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W'e analyze electroproduction in a non-Abelian gauge model of the strong interactions using
the techniques of Christ, Hasslacher, and Mueller. The theory is asymptotically free and
consistent with scaling up to logarithms. All logarithmic factors appear as inverse powers
of ln(-q ) and hence vanish as -q ~. When -q gets very large, the structure functions
become strongly peaked near x =0, and as -q2 ~ approach the singular scaling functions
2+I'

& (x) =E2(x)

=ad�(x),

where the constant a is determined. In a strong-interaction model
based on the gauge group SU(3) with three triplets of fractionally charged quarks, a =0.16.

The recent discovery that non-Abelian Yang-
MiQs field theories are asymptotically free has
opened up an exciting new field in theoretical
physics. ' If the strong interactions are described
by a field theory of this kind, it may be possible
to reliably calculate some quantities which depend
on the details of strong-interaction dynamics using
perturbation theory, suitably "improved" with the
renormalization group (or Callan-Symanzik equa-
tions). These ideas have already been applied to
e'e annihilation into hadrons. ' In this paper we
take the next logical step and consider electropro-
duction.

The strong-interaction model we have in mind
is a non-Abelian Yang-Mills theory with fermions,
where the gauge group of the strong interactions
commutes with the electromagnetic (and weak)
charge. Thus the vector mesons associated with
the strong gauge group are neutral and the fermions
in each gauge multiplet have the same charge.
For definiteness, we can imagine that the gauge
group is SU(3) and that there are three triplets
of fermions (quarks) with charges —',, ——,', and --,'.
The fermions may have a bare mass consistent
with the gauge symmetry, but the vector mesons
are massless in the tree approximation. At this
time, it is not known whether it is possible to
introduce scalar mesons into the Lagrangian
which give mass to all the vector mesons by the
Higgs mechanism without destroying the ultravio-
let stability of the theory; so we will assume that
the vector mesons develop a mass due to some
nonperturbative mechanism. In fact, for simplic-
ity in the analysis which follows, we assume that
the fermion mass terms are also absent, and that
the only dimensional. parameter in the theory is
an arbitrary renormalization mass M.'4

The calculational techniques which we use to
analyze electroproduction have been worked out
by Christ, Hasslacher, and Mueller. ' They derive
Callan-Symanzik equations for the c-number coef-

ficients in an operator-product expansion of the
product of two electromagnetic currents; and
solve them to exhibit the asymptotic behavior of
the coefficients. The relevant coefficients are
then related to certain moments of the structure
functions. ' In this paper we give a simple review
of these techniques, as applicable to the theory
outlined in the preceding paragraph.

The first thing to notice is that since the electro-
magnetic current is invariant under the strong
gauge group, only gauge-invariant operators appear
in the operator-product expansion. So we are
interested in Callan-Symanzik equations for ma-
trix elements involving gauge-invariant operators.
Suppose we were calculating in a general gauge.
Then the Callan-Symanzik equation for a matrix
element I' would look like

where g is the gauge coupling constant and (; are
additional dimensionless parameters specifying
the gauge. In general, the matrix y will depend on
(; but if I'„ involves only gauge-invariant opera-
tors, I' will be $-independent. ' This simple fact
has two important corollaries: The matrix y 8
(and also P) is gauge-independent and depends
only on g; and all of the I'8 appearing in the equa-
tion involve only gauge-invariant operators. In
practice, it is convenient to calculate in Landau
gauge, where no additional gauge parameters are
necessary because of stability under mass and
coupling renormabzation, and to consider matrix
elements which are not gauge-invariant. 9ut it is
still true that the y matrix associated with a
gauge-invariant operator acts only on the space
of gauge-invariant operators.

The model of strong interactions we have dis-
cussed above is described by a non-Abelian gauge
Lagrangian with m fermion multiplets:
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2= —«Fnu" F
nu
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where

Fu SuA S Au+gf «A«uA

Du
g& (Bu igT, Au)g& .

The f„,are the structure constants of the gauge
group and the T, are representation matrices
satisfying [T„T«]=if,«T, . For simplicity (and
also because it seems reasonable) we assume that
each of the fermion multiplets transforms under
the same representation of the gauge group.

