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We show that even for some external lines on the mass shell, the procedure of dropping the
mass-insertion term in the Callan-Symanzik equation is justified for the form factor at high
squared momentum transfer in a certain class of models. This provides a very quick method
of summing leading contributions in perturbation theory, as well as summing the next-to-lead-

ing terms.

INTRODUCTION

In the Lagrangian formulation of quantum field
theory, because of the singular behavior of prod-
ucts of operators at short distance there are anom-
alies in the Ward identities, compared to naive
ones. For example, the Callan-Symanzik equation!
is the correct Ward identity for broken scale in-
variance in perturbation theory. Another aspect
which has been emphasized, mainly by Syman-
zik,?*® is that this equation can be used to estimate
the asymptotic behavior of Green’s functions.

In general, the usefulness of this equation may
be limited due to the following reasons:

(a) We are ignorant with respect to the mass-
insertion term.

(b) The parameters which appear in this equa-
tion are unknown.

(c) Even if we know something about (a) and (b),

we need to face the problem of the solution of this
equation.

In spite of these restrictions, there are situa-
tions in which our knowledge of the asymptotic be-
havior of Green’s functions can be improved or
some results from the perturbation theory can
easily be reproduced, using this equation.

Let us consider, for example, the asymptotic
behavior in momentum space of Green’s functions
in such a configuration that no partial sum of ex-
ternal momenta can be zero (except for the over-
all energy-momentum conservation), or be on the
light cone, i.e., the situation of so-called non-
exceptional momenta. When all external vari-
ables are very far from the mass shell and Eu-
clidean (all p,2~ —x), from the usual arguments
on power counting * the inhomogeneous term can
be dropped,'~® and we are left with a homogeneous
partial-differential equation of first order govern-
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ing such a limit of Green’s functions. In this case
we get a nice answer to the question (a). The

questions (b) and (c) are considered in Refs. 2, 3,
and 5. We will comment on these points later on.

How much further can we go beyond asymptotic
nonexceptional Euclidean momenta? According to
the suggestion of Symanzik,® short-distance and
light-cone expansions provide some clues for the
calculation of asymptotic Green’s functions.
Based on this idea, Hasslacher, Mueller, and
Christ ® considered the Bjorken limit of the struc-
ture functions of electroproduction. The restric-
tion (a) was circumvented by considering the Cal-
lan-Symanzik equations satisfied by singular func-
tions appearing in the light-cone expansion of the
product of two currents. Some results on summing
leading contributions” were easily reproduced for
the pseudoscalar theory and the gluon model. The
impossibility of getting concrete answers beyond
the results of summing leading contributions is
related to the restrictions (b) and (c).

There have been very few attempts to use Callan-
Symanzik equations for the study of asymptotic be-
havior of Green’s functions for exceptional® and/or
Minkowskian momenta. This paper intends to be
a modest step in this direction.

The simplest Green function in which asymptotic
Minkowskian momenta are involved is the three-
point vertex function® of Fig. 1.

The aim of this paper is to show that for certain
models, for p and p’ on the mass shell but 4°
- -, we get in perturbation theory the result that
the inhomogeneous term (mass insertion) is of
order (¢°)"[In(-¢?*/m?)]¥, where N is an integer,
while the vertex function itself has only logarith-
mic contributions. So in the limit of high momen-
tum transfer we have a homogeneous Callan-
Symanzik equation for the vertex function in per-
turbation theory.

In Sec. I we discuss in detail the vertex function
of the simplest renormalizable model: A¢? in six
dimensions. We show for various orders (Appen-
dix A complements Sec. I) that as far as logarith-
mic terms are concerned (not only the leading
terms), the mass-insertion term is negligible as

) P’

FIG. 1. The three-point Green’s function.

compared to the vertex functions, from which fol-
lows the homogeneous Callan-Symanzik equation.
The solution of this equation is exhibited and its
connection with summing logarithmic terms in
perturbation theory is discussed.

The results for other models are discussed in
Sec. II. We show explicitly why the neglect of the
mass insertion is unjustified for the gluon model
and why (explicitly only in lowest order), it is
justified for the pseudoscalar model. The results
of Applequist and Primack ® on summing the lead-
ing contributions are easily reproduced. It is
argued that the nonphysical behavior so obtained
cannot be improved by summing other nonleading
logarithms.

Section III is devoted to the investigation of the
validity of neglecting the mass-insertion term for
other Green’s functions and scattering amplitudes.
The role of this equation as a constraint in per-
turbation theory is used to easily show why the
1¢* model does not exhibit Regge behavior in per-
turbation theory.!°

We end with Sec. IV, which summarizes our
conclusions.

I. RESULTS IN A SIMPLE MODEL!!

The simplest vertex function with three external
legs in renormalizable models is that of A¢3 in
six dimensions. The virtue of this model clearly
is that we do not have to worry about complications
due to spinors.

