress in spontaneously broken
gauge theories, ' there appears to have emerged a
concrete possibility of constructing unified theo-
ries of weak and electromagnetic interactions,
wherein all higher-order corrections are finite.
In fact, it has been shown that, in such models,
unitary-gauge calculations of second-order (g')
radiative corrections to purely leptonic processes
like p, -e +v+v, v+v- v+v yield finite an-
swers. ' However, the corresponding calculations
for semileptonic decays of hadrons are compli-
cated due to the presence of strong interactions,
which must, of course, be treated nonperturba-
tively. The aim of the present paper is to sum-
marize the results of an investigation into this
problem (for both strangeness-conserving and
strangeness-changing semileptonic processes) in
the context of SU(2}~ xU(1) gauge theories' with

hadronic part given by Glashow, Iliopoulos, and
Maiani' (GIM}. The techniques of the Bjorken-
Johnson-Low expansion and current algebra have
been employed to isolate the divergent parts in
loops involving the strong vertices in a manner
which treats strong interactions nonperturbatively.
It is found that by working in the unitary gauge,
after mass, wave-function, and vertex renormal-
izations have been performed, the remaining con-
tributions have both quadratic as well as logarith-
mic divergences. The residual divergences cancel
among themselves, yielding a finite anssuer for the
second-order radiative corrections to A$ =1 and
t S =0 semileptonic processes in this class of the
ories. It is worth noting that the process of isolat-
ing quadratic divergences depends only on a knowl-
edge of the equal-time commutation relations be-
tween weak currents and is therefore independent
of the details of strong interactions. However, in
order to isolate the logarithmic divergences, we
assume that (i) the generalized Bjorken-Johnson-
Low expansion' for the Fourier transform of the
T product of currents is valid; and (ii) the strong
interactions are mediated by a neutral gluon or by
an SU(3)" octet of vector mesons as in a class of
recently proposed renormalizable, non-Abelian
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gauge models.
The weak-interaction Lagrangian for the class of SU(2)~ xU(1) theories described above is (in the

unitary gauge)

g gleytons+ghadrons+g, (Wk & A Z }

Ty"(1 —y, )vW„+H.c. + cf y" &A„+gsecp f [ —,
' cos2p —,'(1+y,) —sin'p —,'(1-y,}]y"fZ„

——,'gsec4 y"(1 -y, ) Z„- (
' )lLv,

where P =tan '(g'/g) is the Weinberg-Salam angle, e =gsing, l stands for negatively charged lepton, and

where

~".= Vy" (1 y.)S,—

J"=&C,y"(1 —y, )Q —4 isnPj,"

=I"-4sin'pj,",

where

0 0 -sin8 cos8
0 0 cos8 sin8

00 0 0

C, =[C, C'] = (4)

We also note that m ~ = m~ cosg, and

S,.„,(W'„, o,A„, Z„)=ig(cosPZ" +sin/A')[W~(B„W, '-B„W'„)-W~'(B„W, —B„W„)+B"(W„W„+-W„W'„)]

+ gm TVp g &0.

It has been pointed out earlier" that, in the class
of gauge models we are interested in, there is an
allowable counterterm (g, ) which has to be added
to the above Lagrangian in order to get finite re-
sults in order g' as well as to maintain the parity
and strangeness selection rules observed in na-
ture. , will play a crucial role in canceling some
divergences arising out of corrections to the had-
ronic vertex.

The diagrams arising in order g' are shown in
Figs. 1 to 6. The diagrams, that provide pure re-
normalization of the lepton lines or the 8'-boson
lines have been omitted. Let us first consider the
divergent contributions' of Pig. 1. Qne can write
the modification to the propagator as follows:

i (vk) = (k'g"" —k "k")(a ' kbk+'+c) + g""(dk'+e),

where a, b, c, d, and e are divergent constants.

FIG. 1. Modification of the W-boson propagator
(shaded blob represents the hadronic vertex).
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FIG. 2. Corrections to the lepton vertex. FIG. 3. Box graphs due to two-boson exchange.

