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We call a quantum-field-theory model quasicanonical if it is defined by canonical equal-time
field commutatiou relations (e.g. , l Q(x), P(0)]S(x ) = —i64(x)) and local field equations [s.g. ,
Q+(x) =M(x)], and is locally invariant to scale transformations Ie.g., (II)(x) p@(pg)).
IThese requirements are not consistent if the model is purely canonical, i.e., if J(x) is the
simple Wick product:fII)3(x):. ] Canonical Bjorken scaling is valid in such models provided
that the field equations are also locally invariant to R transformations f@(x) P(x) + r] and
the physical currents are R-invariant. We discuss here further properties and consequences
of these models. (a) We incorporate positivity and R-invariance restrictions on light-cone
expansions and deduce ths form of ths consequent bilooal operators [e.g., fde o ti):y(gx)y(O):].
(b) We exhibit a Hamiltonian formulation of the theory, both in the massless and massive
cases. (c) We show that the theory is locally conformal- and inversion- [@(x)—(x2) «y(-x/x2)]
invariant. These symmetries are spontaneously broken. (d) We discuss the implications of
the model for deep-inelastic electron-positron annihilation. Exact scali11g is obtained. (e) We
study the possible low-energy consequences of the (spontaneously broken) R symmetry.
These include the PCAC (partial conservation of axial-vector current) consistency conditions
and the Gell-M~~~ charge algebra. (f) %e consider the arguments for and consequences of
a spontaneous breakdown of the dilatation symmetry.

I. INTRODUCTION

Canonical quantum field theory is based on can-
onical field equations such as'

i]i(x) = )i: i]i'(x):,

and canonical equal-time commutation relations
such as

[ j(x), y(0)]()(x') = -f()'(x) . (1.2)

This framework is unfortunately inconsistent ex-
cept in the free-field case A, =0.' This is because
(1.1) and (1.2) imply the short-distance (SD) behav-

ior: i]i(x)$(0):-)i(in@'): i]i'(0):, which precludes
the existence of the simple Wick product: i]i'(x):
in (1.1). The conventional approach to this prob-
lem is to give up (1.1) and (1.2) and to define the
theory by the renormalized perturbation expansion.
Then the source term in (1.1) is replaced by a
complicated limit which subtracts oil't ths singular-
ities and (1.2) must be abandoned entirely. ' Al-
though consistent and explicit, this framework has
been useless when strong interactions are involved.
In particular, it seems impossible to understand
(exact or approximate) canonical Bjorken scaling
in this way. 4
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%e have suggested an alternative approach to the
problem in Ref. 2.' We sought to find a formalism
sufficiently more singular than the canonical
framework (1.1), (1.2) to avoid the above-men-
tioned inconsistencies, but sufficiently less singu-
lar than renormalized perturbation theory to ob-
tain canonical scaling. We maintain (1.2}, but re-
place (1.1) by

ay(x) = ~Z(x), (1.3)

+a, (x)(lnx')$(x, 0), (1.5)

where the bilocal oyerators and are analytic.
The amplitude'

~(q', v)=-
JI

dxe*'*&Pl[j(x)a j(0)llP&a v=q P,

(1.6)

will therefore behave as

vW(q', v)-E((o)+(Inq')E((u) (1.7)

in the Bjorken limit v- ~ with &u =- -q'/2v fixed.
To obtain exact scaling [E(&g)=—0], we can exploit
the fact that the source Z(x) in (1.3) has not yet
been fully specified. We showed in Ref. 2 that if J
is chosen to be invariant under the one-parameter
group of field-shift or R transformations,

It: y(x)- y(x}+r,
then exact canonical scaling,

v W(q', v)- E(&u),

is obtained. What happens is that, with (1.2)-(1.4)
A-invariant, the operator-product expansions must
lie II-invariant (although the vacuum ls sot R-ln-

with the source Z(x) initially unspecified except for
the normalization condition

[~(x), y(0)l5(x') =j(0)5'(x),

which also defines j(x), and the requirement that
the theory is scale-invariant. These postulates
require that j(x) is a member of a two-dimensional
indecomposable' (i.e., reducible but not completely
reducible) representation of the dilatation group S.
This provides explicit expressions for j(x) and J(x)
in terms of the basic field P.' Logarithmic singu-
larities are involved, but do not ruin exact scale
invariance because of the presence of indecompos-
able multiylets. We shall refer to theories such as
(1.2)-(1.4), based on canonical commutators but
noncanonical field equations, as quasicanonical
theories.