In Appendix A we describe the method used
throughout this paper. Our intention in presenting
this technique is twofold: to make this paper self-
contained and to provide a very useful method for
the analysis of the asymptotic behavior of Green’s
functions and scattering amplitudes involving only
massive particles in perturbation theory. For
our purposes, this method turns out to be very
economical since it permits us to handle simul-
taneously the vertex function and mass insertion.
For a more complete and systematic discussion
of the method we refer to Ref. 12. From now on
we assume that the reader is familiar with the
concepts and formulas explained in Appegndix A
and Ref. 12. ‘

The A¢3 model is described by the Lagrangian
density

£(3,9 (x), ¢ (x)) =3[8,0 (0)][8%0 (x)] - 2 %> (x)
A
-3 @)

The Feynman rules for A¢? in six dimensions
are as for the same model in four dimensions,
except for small changes. For each internal loop
we need to introduce a factor of (2m)~° and the
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propagator is defined by (taking A =1)
i
(m? ~ie - ph g, ,p"\
ie Ari/2
T

AF(A’p)=

xf da a*~! explia(pg,,p” -m? +i€)].
(1]

1.1)

We note that for A =1 in some closed-loop calcu-
lations we will have problems with divergences.
However, we can subtract consistently at all ex-

(A)P‘”(q,p,p')=-;%;—e("s> flf at at

T o (L +t,+t,)

J

5 (M)

o

ternal-momenta zeros, using the Bogoliubov-
Parasiuk-Hepp-Zimmermann!® (BPHZ) scheme
of renormalization in 0 +1 dimensions. The met-
ric operator g which appears in (1.1) is

g=<(1, _ga) : (1.2)

To the lowest, nontrivial order the graph contri-
buting to the vertex function is shown in Fig. 2(a),
while a typical mass insertion appears in Fig. 2(b).

If I'™ is the renormalized vertex function in nth
order of perturbation theory and AT'™ the corre-
sponding mass insertion, we have

q"’tltz+2’2t=+22tl] [ q2t1+p'2tlt2+p2tL:|
x{ln[l'(m —ie)+t, +£,0 T T i +E, 48,7

gty +p'?t +P2t1tL:|%
+1"[1'(m2—ie)(lz+t,+t2)2, . (1.3)

In (1.3) M is the mass-insertion operator
m?/dm?2, The permutations correspond to various
scalings in Feynman a parameters. For example the
first term in (1.3) corresponds to the E family of
Fig. 2(c). This scaling is (the integration over e
has already been performed; see Appendix A)

a,=t;,
a,=tgt
a, =tgt,.

When analyzing the asymptotic behavior of T

FIG. 2. (a) The vertex function in second order of
perturbation theory, (b) one of its mass insertions, and
(c) one particular E family.

—

and AT for ¢~ -, p% and p’? on shell, we can
make the approximation (which does not alter the
asymptotic behavior) (1 +¢, +¢,)~ 1 and neglect the
“external masses” p?=p’2~ 0. With this approxi-
mation

1,1
r‘2’~constff dt,dt,
oYo
2 2
x[ln(l -%, t1t2)+ln<1 'r’g[f t,)
2
+1n(1 -#tz)]

2
~const’ X1n (—7%-2-), (1.4a)

1,1
AI“2’~constff dt dt,
00

[ 1 1
1= @¥/mdit, " 1= (g% /mot,
" 1 }
1- (q27m2)t2

o1 2 1 2
~const’ XF 1n? (—r—z—z >+O(;z- 1n<-f?)).
(1.4pb)

In Appendix A we present explicit calculations
for all fourth-order graphs, as well as ladder
graphs in all orders of perturbation theory. The
approximations used there are essentially the
same as explained above. Here we give the re-
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sults: For ladder graphs in all orders and all
graphs in fourth-order (at this order we have also
considered nonleading contributions), the result is
that

2" (g, p, p") o~ C [1n<—;§-)]a

RS p

AT, p,p) ™~ Cos [ln( "—)]

N m

+o(q [m(- ;f%)]ﬂ'l) , (1.5b)

where a and 8 are positive integers and C, and C,
are constants. For the leadmg terms a=n and
B=n+1.

As will be discussed in Appendix A, the impor-
tant point for any order is that for the computation
of '™ we have, after subtraction, integrals of
logarithms. Referring to (A2), we see that these
integrals come from graphs with superficial de-
gree of divergence zero. But for AT we have
integrals of [1 - (¢?°/m?)(polynomial in ¢,)]™*, cor-
responding to superficial degree of divergence -1,
from which our results follows. From another
point of view, interestingly enough, what happens
is that despite the Minkowskian nature of the ex-
ternal momenta, the power counting* is working.
At first sight one might consider this result not
totally unexpected, for one could naively argue
that (working) in the infinité-momentum frame in
the limit considered, all external variables have
at least one large component and hence can be
scaled with a large parameter. For any vector
“a” we introduce the infinite-momentum-frame
variable a = (a*, 2, a"), a*=(@,xa,), and &

-(a a,,a, aq) and  scalar product a+b
(a*'b +a b*) -3+b. Interms of infinite-momen-
tum variables !* we have

=Q(1;6) "1)’

p=0(2:.5,1)+00/¢%5,1/), .

=Q(1,0,5'2/@*) +0(1/@, 0,1/,
_Q2 .

However, the fact that being able to scale all
variables with a large parameter, with nonex-
ceptional momenta, is not sufficient to ensure the
validity of power-counting arguments will be
shown in Sec. II with explicit examples. We post-
pone the discussions to Sec. II.