The electromagnetic current is

~"=gQ 0 r"0 .
f= 1

The operators appearing in the operator-product
expansion of two electromagnetic currents which
are relevant to electroproduction in the Blorken
limit are the gauge-invariant symmetric tensor
operators of minimum twist:

'n
Ou«'"I n= (F ulDu2 ~ ~ Dnu-1 Fun

2nt a

Now we give a schematic review of the tech-
niques of Christ, Hasslacher, and Mueller as
applied to this theory. The expansion of the prod-
uct of two electromagnetic currents has the form
(suppressing tensor indices)

J(x)J'(0) =Q F",(x)O",(0) + ~ ~ ~ .
n, k

Let

8 8D=M +P—
eg

Then

(D+ 2r )& 0 (-pu(x)~(0)e (p)&

=0

= (D+ 2ri) g F«(x)& Q, ( p) O-",(0)p, ( p)) .
n, k

The I 's for different n have different tensor
structure, so

(D+ 2ri) g F",(x)& e,(-P)O",(o)e,( P) &=0

and

for each n. But+permutations of vector indices),

(D+2r, )&e,( p)O", (0-)e, ( )p&

n-1
Oul un —

(g yujDu«. . .Dungnt +Jr". &p (-p)o" (0)y (p)&=o.

In Oo,

+ permutations) . k'

(2)

DuF,""=(Suh,.+gf„,A", )F,"'.
We will compute the following matrix elements
of these operators to the second order in g for
even n) 2:

(o IT (A:(-p)o, '""(o)A",(p)) lo&...„„,„
-p'

=~a&g p ' ' '~ ~ok+ bokln M2 +

where we have subtracted at -P =M' and ~ ~ ~ are
terms with different tensor structure, and

&o IT (y, (-p) o, '"'(o)q, ( p)) lo&...„„,„
1 rllg&1« ~ ~ Pt l 1PPl+1 ~ ~ ~ Pn

-p'
x 5»+ bfkln 2 +

For convenience, we use the notation Qo =A and

Qf =gf or pf and abbreviate the above as follows:

p'
(~,( ninun)~, (n))=~„,~;,i.(~', .

So

g &4 (-P)O"(0)4 (P)&DFl(x)

-g (Q,(- )PO"«, (0)4&(P)&r««, F«(x) =0.
k'

Evaluating this expression at -P'=M', we find

DF)(x) -Q y «iF",(x) =0.

Now from (l} and (2}we find

r kf =2bfk-2rf&fk

Thus the Callan-Symanzik equations for the coef-
ficients Fi(x) involve only the gauge-invariant
matrix r» associated with the operators Ok.
This matrix can be calculated from the quantities
b», which we compute.

It is useful to rewrite the operator-product ex-
pansion in terms of eigenstates of the matrices
r". Let u„f and v„f be left and right eigenvectors,
respectively, satisfying
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a n a a+nfyfa= y n "na y

n a a a
yf4 nf yn nf y

ga ~8 gas
nf nf

f

where the y„" are the eigenvalues (not necessarily
all distinct) of y". Then we can write

j(x)j(0}= Q 5 "(x)8"(0},
n, a

where

5"(x)=Q Ff(x)v„f
and

8"(0) =Q u„",0",(0}.

The F 's satisfy

(D —y"„)5"(x)=0.
To apply this to electroproduction, we must

write down the operator-product expansion in
more detail:

iT(j"(x)j"(0))= p [ gu-"i "s„s"„F",(x', M, g)
n, a

+g" g" i" ue ~ ~ e &," M(xa)M)g)]8 x" u"(0)+. ..

Dimensional analysis gives, for the Fourier trans-
forms,

1 „-q2
( Mt, )=,tt'" ' M' ' )'

2

f „,, (M, ) =ft"„,,(1, ( tt)t)t

X 1+ 2 bt

The f's satisfy'

a(&-y. )f",.„. -M. , g =0.

These have the solution

f",...,(Mg) fl „,«(,r=t)t.t), ,

t
x exp — dt'y„( g( g, t'))

v' P

where t = ~in(-q'/M*) and g satisfies

So the f's have a calculable logarithmic dependence
on q2.

We can now put the pieces back together to ex-
hibit the forward Compton amplitude, averaged
over proton spin. Define the invariant functions
T, and T, by

(pl T(ju(x}j"(0))lp)e'~d'x

where x = -q'/2p ~ q. Then

—
t g(g, t) = p(g(g, t)),a

g(g, o) =g.
To lowest nontrivial order in I, y„ is of the

form
2 "(, )

gSbP(g—

and

t [l+ (g'/Sx')bt)'f u

with b&0 for an ultraviolet-stable theory. Then

where ~'.
,"„ is related to the matrix element of 6"

between proton states,

(pl8» u~(0)I p)"='&"pu i ~ .pu~+ ~ ~ ~

and the terms of order mu'/q', where mu is the
proton mass, come from operators of higher twist.