Introducing the W-boson mass renormalization
counterterm

tbm~' =am z,'+bmz, '+(c+d)mz, '+e,
and wave-function renormalization

Z, =l —t(3 am' z2+bm~' +cd+),

one is left with the following residual divergent
contribution to the amplitude:

2

M =+
&

M g~z[a(k +2m' )+b]

r
d4k

k'(2z)'

Next, we concentrate on the modification to the
lepton vertex:

-tl'" =
2

uy (1 —y5)o[(k g "—k k")(fk +t)

+g ~(rk'+s)]. (12)

Introducing the lepton vertex renormalization
constant (arising from this diagram)

am 2-, , 9

1 2—,—1 =fmw'+(t+r)mw +s,
Z

(13}

where
the residual divergent contribution to the amplitude

coming from Eq. (12) can be written as

M =uy (I y, )t (I"-l~ II'}. (10)

a = — lnA'
12m z2

a& =0=a'

4mz mw

2 ~ 2g slQQ gl 2n
m w

5'=0,

dz =, , (m z' - m z,')' lnA',
4mz mw

1 g'sin'Q
m w

mw

d~ —& g21nA2

where we will always denote

The contribution of the Z, y, and o exchanges
shown in Figs. 1(a), 1(b), and 1(d) are the follow-
ing:

M(2) 1
g 2Mag ~+y + k2+ m 2

, (r+ fmz, )
k„kg 2

m w

fz=- """~1.A f~=f.=O
12m 'mz w

2 2

t =
z z {A —y(mz +mw )lnAz g COS Q 2 8 2 2 2

4mz mw

+ [ tan'y(m z' —m zz)

+ ~sec'Pm, ']lnA'j,
2 ~ 2, g san/1~2

2
mw

2

t =+ g 2lnA',

z 2 2 g'sin pr =-(mz -mw) z z lnA
4mz mw

2
o

4mw

g' san'(t}

(14)

(15}

d'k
k*(2z)4

We will next consider the box graphs depicted in
Fig. 3. Here the loop involves the strong vertex.
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P Z,W

FIG. 4. Modifications of the strong vertex. FIG. 5. This graph provides pure renormalization
of the lepton vertex.

To isolate its divergent parts, we will use Ward-
Takahashi identities (WTI), current algebra, and

symmetry properties of the strong-interaction
Hamiltonian depicted earlier and the Bjorken

technique. We will illustrate this procedure for
the Z contribution and only quote the results in
the other cases.

-g f d q gqp —(k —q)g(k —q)p/ms gq, —q„q, /mx
22 cos2p (2x) (k —q) —m ~2 q —m~'

u(p)y" [ 2 cos2$(P —q) —m& sin P] y~(1 —ys)v(k —P) (16)

where

M" (q)= td x"e'*( 'PI (TJ (x)xdw( )0)I P).

Let us look at most divergent terms in the inte-
gral, that arise out of the "longitudinal" parts of
two propagators. Using the current commutation
relations,

[J' (x), d" (0)]5(x,) = 4 cos'y 6'(x) d' ", (18)

and WTI, we can write

q„(k —q),M'"(k, q)

= +i (k —q) „4cos'p( P'
I
d ~ I P)

+ d'xe"'" I' Oxo ~vJz x Jw

r (s,d",(x)a,d '(0)))
I P) .

(19)

Only the last term in Eq. (19) depends on the loop
momentum q and its asymptotic behavior can be
determined via the Bjorken technique, ' after which
we have isolated all the divergent parts in the ex-
pression concerned and the coefficients of the di-
vergences are expressed purely in terms of equal-
time commutators of currents J" and 8 &J 's. In
order to evaluate 8 &J, we note that

B„J (y)=-i tdsx j (x) H„„„+H „. (20)

Since H„„„ is U(4)~ xU(4)z symmetric in the mod-

and

8 &J ~ = -2igMC y,g

8 &J ~ =i) [MC(1 —ys) —CM(1 +y~)] g.

(21)

From Eq. (21), using canonical anticommutation
relation of g fields, we find [s„dx(x), e ~a~~(0)]Er
= U', where U' is the time component of U" de-
fined below:

U" = 2g [COM, C]y"(1—ys)t/i+4/ MCMy"(1 +y5)p.