From the explicit results (1.5a) and (1.5b) we
see that the mass-insertion term is negligible as
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compared to the vertex function. So we can write
the Callan-Symanzik equation in the form

(7 57 +B 0% =30 Tl mY=0. @)

From dimensional-analysis arguments, we have
9 -]
2 — 2 2) =
(—q b +BM5y 37(>»)>I‘(q ,m?)=0.  (1.8)

The importance of Eq. (1.8) is that we have a
homogeneous partial-differential equation of first
order for the vertex function in a physical limit.
However, the importance of this result is dimin-
ished for two reasons: (1) Our model is not realis-
tic. (2) We have solved (partially) only the prob-
lem (a) mentioned in the Introduction. Using the
Callan-Symanzik equation for two- and three-
point vertex functions and renormalization condi-
tions, the parameters 8 and y can be expressed
in terms of (8/8p*)AT, (0, 0) and AT,(0, 0, 0) (mass
insertions for the two- and three-point vertex
functions). These expressions gives us a hint
about how to compute the parameters 8 and y:
perturbation theory. In perturbation theory we
have

B=bA3+b A%+,

(1.9)
y=cAl+c A oo
explicitly:
bo=~-8(4r)"3,
=& (4r)-. (1.10)

The linear partial-differential equation (1.8) is
solved by the standard method of characteristics.
For a more complete discussion we refer to Refs.
5 and 2. We present here just the main results.
The general solution of Eq. (1.8) is

A 1
F(qz,m2)=¢(an2+ d’*'m)

Ao

Xexp[3J;: ax %;] . 1.11)

As expected, from the nature of the partial-
differential equation (1.8) the solution for I'(q% m?)
involves a function ¢, which is fixed by initial
data on some noncharacteristic curve. [This is
problem (c) mentioned in the Introduction.] The
asymptotic behavior of the vertex function can be
extracted without knowledge of ¢ only if additional
hypotheses (considered below) are made. For
this purpose we transform the expression (1.11)

to
F(q2,m2)=exp[—3jf( ax Z;gt:;]

X Tnonasy (4%, %, X Q)), 1.12)
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where
@) _2,~
a0 QB(MQ)), (1.13a)
A1) =x. (1.13b)

Here I'nonasy means the value of T for nonasymptotic
q% i.e, @=1in (1.6). From now on @ is dimen-
sionless m=1). Again let us remind ourselves

that (1.12) does not exhibit too much progress.
J

However, under the hypothesis that the “invariant
charge” X(Q) is small, we will take for
Tnonasy (g, b, p', m2, X(Q)) the value of the trivial
graph, i.e., —iA(Q). As we will show below, the
hypothesis of X(Q) being very small can be imple-
mented in this model even for very high values of
A (the physical coupling constant) in the limit
Q=

Taking for 8 and y the expansions (1.9), and for
Tnonasy the value -ix(Q), we Lave from (1.12)

I'(g?, m?) =exp{—3|:EQ ln<xﬁ2> +1(%l -%‘)[XS(Q) =A% e ]} [-x@)]

b\ A/ 3\c, b,

]

The expression (1.14) corresponds to the sum of
leading terms in perturbation theory when we take
the lowest-order values for 8 and y. The sum of
next-to-leading terms corresponds to the values
in next order in g and v (c,, ,), and so on. Sub-
stituting the lowest order in (1.13a) with the condi-
tion (1.13b) we get

A

X(Q)=W . (1.15)

With the values in (1.10) for b, and ¢,, we have
for the sum of leading logarithms in perturbation
theory

Q% ~ M1 +3@m)-3A21nQ?)2/3,
2

Q2w

(1.16)

Another advantage of this approach is that, be-
sides easily summing the leading contributions,
we can do better. We could sum the next-to-lead-
ing terms, computing ¢, and b, and taking for g
and y the term next to the lowest order. However,
just by inspection of (1.14) we see that by keeping
only a finite number of nonleading contributions
(in the above sense), a more realistic asymptotic
power behavior for I'" is never obtained.

Before ending this section, I want to comment
on the approximation I'nonasy = X(Q), which in this
model is justified from (1.15) since b, is negative.
In this model the physical coupling constant does
not need to be weak in order for the “invariant
charge” to be small for @ - ©. The same thing is
not true for the other renormalizable modéls such
as the gluon model, pseudoscalar theory, quan-
tum electrodynamics (QED), and \¢* theory.

II. FORM FACTORS®: OTHER MODELS

Now we try to extend this approach for other
models. The simplest one would be the vertex
function of the superrenormalizable model A¢? in

(1.14)

four dimensions. The naive argument fails in this
case. Inthe second order

()T (g, p, p’, m?)
ocfd4k(M)
% 1
[ kY —m?|[(p’ -V —m2| (% —m?)

2.1)
From (2.1) it follows that for g?— -«

1 ¢ \?

F(qz,m2)~?[ln<-m>] )
2 .2 1 q

AI"(q,m )~q—2 In _ﬂ? .