In the above model, the j(x)j(0) light-cone (LC)
expansion will have the general form

j(x)j(0) ~ n, '( x)I +a, ( x)$( x0)

ta(a, a) = fdaa(a}: g( «)g(0):, (1.10)

are deduced. It is shown in Sec. IV that the model
can be derived from a Hamiltonian X, which we
construct. It is also shown there that if a mass
term is added, it must be the R-variant term
m'k(x) and not the It -invariant term m' j(x). In
Sec. V we show that the model is conformal-in-
variant. The fields which mix under scale trans-
formations are seen to also mix under inversion
and special conformal transformations. The con-
formal symmetry must, however, be spontaneous-
ly broken. The implications of the model for e'e
annihilation are studied in Sec. VI. Using the
methods developed in Ref. 8, we discuss scaling,
the asymptotic behavior of the scaling functions,
and the multiplicities of the produced hadrons. In
Sec. VII we comment on the possible low-energy
consequences of R invariance. These include all
the usual consequences of partial conservation of
axial-vector current (PCAC) and the Gell-Mann
charge algebra. Finally, in Sec. VIQ, arguments
for and consequences of a spontaneous breakdown
of scale invariance are discussed.

II. REVIEW OF QUASICANONICAL THEORIES

We briefly review the short-distance behavior of
quasicanonical theories. For simplicity we first
discuss the case where there is only a single sca-
lar elementary field P(x} interacting through XQ'.
The usual quantization of the theory leads to the
canonical equal-time commutation relation

variant) and this decouples the logarithms from
relations among the (observable) It-invariant cur-
rents such as j(x).'

To satisfy the above conditions, J must be a
member of a three-dimensional indecomposable
dilatation representation. The resultant quasican-
onical theory has many interesting features: can-
onical commutation relations, simple field equa-
tions, scale invariance, R invariance, and Bjorken
scaling. The same procedure can be applied to ob-
tain a quasicanonical version of the gluon model. ~

To avoid unnecessary complications, in most of
the paper the scalar theory will be dealt with. Our
purpose will be to determine further properties
and exylore furthex consequences of the model.

We begin in Sec. II with a review of the quasi-
canonical g-invariant scalar theory and establish
some notations. Light-cone expansions in the mod-
el are treated in Sec. III. In Sec. IIIA the restric-
tions of positivity are discussed, in Sec. IIIB the
restrictions of g invariance implemented, and in
Sec. IIIC simple forms for the bilocal operators,
such as
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y(x) = ~:y'(x):, (2.2)

the ~uai-time commutator [s, 'p(x), p(0)]5(x') is
easily computed to be

[S,'y(x), 4 (0)]6(x') = -3ix: y'(0): 5'(x), (2.3)

which in turn implies the SD operator-product ex-
pansion (OPE)

P(x)P(0) ~ ~ —3iA , :] (0):+ ~ ~ ~ . (2.4)
lnx
16n2 '

Thus the quantity

»m [ A(x)p(0) —
& o

I %(x)A(0) I o}]
x~0

(2.5)

does not exist (problem A), and the theory is
moreover not irreducibly scale-invariant even in
the absence of masses (problem B). A solution to
problem B was offered by Dell'Antonio, ' who ob-
served that scale invariance can be implemented
equally well in the presence of logarithms, ' pro-
vided that one assumes that composite operators
transform reducibly under the dilatation group u.
We refer to this generalized concept as reducible

(2.1)

Canonical scaling in nature implies canonical be-
havior for products of currents near the LC, and,
in particular, at SD. It was thought that a simple
way to achieve this behavior for j(x)-:Q'(x): is to
demand that (2.1) be satisfied in nature. This na-
ive framework fails however except for free (X=0)
theories. Using the naive field equation

scale invariance (RSI). With one power of the log-
arithm, a two-dimensional reducible representa-
tion is sufficient to restore RSI. We call the part-
ners in the representation j(x) and k(x), and the
transformation property is

j(x) ~, . j(px)
k(x) ~ lnp j(px) +k(px)

(2.6)

where U~ effects the scale transformations. " The
restrictions of RSI produce a PP SD OPE of the
form

p(x) p(0) ~ (X, lnx ' +y, )j(0) + y,k (0) .
x ~O

(2.7)

It is now possible from (2.7) to define j and k in a
consistent manner:

(2.8)

ay(x) = ~Z(x) . (2.10)