(22)

Using these techniques, we find that the divergent
contributions of Fig. 3 to the amplitude are the

W, Z, y, cr

FIG. 6. This graph provides pure renormalization of
the strong vertex.

els of interest J' commutes with it, and the known
structure of H „(the quark mass term) then gives
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following:

M',"= M"'+ M""

{g„8[Az—(~kz+Smzz+Smz, z) lnAz]+ ~k kzlnA2]
32mz mw

4~0.8
x x M, , (,m, x.x n.nx&x~ x

'x ","~.x»(&-y&xfn'x(p l&n. x",(x, n&, x.(O&&lx&ann
mz mw mz mw+, , ny„(1 ~,)~(P'~tJ ~P)lnA';

mz mw

the photon contribution,

4 ' 2 I"lnA' ~

Sm, ' ~"
the 0 contribution,

4%"=-,
n
",n(& -x&x J&'x(p I&x(x, O&x'„(O&& ~lp& inn'.

mw

(2S)

(24)

Note that none of the above divergences cd be absorbed as renormalization counterterms. The diagrams
of Fig. 4 can also be treated in a similar way. As in the case of diagram 2, we can write the modifica-
tions of the strong vertex as

-t(P'~A" ~P) = (P'~ J~ ~P)[(k'g"" —k k")(f'k'+t')+g""(r'k'+s')] — R", (25)

where R stands for the remainder. After renormalization, the residual divergent contribution to the
amplitude can be written as

m w 8 " u'- mw'

fxz — g ~ inAz fig fxa 0l2mz'm w'

(26)

t' =
4 z z[A v(mz +m»&')1nA ),4mz mw

2 2 ' 2g sin ~ l
m w

(27)

~l z g cos Q 1 1 g2sjn2A, +, lnA' r'~=- -," lnA', ~~'=0
4 mz mw 4mw

We will split the various contributions to R„ into two parts: R„=R„'+R„",where (R'„'z+R„"'+R„"&') can be
absorbed into vertex renormalization and R„ is the residual divergence appearing in Eg. (26).

, {k'g„.-k„k.-m 'g„.)(P'(V ~P)lnA'
m z

~ 2+k„—,d'x(P'~[Z'(x, O), a„J (0)](~P)+, ~ d'
x( P~[Z' (~x, O), s„Z&'(0)](P) lnA', (26)

8mw Kz

8, lnA' d'x P' Z,„(x),—„s„Z,"(0)
2 8

P + g, lnA' d'x P' Z „(x),—„s„Z,'(0)
E'r m z

+ z lnA (P'
~ U~ [ P),

m w
(29)
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2 o

R'„y=—,o. fd'e(p'J]j! (xo), a j"(o)I]p»xa'
m w

(30)

' sin'(t) e
„(x,a), ,—', a„je(O) P)Rj, ,mw

2

u u
d x P' Sx~O~Jw0 P l

4mw

(31)

(32)

R" =- lnAR d xR(P'iL iP&y8

where

(33)

L, =[S(xy 0), 8&J„"(0)]= — ]j)MCMyo(1+yo)(j) .
mw

(34)

We first observe from Eq. (22) that on adding the
last term of E(l. (29) and R„"'the wrong-chirality
[i.e., —,'(1+y, )] currents cancel and the remainder
can be absorbed into vertex renormalization. Sim-
ilarly, the sum of the first and second term of
R„", and R„"v also have the right chiral structure
and can be absorbed as renormalization constant, "
as remarked earlier.

At this point, we observe that in the sum of the
residual divergences coming from various graphs
the Z, y, and o exchange contributions separately
add up to zero, i.e.,

~~»+M~» ~M&»+M~+ =0Z Z Z 2

-(plA Ip&. = g ' "'q g qq/
2/Y (2w) q —m

x M.,(q, &), (36)

where

aqaa(q, a) = f d'ed'ye"' '
x (P'

I T(J~t.(~&Jw 8(y) J~w(0&) I P&.