However, this gives a hint to understanding why
this approach is valid in six dimensions, but fails
in four dimensions. The point is that in general,
even for models involving fermions, the logarith-
mic contribution comes from asymptotic regions
of integration in momentum space (ultraviolet
logarithms), or from infrared regions !¢ of inte-
gration (infrared logarithms). When only the
ultraviolet region of integration plays an important
role, we see [using (1.6)] that as far as I" and AT
are concerned, power-counting arguments still
work. This is the case in six dimensions. How-
ever, in four dimensions we also have infrared
logarithms !4 and naive power-counting arguments
do not work. This hint leads us to the possibility
of extending this approach to other models. The
gluon model is a model in which we have ultra-
violet and infrared logarithms, while in the
pseudoscalar model we have the same situation as
in the model of A¢? in six dimensions.®

Clearly these remarks are valid, as long as the
leading logarithms are concerned. For example,
in the model considered in Sec. I, if we consider
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terms which go as (1/¢%), the logarithms multi-
plying these terms no longer will be only ultra-
violet. We will show now in second order that our
approach works in the pseudoscalar theory, but
fails in the gluon model. The consequences are
then analyzed.

For both models we can define

T (g, p,0") =B (PIAE (g, p, 0" )u(p’) . 2.2)

(B-K+mn’($ -K+m)
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The superscript (5) will denote the pseudoscalar
theory.

In second order the relevant contributions to
@), (a)A, are proportional to y*(a), 7",
v'(a),v,, respectively, where the integral (A},
is given by (u is the mass of pion or the mass of
gluon)

(A)I"Efd“k(M’)

i o @ +a,+ay,)

[(p =R)* =m®][(p’=R)* =m®][R? - u®]

2 00 200 00
LA fff i%Eﬁ%—-(M’)exp{i[ ay @y p® + a0 p'% + @, 0,0 + (@, + @) (-m2 +i€) + ag(—p? +i€)]}
0“0

X{ﬁy”ﬁ'+ (B +a,8 )y (e f+a,p) + —(a,+a, ' Vg —.57"(%_1‘ +a,4') - iyY

(o, +a, + a,)?

Q, +a, +ay Q, +a, + 0y

’
+m""y”+ m[y”(ﬁ'+ 'O‘xi‘ - cfzé

a, +Qa,+ 0,

M’ is the mass-insertion operator m28/8m?
+u%/0u?,

(2.3) displays the difference in the case of the
gluon model and pseudoscalar theory. Consider
the “eikonal term”%!% [The first term in the large
curly brackets of (2.3)]. From the Dirac equations,
(' +m)u(p’)=0, @(p)(# +m)=0, we see that the
“eikonal term” does not play any role in the
pseudoscalar theory. This is true, since y® does
not reverse the order of the product gy”#’. But in
the gluon model, since y, gv*g'y’=p'v*§ ++++ the
order of § and #’ is reversed, giving a very im-
portant role to the eikonal term. In terms of in-
tegrals, the effective superficial degree of di-
vergence of the gluon model is -2 (to this order),
making the theory not too much different from A¢3
in four dimensions. While in the pseudoscalar
theory the effective superficial degree of diver-
gence is zero and hence this theory is very simi-
lar to the A¢>® model in six dimensions. These ob-
servations are true, insofar as the leading loga-
rithms are concerned, when —¢?—- but are no
longer valid for other contributions.

Introducing the scaling explained in Sec. I and
Appendix A, from (2.3) we find the asymptotic be-
havior (in second order; omitting irrelevant con-
stants)

2 2
A¥(g?, m?, p?)~yY [ln (— %5)] ,

(2.4a)

2

AAY)~y'In (— gﬂ—),

) *(" o iﬁ:féf ) Y]} 2.3)

2

AZ(g? m?, u?)~7"In <—;3;5>,

o2

In what follows, we are considering only those
graphs for which A¢* does not play any role. So,
we consider B, (g,A)=0 and v, (g, A) =0 (no renor-
malization of the bare coupling constant A). From
these considerations and the explicit result (2.4b),
which can be extended to isospin, we have for the
proton form factor in the pseudoscalar model

(2.4b)

9 8 ®
(ngn—z W +B’(g)@—7’> Fy, (g% m? u*) =0,
2.5)

where g is the 7-N coupling constant.

We note that the procedure of dropping the mass-
insertion is justified only for the F, form factor.®
However, the F, form factor is O((1/4?)F,).

The coefficients 8’ and 7' in perturbation theory
have the expansions

B'=bog®+b, g%+, (2.6a)
Y=cogl+c, gh+0e 0. (2.6b)
Explicitly, we have (see Appendix B)
bO cO
U0) 5 g
.7
SUQ) 5o gz
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U(1) corresponds to the usual 7°-p Yukawa theory.

In perturbation theory the asymptotic behavior
of the form factor F, depends only on the ratio
g*/m?®. This statement corresponds to the absence
of infrared singularities when the pion mass goes
to zero for logarithmic contributions. Since this
is the case,® the solution for (2.5) goes straight-
forwardly along the lines discussed in Sec. I. The
asymptotic behavior for the proton form factor is
[we are considering SU(2) and U(1) at the same
time]

F, @)= e(z_;Q_Z)"’O“’O

X exp [—%(ﬁk—%) (@ -g ] .