Application of RSI also enables us to deduce the
singularity structure of OPE's like j(x)j(0),
J'(x)$(0), etc. For example,

k(0) = lim A., '[:P(x)g(0): —(A., lnx
' + X ~)j(0)],

x~0
(2 9)

so that problem A is also resolved. Equation (2.7)
now no longer follows from the naive field equation
(2.2). Assuming the validity of (2.7), we can pro-
duce a composite operator J(x), intuitively like
:P'(x):, from the j(x)g(0) expansion. A finite
field equation" can now be written down:

j(x)j(o)
1

j(x)k(0)
g ~O X

k(x)k(0)

-b, lnx'+a,

-b, ln'x'+(a, -5,) lnx'+a,

5, ln'x'+-(a, —2b, ) ln'x'+(2a, -b, ) lnx'+a,

b,

b, in@2 +b2

b 1 ln2x2+2b2 1~2+b3

k(0) . (2.11)

R: P(x)- P( ) rx, + (2.12)

where ~ is a constant. It is easy to deduce from
(2.8) and (2.9) the transformation properties of j

If b, w 0, canonical scaling is violated by one power
of logarithm; conversely, exact scaling requires
b, =0.

The condition is automatically satisfied if the
symmetry of field-shift invariance (R invariance)
governs SD OPE's. We define

and k under R:

6,j(0) =0,

5 k(0) = X, '[ 2rp(0) +r '] .

(2.13)

(2.14)

b, =b2=0, (2.15)

which decouples the Inx~ term in j(0), giving the

jj expansion a canonical structure

Application of R invariance to (2.11) immediately
gives
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j(x)j(0) —'. j(0).
x~0

(2.16)

The field equation (2.10}is R-invariant provided j(x)j(0) ~ —,6(0).
1

x~0
(3.4)

5„Z(x) =O. (2.17)

To implement R invariance, it is actually neces-
sary to have Z(x) belong to a three-dimensional re-
ducible representation of G: (J,K, 1.}. j (x) will
not be R-invariant with a two-dimensional repre-
sentation. With this choice of Z(x), (2.10) is now
R-invariant. Specifically, the 8-invariant expres-
sion for J'(x) is

j(x)4(3 )
, -n, ln(x-y)'+n, ' (2.18)

and the field equation, together with the R-invari-
ant constraint,

[~,jl„j, (2.19)

III. LIGHT-CONE EXPANSIONS

A. Positivity restrictions

In our scalar model, the structure function
(&&

=- q')

)('(~, «) -=fd*~"*()' ll j(*l,&(0)) i(')

will satisfy Bjorken {canonical) scaling,

F((o, «) = v W(&d, «) = F(&d),

(3.1)

(3.2)

provided the LC OPE has the canonical form"

1
j(x)j(0) ~ —Q x & x"~8 . . . (0).

x~~0 n -O

(3.3)
%'e showed in Ref. 2, and reviewed in Sec. II, that
the SD limit of the LC expansion has the canonical

can now be used to derive the expansion (2.7) in a
way completely consistent with RSI and with 8 in-
variance. The above scheme then constitutes a
quasicanonical A.{t)' quantum field theory.

For later convenience we introduce here the no-
tation {&j&&"(x}li=1, . . . , mj to denote the I-dimen-
sional multiplet of composite fields which replace
in our scheme the ill-defined object: (t&"(x): .
Thus, j=(j&,', 0 =&t),'; Z=&t),', K=(j),', I, =(j&,'.

Mass terms are always present in the real world,
and they always break g invariance (see Sec. IV).
It is, however, well known that symmetries broken
by mass terms are restored in SD OPE's. '"

Quasicanonical theories are just as easily con-
structed for fields with spacetime and/or internal
indices. In particular, the quark-gluon model was
so treated in Ref. 2.

In our model, we must have

G„(x') = g„(lux'}'~, (3.6)

but we shall work with arbitrary Q„'s for general-
ity. It follows from (3.5) that the amplitude

&*(w, «) J«e =-(&
I

&''I"&(*)j (O)l I)') (3.7)

satisfies

vT((u, «) ~ i Q c„(1/&d)""G„(«) (3.8)

in the region w&1 of convergence, where

{Ple,. „(0)IP}=c.P, P + (3.9)

G„(K)= —— z« —— dx e '* —,G„(x~) . (3.10)

Therefore,

JI d&d &0"F(&(&, K) =2»c„G„(«).
0

(3.11)

The positivity of F(&u, K) now gives the inequali-
ties

c(&G()(K) ~ c&G&(K)

~ ~ ~ ~ ~ c„G„(K)~ c„„G„„(K)~ '
~ (3.12)

Therefore, if one moment of F(&d, K) scales, so do
all the higher moments. Now, (3.4) gives G,(x')
=const, and so G,(«) =const. Equation (3.12) then
requires that each c„G„(K)-const, and G„(x')
—const for each n such that c„W 0. %e can con-
clude that (3.3) is valid at least between the states
of interest This me. ans that each a„ in (3.6) ef-
fectively vanishes. Thus, in the present context,
(3.2) follows just from (3.4).