Now, we only have to look at the diagrams in Fig.
5 and Fig. 6. The divergent contribution of the di-
agram in Fig. 5 can be completely absorbed by
vertex renormalization. A similar remark holds
also for the divergent contribution of Fig. 6. But
we will illustrate the latter a little more. Let us
look at the W contribution (Fig. 6)

M~»+M~»+M~»+M«~ =p
v

M"'+M"'+M'» +M"' =0.
(36)

Using the Bjorken technique' and Ward-Takahashi
identity, we can write the divergent part of this as

(P' I-1 o'afd yd'xy] —j„(xy) j (y) j„"(O)J

A lnA&+, d'xd'y T([J~(x, yo)y e~ J]), (y)] J~(0))- R j doyd x[J])(x)y [J)R~(y)y J~(0)]ET]ET
mw mi

lnA' lnA'
y'yysxT a„J"x, y, , 8 J J" 0 —,d'~ a,8 J, x, Ij'0 ~

lnA' d' d *a[[de(o), a, j„"(*)] , a,j„'(y)J„I P) .
mw

(38)

The important point to note here is that the first, sec-
ond, and fourth terms cancel against the contribu-
tion of counterterms in g, ." The thir d, fifth, and
sixth terms can be absorbed into vertex renormal-
ization. Similar things happen for the photon con-
tribution and the sum of the Z contribution and 0
contribution. Within the above set of assumptions,

I

we have shown that second-order, radiative cor-
rections to both h, S=O and AS=1 semileptonic de-
cays are finite in SU(2)~ XU(1) gauge theories with
GIM' mechanism. Details of these considerations
will be published in a longer article now under
preparation.



FINITE NE SS OF RADIATIVE C ORRE C T IONS TO. . . 435

*Work supported by National Science Foundation Grant
No. NSF GP 20709.

See R. E. Marshak, Riazuddin, and C. P. Ryan,
Theory of Weak Interactions in Particle Physics
(Wiley, New York, 1969), for a general review.
Also, A. Sirlin, in Proceedings of the Topical Con-

ference on Weak Interactions, CERN, 1969 (CERN
Geneva, Switzerland), p. 409.

E. S. Abers, R. E. Norton, D. A. Dicus, and H. Quinn,
Phys. Rev. 167, 1461 (1968).

3For a review, see the article of B.W. Lee, in Pro-
ceedings of the %VI International Conference on High
Energy Physics, Chicago-Batavia, Ill. , 1972, edited
by J. D. Jackson and A. Roberts (NAL, Batavia, Ill. ,
1973), Vol. 4, p. 249.

4S. Weinberg, Phys. Rev. Lett. 27, 1688 (1971);S. Y.
Lee, Phys. Rev. D 6, 1701 (1972); G. Rajasekaran,
ibid. 6, 3032 (1972); T. Appelquist, J. Primack, and
H. Quinn, Phys. Rev. D 6, 2998 (1972).

S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);
A. Salam, in Elementary Particle Physics, edited by
N. Svartholm (Almquist and Wiksells, Stockholm,
1968), p. 367.

S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev.
D 2, 1285 (1970).

7J. D. Bjorken, Phys. Rev. 148, 1467 (1966); K. Johnson
and F. E. Low, Prog. Theor. Phys. Suppl. 37-38, 74
(1966). For a generalization, see P. Olesen, Phys.

Rev. 172, 1461 (1968).
J. C. Pati and A. Salam, Phys. Rev. D 8, 1240 (1973).

SNote that, in this class of models, the Hamiltonian to
zeroth order in (g, e) can be written as H = H„„„~
+ Hm, «, where Hzfzozg is U(4)L, & U(4)z-invariant and

H~,«, denoting the quark mass term, breaks this
symmetry in (4*,4) + (4, 4*) manner.

' R. N. Mohapatra and P. Vinciarelli, Phys. Rev. D 8,
481 (1973);R. N. Mohapatra, J. C. Pati, and P. Vinci-
arelli, ibid. 8, 3652 (1973). Explicitly,

~ k4(2r)4 32cos&P

+ -,
' [4&), ~„w(0))sr -32, [B„~s(0), ()As(0))„32mz2

i~In order to evaluate commutators like [jg(x, 0), (8/Bt)
BytIz(0)] etc. we need the explicit structure for the

Hamiltonian. Only, here we will use the gluon model
or the model of Ref. 8. On evaluating the above com-
mutator and on covariantizing it, we get a structure
like gg(1-y5)Kg~8"$ which upon using the Dirac
equation reduces to a form which can be absorbed
into vertex renormalization.