(2.8)
Let us now consider the pion-nucleon form factor,
which will be denoted from now on by &, .
Again, the inhomogeneous term can be dropped,
leading us to the equation for &, ,,:

9 9 d
(mzw +H-za—#z +B(g)@ =27 —)’2>

X G yy (@%m? 0% g)=0. (2.9)

7, and y, are the anomalous contributions to the
dimensions of the elementary fields.

Using analogous expansions for y,, v, as we did
for ¥’ in (2.6b), and from similar considerations
of the solution of the equation (2.5), the asymptotic
behavior for the pion-nucleon form factor is

W, @

2( ) 1=(2cy "+eg ) /bg

T vn@)= g(%)
1(2¢1) 402 b)

- i §
xe"p{ 3<2co"+co by

x[2%(Q) ~g*] +-+ } (2.10)

In Appendix B we calculate the constant b, ~2¢{"’
-c$ in the U(1) model and SU(x).!® Explicitly,
we have [the constants S, and S, will be defined
later in (2.16)-(2.18)]

b, bo—2c{t) =@
u(t) s o
SUR) o e @.11)
su) Bt g

We can compare our solution with the results of
Appelquist and Primack® on the sum of leading
logarithms, taking for 8, ¢/, ¥, %, in (2.5) and (2.9)

|©

the lowest-order contribution, with b,, ¢,, and
by —2¢{ = given by (2.7) and (2.11). Substitut-
ing these constants in (2.8) and (2.10), with the
“invariant charge”

5 -1/2
2(@?) =g<1 - 162 gzan2> , (2.12)
we get for the U(1) Yukawa model
1/10
Fi, @) =e<1 --156% an2> , (2.13a)
-1/5
Fran(@)= g<1 -156—€r22 an2> s (2.13b)

while for the isospin pseudoscalar theory, we get

3/10

F, @) =e<1 - 155 5 an2> , (2.14a)
1/5

Fran@)= g(l —1—56—;?;—: an2> R (2.14b)

in agreement with the results in Ref. 9. As pointed
out in Sec. I, our method allows us to go beyond
summing leading contributions. The point is that
no improvement in terms of getting power behav-
ior can be achieved by going to the next-to-leading
logarithms (taking the terms in ¢,, ¢{*’, ¢/, and
b, for y', v,, v, and B). Besides this, the whole
scheme of perturbation theory turns out (for this
model) to be inconsistent for strong interactions.
We can see this from (2.12) since in order for the
invariant charge to be small, the coupling con-
stant needs to be weak for large @, making the
strong interactions weaker for high momentum
transfer.

Another advantage of this approach is that it al-
lows us to handle easily the asymptotic pion-
nucleon &, ,, form factor for the SU(n) pseudo-
scalar model. If the interaction Lagrangian is
written in the form

L9, 88,4, %) =g TN ()0, ~ 077,

(2.15)

Defining the constants S, , S,, S,,
in (2.11), according to Zee!® as

which appear

Soaeabae=sab, (2.16)
a

DoAA=S,1, 2.17)
a

TrA®A? =5,6% (2.18)

from the results (2.11) for SU(»), follows the re-
sult for the sum of leading contributions:



9
2S. +S. +28S -S!/(251+SZ+ZS3)'
N

Clearly (2.13b) and (2.14b) are particular cases
of (2.19), since for U(1) S, =1=5,=S, and for SU(2)
S, =-1, §,=3, S;=2.

III. CALLAN-SYMANZIK EQUATION
AND ASYMPTOTIC BEHAVIOR

In this section we want to say a few words on the
possibility of generalization of this procedure to
other vertex functions and scattering amplitudes.
In the opinion of the author, at least for various
configurations such as Regge limit with ¢ fixed
and form factors, the superficial degree of di-
vergence being zero plays an important role. We
get this feeling by looking at expression (A1) in
Appendix A. For three external lines this is
equivalent to saying that the comparison of the
vertex function and its mass insertion corresponds
to comparing integrals of In[m? - ¢* (polynomial in
¢;)] with integrals of (same argument)-!. From
this follows our result that the mass-insertion
term is negligible compared to the vertex func -
tion. In this respect, the nonvalidity of this simple
approach for the gluon model is a consequence of
the validity of the eikonal approximation!® for this
model. The eikonal approximation in form factors
makes the effective superficial degree of diver-
gence become smaller as we increase the order of
perturbation theory, making the integrals not too
much different from those encountered in the super-
renormalizable A ¢3. Another process in which
zero superficial degree of divergence is involved
is m-m scattering. However, since for certain con-
figurations exceptional momenta are involved, the
analysis turns out to be more complicated.!”

These comments do not rule out the possibility
of using the Callan-Symanzik equation for esti-
mating asymptotic behavior in perturbation theory;
they only say that dropping the mass-insertion
term only works in very special cases. This
paper has enlarged somewhat the domain of validi-
ty of this procedure. Clearly for other cases we
need to introduce a clever way of bypassing prob-
lem (a) of the Introduction, as was done in Ref.

6.