More generally, ignoring the existence of the LC
OPE (3.5), the positivity of F(&u, K) still implies
that the moments (3.11) satisfy the inequalities
(3.12) and so, if (3.4) is valid so that

c,G,(K) = const,

In this subsection, we will show how, in our mod-
el, (3.4) and the positivity of (3.1}lead essentially
to (3.3).

The most general possible LC OPE for the T
product has the form"

r[j(x)j(0}] ——g G (x')x & " x"e (O) .1

n

(3.5)
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each c„G„(«)must have a finite limit for «-~;
i.e., each moment (3.11) must scale. Although this
is clearly physically equivalent to the scaling (3.2)
of F(ur, «), it is not mathematically equivalent to it
It is easy to construct positive functions E(&u, «),
each of whose moments scale but which do not
themselves scale. Such functions are not, of
course, of physical interest and do not correspond
to OPE's like (8.5).

Let us next consider the LC behavior of the field
product $(x)$(0). The general LC OPE,

j(x}j(0) Z(x)[[-,'c,(i~')' —c, lnx'+c, ]8,(0)

+ (-c, lnx'+ c,)8,(0) + c,8,(0)},

cg =c2 =0 ~ (3.18)

(3.17)

where Lorentz indices on the power-behaved sin-
gular function E(x) and 8, have been suppressed.
Thus, 5~8, =0, but 5„8a40, 5„830. Application
of lt invariance on (3.17) gives at once

g(x)P(0) ~ QH„(x')x"i ~ ~ x n6 . . . (0)+ ~ . ~,
n

Then (3.1V) becomes

j(x)j(0) ~, E(x)c,8,(0), (3.19)

is required by the SD behavior,

P(x)P(0) ~ (lnx')6'(0)+ ~ ~ ~,

and positivity to have the form

(3.18)

(3.14)

(3.15)

and is purely power-behaved. Since 5~, =0, (3 Ig)
is R- invariant. On the other hand, if there were
another ft-invariant operator, say, 5„8,=5s8, =0,
then 82 might occur with c,40, and the expansion
would be

j(x)j(0) ~ Z(x)[(-c, lnx'+c, )8,(0)+c,8,(0)],

P(x)P(0) ~ (lnx') Q x"~ ~ ~ x"~(P . . . (0) + ~ ~ ~ .
F2~0 tl

(3.16)

B. R invariance

Since j is B-invariant, each 8 . . . occurring
in (8.3) must also be 8-invariant. In this subsec-
tion, we shall show how this can be achieved in the
simplest possible way. The construction will also
guarantee that the canonical structure (3.3) occurs.

We have noticed that for the multiplet [P;"(x)(i
=1, . . . , m}, it is necessary to have m~ n in order
that at least one of the operators in the set (defined
to be i = 1) is ft-invariant: 5„P,"(x)= 0. The most
esthetically pleasing situation would prevail if m
=n, in which case there would be exactly one 8-
invariant operator in the multiplet.

It turns out that if an analogous condition holds
for all the operators 8„,. . .„(x)which occur in the

j(x)j(0}LC expansion, then the entire expansion is
free from logarithms provided the SD limit (8.4)
is. %e explain: The 8's carry two more indices:
I (the level) -=dimension —spin, "and i, which la-
bels the operators occurring in a representation of
s of dimension m. The condition is that for a given
level /, exactly one element of the set (8~',~. . .„,(i
= 1, . . . , m}, defined to be 8„',~. . .„,(x), be R-in-

&1' &n'

variant. %e refer to the above situation as the
leader condition, and the unique i = I operator as
the leader of the multiplet. In the expansion of
two R-invariant operators j(x}j(0), the set
8~' . . .~,(x) must occur in a way prescribed by
invariance under X). For example, for m = 3,

(8.20)

and scaling is violated. The feature in (3.1V) which
enables this argument to proceed is not changed
for any m, provided that the leader condition
holds. %e have nothing to offer on the necessity
of the leader condition for canonical scaling. In
the absence of the condition, certain numerical co-
efficients would have to vanish by accident to
achieve freedom from logarithms.