The structure functions are related to the ab-
sorptive parts:
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W, (q', x) = —ImT, (q, x)

for i = 1 or 2. We can use (4) and (5) and the ana-
lytic properties of the T's to derive expressions
for certain moments of the structure functions.
Ignoring terms of order m~'/q',

n & 2 are increasing with n and are positive, with
one exception: y' has one zero eigenvalue corre-
sponding to the energy-momentum tensor. So in
the limit -qa- ~, the right-hand sides of Eq. (6)
vanish for n+ 2 and only one term survives for
n= 2. Then for even n ~ 2

2

)a, (a*,x)*" 'a = „„Qf.",. . .a)a,",
Q CX

lim W, (q', x)x" 'dx =6„,—(') f', (1,0)A',
02 «a)o a) O

(7)
(6)

«1 2

vw, (a', x)x" 'ax = ~agf". . . , )a,"a,
Q lX

for even n ~ 2. Before calculating the y"'s, we
see that in the region where terms of order m~'/q'
can be neglected, the moments in Eq. (6) have
only logarithmic dependence on q'.

The calculation of b",, is straightforward but
rather tedious. It involves the graphs illustrated
in Fig. 1(a)-1(d). The results are

t 1
lim

~ vWa(qa, x)x" adx =5„aa' m~ faa(1, 0)A'.

Here f,'„,are known from the free-field opera-
tor-product expansion and A2 is also known be-
cause it is related to a matrix element of the en-
ergy-momentum tensor between proton states.
The -q2- ~ limit is completely determined.

To calculate these numbers, let us examine y'
in more detail. The matrix y' is

g2 5 4
16w ' 2 n(n —1)

mc2 C3 C3

2c, 2c, 0

~ ~ ~ c3

~ ~ ~ 0

C3

0

(n+ 1)(n+ 2) ~ l

16w' a n+2 n(n+1)(n+2)

g' 8
16w2 3

2C2 2C3 ~ ~ ~ 0

1 2~"=g c +
16w' ' n+1 n(n —1) 2C2 0 0

2c, 0 0

~ ~ 0 2C3

~ ~ ~ 2c 03

16wa a n(n+ ]) Z I
where the first row and column refer to the zeroth

where j, k=1 to m, and the c's are positive con-
stants depending on the group and the fermion
representation, defined by

c16a() faadf()ad )

c,6„=tr(T'T'),

c,I= T'T'.
From Ref. 1, we know y~ = 0 for j 0 and"

2g ~ 4~a=16 a (~a&i- amca)
16m

Then from (2), we have"

16w' ' ' n(n —1) (n+ 1)(n+ 2)

~ 4p — ~ $ c I,
1

y &o
= 2'&, y o&

= 2bfo, y zp
= 2b pa

By inspection, one finds that the d „'s for even
FIG 1 ~ Gx'aPhs contx'lbUting to (a) bpp (b) by (c) b&p

and (d) b~».
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components. The left-hand and right-hand eigen-
vectors with zero eigenvalue are

u=(-2, 1, . . . , 1},

So

lim
«QQ-+ IP y p

W, (q', x)xdx = —,'a,

1
V=

2C3+ PPl C2

t

-C3

C2

t- 1

lim I vW, (q', x)dx = m~a,
4f~eo 4 p

where the constant a is

2m c,(Q, ')
2C3 + PPl C2

C2

These are normalized so that

6~1~2= Q P~1~2f f

= T ~1~2+F1&2 ~ ~ ~ 2

where T""is the energy-momentum tensor. With
this normalization, A2 = 2. Now

f,'.„(1,o) =Zf,'..., &(1 0)&~

where the f,'„,J are related to the coefficients
of pf in the free-field operator-product expansion.
Explicitly f' =f2 =0 and f2 i f2 i

——4Q&2.——

with (Q&') the average square quark charge.
Equation (7) describes a rather singular situa-

tion in the -q'- ~ limit. Evidently, as -q' in-
creases the structure functions become sharply
peaked at @=0. The limiting form can be described
by the singular "scaling functions" 2xF, (x) = F,(x)
= ad(x)." For the specific model we discussed
earlier, with an SU(2} gauge group and three trip-
lets of quarks with charges 3 3 and --,', a= —,', .
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t
«'v. (s'(g. t')).

0

but if p is not identically zero, this involves contri-
butions from the small-t' region where perturbation
theory is not relevant. The net effect is to introduce
an unknown multiplicative constant in the asymptotic
expression for f (see Ref. 6). Since all terms with
nonzero y appear in the forward Compton amplitude
multiplied by unknown matrix elements [see Eq. (4)],
this effect can be ignored.

ii ii 4Also b= —ci —-mc2.
Here

S

Ei(x) =lim Wi(q, x)
«q2~ oo

and
1

E2(x) = —lim vW2(q, x)
mp ~2~ oo

in the sense of distribution theory. Since these limits
do not exist as functions, true scaling is never realized.
Note that these E 's differ by a factor of taro from those
of Ref. 6.