While the usefulness of the Callan-Symanzik
equation is limited for the complete determination
of the asymptotic behavior in perturbation theory
of scattering amplitudes and Green’s functions for
nonexceptional momenta, it can be explored as a
test of some conjectured asymptotic behavior in
perturbation theory. In this way the Ward identity
for scale-symmetry breaking can play an impor-
tant role as a constraint which must be satisfied
in perturbation theory. One such example is the
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CE -

FIG. 3. The lowest-order contributions to the v-w
scattering in the A¢4 model.

conjectured Regge behavior in field theory. Even
though the usual r¢3 leads to Regge behavior in
perturbation theory,'® for 7 -7 scattering, Bjorken
and Wu!° pointed out that g¢* does not lead to such
behavior. We show this more easily, using the
Callan-Symanzik equation. The Regge behavior
for m-m scattering implies, using dimensional-
analysis arguments,

s o(t/m2)
A(s,t,mﬂ-(W) .

The Callan-Symanzik equation for A (s, t,m?) in
(3.1) leads us to the relationship

\[-t3selie) oterzg ] )

- a(%)"l?’} A(s, t,m?)=AA(s, t,m?).

(3.1)

(3.2)
in the limit for s -« and ¢ fixed. (3.2) says that
AA(s, t,m?) must have terms of the form
In(s/m?)A (s, t,m?).!°* Now, just looking at the
lowest-order contributions, the graphs shown in
Fig. 3, we see that A~ (Ins)" (z integer) but
A A~ (1/s)In(s/m?)]", violating the condition
imposed by (3.2).

IV. CONCLUSIONS

We have shown that the use of the Callan-Syman-
zik equation may provide a very quick and precise
method for summing leading contributions in per-
turbation theory; this is true also for form factors,
when the squared momentum transfer is very
large. Besides being a very quick method of avoid-
ing lengthy calculations in perturbation theory,
this approach provides a way to see that summing
logarithms in perturbation theory cannot repro-
duce, in certain models (for which this method
works), the physical asymptotic behavior of the
form factor F=~ (¢g2)~% with a= 2.

However, from a speculative point of view, this
behavior is not ruled out from the quantum-field-
theory scheme. Indeed, as long as the exact solu-
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tion has negligible mass-insertion terms, such a
behavior is obtained if the coupling constant is a
zero of the Callan-Symanzik B function. In this
case we have for the vertex function in the re-
normalizable A¢® model in six dimensions

9
(—QZW —Y>F(qz,m2)=0,

from which follows the asymptotic power behavior.

As explained in Sec. II, the validity of the pro-
cedure of dropping the mass insertion is limited
to models for which the logarithmic contributions
come from integrals with effective superficial de-
gree of divergence zero.

For other vertex functions or for scattering am-
plitudes we only comment on the fact that though
as yet the equation of Callan and Symanzik has not
been useful for the complete characterization of
these functions, the equation does impose impor-
tant constraints which must be obeyed to arbitrary
orders in perturbation theory. For example cer-
tain postulated asymptotic behavior, such as Regge
behavior, can be tested in perturbation theory.
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APPENDIX A

In this appendix we want to complement the re-
sults in lowest order in the renormalizable A¢3
model. After the introduction of the method, we
consider the fourth-order terms. The approxi-
mations (which do not change the asymptotic be-
havior) are explained for one graph. We work in
the BPHZ !? renormalization scheme.

We start by describing the method used in this
paper. In order to analyze the asymptotic behav-
ior, in a unified way, of the vertex function and
the mass insertion (obviously the method is also

AV

FIG. 4. (a) The ladder-graph contribution to the vertex
function in fourth order. (b) One particular E family.

very useful for the analysis of other Green’s func-
tions as well as scattering amplitudes), we make
use of the method described in Ref. 12. In order
to show its power,2° we describe the essential
formulas for our considerations for a scalar the-
ory in 0 +1 dimensions. Some small modifications
are required when spinor and vector fields are in-
troduced.

A generalized graph (A, p ) in momentum space
is defined by -

g(}.’ﬁ):ILIAF(XuP:), (A1)

where Ap(A;, p,) is the generalized Feynman propa-
gator in ¢ +1 dimensions [Eqs. (1.1), (1.2)] and L
is set of lines of the graph.

The substitution of (1.1) in (A1) leads us, after
“internal momentum” integration and according to
the scaling introduced in Ref. 12, to

s(l’£)=CI‘(A—#(G))ZE:Ll,..fol I t”A(m-u(m/zq[E(t) S [ (ZB ) > p;f(‘t)p ]u(c) . a2

H=G

C is a constant irrelevant to our discussion
since we are just comparing the asymptotic behav-
ior of Jand Ad.