In summary, the existence of GPE's on the
whole LC is a consequence of the leader condition
for R-invariant theories. It is the simplest gen-
eralization of the "m =n rule" previously pro-
posed. ' It will serve as another constraint in con-
structing solutions to 5)- and R-invariant dynami-
cal systems.

C. Bilocal operators

It follows from the leader condition that

j(x)j(0) ~ —Q x"& ~ ~ x"~8~'. . .„,(0)
I

X ~0 ft-0

-=—e(x 0) (3 21)

where 8„'.. .„,are all leaders with level two. In
the old naive canonical approach,

j(x)j(0) ~ b, ,(x):p(x)y(0):,
x 2~0

where: $(x)@(0):is a bilocal operator. In quasi-
canonical theories, (3.22) certainly cannot hold.
Already at SD
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:(t)(x)y(0): ~ (a, lnx'+P, )y, '(0)+a,y, '(0),

(3.28)

and so, as we saw in Sec. III A, by positivity

:P(x)g(0): has a logarithmic singularity on the
whole LC. In deriving the LC OPE, one needs the
SD OPE's of the derivatives of (t)(x}P(0}, and they
must take the form dictated by RSI:

:e„y(x)4)(0): s „[(a,lnx*+ p, )(t),'(0) +a,y, '(0)]+[(a,lnx'+ p, )8„,(0) +a,e„, ,(0)],

:6 „6„$(x)4)(0):~ 6 „8„[(a,lux*+ p, )p, '(0)+o.,(t),*(0)]+6„[(a,lnx'+(6, )8„,(0) +a,e„,(0)]

+[(a, lnx'+P, )6„„,(0) +a,e„„,(0)],

(3.24}

(3.25}

and so on. From the general form

:y(x}y(0): ~ (Inx')S(x, O)+S(x, O),
x ~~0

we deduce

»m»m: «"+»4'(0}: =p(x o) ~

0 ma o In(x+y)'

on the other hand,

lim»m: «"+y}~(0}:
, ,~a~, ln(x+ y)'

(8.26)

(3.27)

:j(x)j(0): —.~, (x) pc„x"~" x~eg. . .„,(0),
~0

(8.31)

for some constants c„,n =0, 2, 4, . . . .
To write (3.30) in another way, we introduce a

function r(a} which satisfies the conditions

(3.32a)

= lim lim g —,[(y 6)" (t)(x)](t)(0)
1 1

ln(x+y)' '

(8.28}

Substituting (8.23), (8.24), (8.25), etc. for the be-
havior of s „~~ s„p(x)(t)(0), we obtain

S(x, 0) =2 —y"& ~ y"~c. 6 . . . (0).1
nf &x' ' '&n'

Then we have

:$(x)g(0): ~ (lnx')
J

(fa v(a): (t)(ax)p(0):.
~0

(8.33)

Similarly, introduction of a function u(a) which sat-
isfies the conditions

(3.29) J
dao(a)a" =0, n=0, 2, 4, . . . , (3.34a)

The bilocal 6 (x, 0) as defined in (3.26) is thus com-
posed solely of sums of leadex s, and is thus 8-in-
variant.

However, the bilocal 6(x, 0) occurring in the

j(x)j(0) expansion (3.21) is in general not identical
with F(x, 0). It invariance only requires that it be
a sum of leader operators 8„.. .„,(0). It is
therefore useful to introduce a general form of the
bilocal operator adequate even for such situations.

By a simple change of normalizations, we can
write the LC QPE as

P(x)(())(0): ~ (lnx') Q x~& ~ ~ x"6~". . (0)
x'~ ~0 n'

)t dao(a)(ina')a" =c„, n=o, 2, 4, . . . , (8.84b)

enables us to write (3.31) as

:j(a))(O): a.(*)J«a(a):e(aa)((O):.
x~ 0

%e shall not discuss the existence or uniqueness
of o(s) in detail. We have had no difficulty in ex-
plicitly constructing it in all cases of interest. A
few general remarks are, however, in order. %'e

define the function

+ gx & ~ ~ x ~ei" (0)Nl ' ' ' ~a~~
A(a) = J«a(a)a" (3.36)