Following Speer,'? E is a maximal family of non-
overlapping subgraphs of a graph G, each two-
connected or consisting of a single line such that
no union of two or more disjoint elements of E is
two-connected. Two connected means that the
subgraphs cannot be disconnected by revolving any

r

vertex. H are elements of E and GE E;

A@E)= 2 (y-1), @a3)
1€L(H)
where L(H) is the set of lines of H.
wH) [1(G)] is the superficial degree of diver-
gence of the subgraph [graph]. For nonderivative
coupling scalar theory in o +1 dimensions u is
given by
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WH)=0+1-%2(c-1)B In order to illustrate the whole procedure we
discuss the ladder graphs with explicit result in
_Z n;[o+1 = (0 - 1)%”1%] . (A4) fourth order, corresponding to the graph of Fig.
4(a). From now on, we discard all irrelevant
B is the number of external boson lines and, constants.
if £,=2,8,, n; is the number of ith-type vertices For the propagator, we take the usual one (cor-
of £;. E(t) and F;; are obtained from the Symanzik responding to A; =1). This requires some sub-
functions by taking in evidence the powers of {; in tractions in order to get a finite expression for
the scaling process, and the vertex function. Using the procedure for the
renormalized integrand, we get (omitting con-
Bi=tslay . stants)

-

I"(“(q,p,p',mz)=f1d—tlf dt,e+-dt {__n[l -2bi Fgrt 1 m?®(238,)E (¢))] ln[l ZP:F 10/mP (L BIE (E ¢, )]}

b 4 (E@)P (E,(tDE, ()P
(A5a)
E-%(t,) [, ()E, )] ‘
Ar!(‘l) . D, r’mz f j dt ( i
@p.p',m") = 1 b F /A BB ®) T Ton b b /B COE, G (55,
(A5Db)
where (the arrows correspond to approximations which do not alter the asymptotic behavior)
E\@#)=1+t,+t,~1, E,(t,)=1+t,+¢,~1, E(t,) =t,(1+t)+(E)E,)~ 1,28, =E,+{,E,~1, (A6)
EpiFiAij =p2t4+p’2t5+q2t4t5 ~q%tyts, (-]
EP!FEPJ =q%(4 %t +1, {tzEz +tgty+t, ¢y +t5)]} +iBE) + D2 (ttg +EE ) + pP(tyt sty +1,E )
- @t 2ty +E (L, + [t + 1, +2)]} +2,20). (A8)

(b)

FIG. 5. (a) The ladder-graph contribution in the vertex function in 27th order. (b) One E family is explicitly exhibited.
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The expressions in (A6)-(A8) are obtained from
the scaling sketched in Fig. 4(b). Other scalings
do not affect what we will say below. In the follow
ing we will just state our main results for all lad-
der graphs. All which we state below was verified
explicitly in fourth and sixth order (including sub-
traction). We do not reproduce this laborious cal-
culation in this paper in order to save space.

The results are: In order to analyze the behavior

J

11

of leading contributions for I'™ and AT'™ the sub-
traction terms do not alter the asymptotic behavior
of these functions unless they are in the constants
multiplying [In(—g?/m?)]" for I® and (1/42)
X[In(-g%/m?)]¥ for aT2",

For scalings corresponding to leading contribu-
tions [sketched in Fig. 4(b)], r2n(g, p, p’,m?) and
A® g, p, p’,m?) can be written in the form

1 Do FL tg, t,)p,)

tdt, d dte (o, . jl veeqp 1 (_
I“z"’(q,p,p’,m"’)=£—4-7-a'“ ; J’odtﬂl dtg, odt),1 at,, Es(t,tﬁ,ty)lnl mE(, t5,1)

t

2 n-1

ldt
AT " (g, p,p",m?) = f

0 t!. 2 n-1

The subtraction terms are necessary in order
to avoid the nonintegrable singularities when ¢; =0.
As in (A5), these terms can be obtained using the
Zimmermann forest formula!? for the integrand
renormalized in the a-parameter space and then
performing the scaling. As an example, look at
expression (A5).

Again we use the approximations illustrated in
(A6)-(A8), which for the explicit term shown in
(A9b) correspond to E ()~ 1 and taking the external
masses equal to zero. With these approximations
the general structure of the relevant integrand will
be

1- EPIFB(ts ta) t7)p1
m2E (t)

2
-1 —%[P(t, tg,t,)+M(tg,t,)]. (A10)

In (A10) M(ts, ty) is a monomial in the variables

J

1 1 1
I"(""')(qz,mz)% f dt; J _Z.dt ...f
M=a2m?) b dan-e2m?) ta "

_qz n

1

1

+subtraction termsi|, (A9a)

E-s(ty tﬂ ) t}’)

d—lﬂz-o-ii_tl:l jldt eeedt J‘ldt cee dt [
by Jo Bt B )y T 1 3T FL b, /mPE G, B, 1)

+subtraction terms |. (A9b)

—

tg,t,, (does not involve the variables t,,1,,...,1,)
(see Fig. 5) of degree 2 and P(t, ¢, ty) is a poly-
nomial in the variables ¢ , g, ty of degree >2.
These conclusions come from an analysis of the
structure of two-trees and trees, in the language
of Speer.!? The relevant region of integration is
the region where all variables of integrations are
very small [0 (1/4%)], so roughly speaking we can
drop the polynomial as compared to the monomial.
Furthermore, for the variables ¢,,¢,,...,%,, owing
to the good behavior at the origin, introduced by
the renormalization, we can integrate only in the
relevant region [A/¢? 1]. These conclusions are
illustrated in (A8), where the polynomial is
t 2t + 8, {t, +t,[t, +t,(t, +¢;)]} and the monomial is
t,ts . The asymptotic behavior does not change by
dropping the polynomial when taking the divergent
term and regularizing with the cutoff A/4°.

So, for leading contributions in 2nth order of per-
turbation theory we have

dt 1 1 qz
L=t J;dtﬂl"-dtanj; dtn“»dtynln(l -;r?tsnty")

A=a2/m2) tn-1

1

Ar(zn)(qz,mz)gf itlfl ﬂz“.f it”:lfldtal"'dts fldty cordt, 5
Mi-a2/m?) t1 Ins=a2im?) b2 A-a2m?) tn-1 Jo "Jo L "n 1~ (g*/m )tB,,t'y,,

m2 -q? ]nu
@le g7 E“(W) ‘

Now we will consider the nonleading contributions for fourth-order graphs. We consider again only some
scalings. The situation does not change for other scalings. The approximations are the same as considered
before.

For the graph of Fig. 6(a) and the E family of Fig. 6(b)
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I‘“”“f dt,dt,--dt, ln(l =t [t +tg +E (b +E8,)+Et (L +2 ts)])

Ko ln(mq ),
q2 -+ =
1 2 -1
AT®= fo dtydt,e - dt, (1 - 7%, B[ty +bs +2, (g +1,E,) + 1,8 ,(1 +t1t5)])
2
‘~ m [ln<_q )] .
@2+ = q m

The vertex correction of Fig. T(a) with the scaling corresponding to the E family of Fig. 7(b) leads us to

g, m2)~f 24 gty -at [1n< 2[t (1 +2, +t3)+tt2]> —1n<1‘_2 4>}

=-q
@ e ln(m) ’

2 2) ldt ) ( 1 1
Ar(4>(q m )—j; t—lldtz dts}l —(qz/mz)[t4(l +t2+ts)+t1t2] -1 —(qz/mz)t4}

m?2 -q
a2 mGE)]

while for the self-energy insertion of Fig 8,

I““’(q,l’,ﬁ',mz)=j;l f dtyediy IES 1n< > [El ln@)l,w [Els ln(jg)]ltﬁo}
qz':’_.ln<:;;1q_2> ’

sty [ oo -0 -+ B8

a/\AB a,/\B, e/ ay B \B
[ P R
A ’ ’ ’

(b) (b)

FIG. 6. (a) The crossed-ladder-graph contribution FIG. 7. (a) The fourth-order vertex correction to the
in fourth order. (b) One particular E family. vertex function. (b) One of the E families.
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with
2By =1+t +t +t +t, (1 +1,),
E=(1+t,)1 +t;+t,+8) +1,t,,
== (e
(a)
+p¥[tat, (1 +1,) +2,(1 +E5+1,8,)] +qPtat, (1 +1,)
w92 [t by + (L +E) (1 +8)]. E= o.N, / \
APPENDIX B
In this appendix we exhibit the expressmns for FIG. 8. (a) The fourth-order self-energy correction
the constants ¢, and b, —Zc(” _ Co , introduced in to the vertex function. (b) One E family is exhibited.
Sec. II. With respect to b, we refer to Ref. 16.
¢, can be obtained directly from the complete scalar model [for the U(1) model the last terms,
Callan-Symanzik equation using the renormaliza- corresponding to the electromagnetic interaction
tion conditions. We get from the isospin pseudo- of the pion, do not appear]
] 1 1 1 1 ]
4
Cor'= (Zn)‘.[d k< 2 TH 8u>[75]é+my"%+my5k2 2+2Y5]€ -m 7/5k"’ 2( 2k) 3. (B1)
Using (1.1), (1.2), integrating over the internal momentum k, and performing the scaling described in
Appendix A it follows that
c.= A ﬂ_z_[mzj" di.t, m ! at, mzfl dt,
o @)t i o (1+8,)2(m?3t, + u2) o (1 +2,2(m? +pu2t) | (1 +2,)3(m? + p2t,)
mzf dt,t.? . f __dtt, f _ant,
- o (1 +2,)3(u? +m?t)) H (1 +2,)%(m? + u2t,) » (1 +8,)2(u? +m?2t,)
f _dtt, f __anty, mzj dtt,
e (1 +2,)3(m? + u3t,) ke (1 +2,)3(u +m2t,) Jo (L +8,)3(u2t, + m?)
dt,t f f __aut* 2 j|
2 11
m .[, (1 +2,)3(u? + m?t) th (a +t2)3(p. +m?t,) i (1 +2,)3(ut, + m®)[ (B2)
From (B2) follows
I Y
c°_16112(2+1)’ (B3)
where the one-half comes from the first eight terms in (B2) or from the first term in square brackets in
(B1) and the factor 1 comes from the electromagnetic interaction of the pion.
For SU(n) we have
(b —2c‘“—c‘”)Tr(y5A’ 7\‘75)=—i3—fd4k(m ——8—+p. 5 ) <.y5 .},5 ‘y'y 1 N’)\‘A"K‘)
° 27)* am? au? K+m ]é+m B2 —u? :
(B4)
In (B4) all repeated indices must be summed. After a trivial algebra (B4) can be written in the form
. 1 Tr (A Af AdAf)
—2cW) _ @ 2 4
bo-2¢5” ¢ [(211)‘* fd k( Ry )((kz —m?) @ - u?))} Tr(A Af)
1
=\1672)5: (B5)
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