(3.30) for all complex n for which the integral exists or
by analytic continuation. By (3.34a), we have

The irreducibility of (t)(x} requires that the local
operators occurring in the j(x)j(0) LC OPE are
taken from the set of B-invariant operators which
can occur in (3.80). Thus,

A(n) =0, m=0, 2, 4, . . . ,

and by (3.34b), we have

(3.37a)
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E+i ~
&r(a)=

2
. dnA(n)a ",

N-f~
(3.38)

exists. This can then be used to determine a(a).
In practice, one is given c„ for complex n. Then,
if (8/sn) c„ is regular at the integers, we can take
A(n) =B(n)c„, where B(n) is zero for integer n and
B'(n) is unity for integer n, like (2w) ' sin2vn. B(n)
must also be such that the integral in (3.38) exists

Another method for constructing c(a) is to take a
sequence ob(a), k =1, 2, 3, . . . , of functions, each of
which satisfies (3.34a), and take

o(a) = Q d, a,(a), (3.39)

A'(n)=-,'c„, n=0, 2, 4, . . . . (3.37b)

Now suppose that o(a) has support in [0,~) and that
A{n) is sufficiently well behaved so that the inverse
Mellin transform,

tlon

[8(x),a] =be,e(x). (4.1)

We define the kinetic-energy term from the OPE

S»y(x)8 "b(t)(0) ~ (a Inx'+b)K,"&"&(0)

+aK,"~"b(0), (4.2)

K," " (x)y(0)
Ku~"'(x)(j)(0)

C~1

cz lnx +cz
8 "b(j)(0)+ ~ ~ ~,

(4.3)

where (K~»"b, K,"'"')as usual is a two-dimensional
multiplet under g). The normalization of K"I"~ is
fixed by considering the OPE

with the coefficients d„chosen to satisfy (3.34b).
An example is

which gives the equal-time commutator

[K,"„(x),y(0)]8(x') = 4v'c, f8'(x) j(O}. (4.4)

cb(a) = exp[ -a""cos(v/&)]»n[ a'~' sin(x/&)],

(3.40)

For illustration, we consider the class of exam-
ples

A" "'(n)= J daa" rr" '(a)

=21'(2n+8nb)(MRb) """"'(sin-,'nv),

c(b, m)(a) a4™-leb wa slnf)(Wa) (3.41)

These satisfy

A(b, m} (

For the example of a (t)' theory, the interaction
term is given by the composite operator (X/4!)
x (t), (x). Using the Heisenberg equation and the
fact that

[(j),'(x), $(0)]5(x )-5 {x)(j),'(0), (4 8)

one easily obtains the R-invariant equation of mo-
tion

Thus, the kinetic term (=-,'"s„(t)8"(t)") is just given
by the R-invariant composite operator

for z=-4m, -4m+2, . . . , -2, 0, 2, 4, . . . , y(x) = ——,y, '(x). (4.'I )

(3.42)
The Hamiltonian that generates this equation is

0) ~)—A~'"'(n) = vi {2n+8~)(M2h)-'&"""'
8Ã

1 -1
~ A. 4X = —,K,"„(x)+ —,(j),'{x),

2 27K
(4.8)

for n=-4m, -4m+2, . . . , -2, 0, 2, 4, . . . .
(3.43)

Related examples can be constructed by, e.g. , dif-
ferentiating with respect to b.

IV. HAMILTONIAN FORMALISM

To define a complete quantum field theory, it
would be necessary to construct the appropriate
energy-momentum tensor. In particular, the
equation of motion of the quantized theory can be
obtained by commuting with e~, the Hamiltonian
density, in accordance with the Heisenberg equa-

and is itself g-invariant. This is a desirable state
of affairs, since the Hamiltonian is an observable
quantity.

In more realistic theories, mass terms are al-
ways present, and they break scale invariance. A
consistent incorporation of mass terms in quasi-
canonical theories turns out to require that they
also break R invariance. A mass term for scalar
theories would correspond to either (j),' (B-invari-
ant) or (t),

' (R-variant). Suppose the mass term
is R-invariant; then we have the OPE
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R invariance for (4.9) implies that

(4.11)

This means that an 8-invariant mass term -Q, '(x)
will not yield a mass term in the field equation
generated by the Hamiltonian. On the other hand,

[ y, '(x), j(0)]S(x')= 4v'P, f5'(x)y(O) . (4.12)

We can thus construct the Hamiltonian density

(5.4)[Z„,P„]=2f(g„„a—:M„„).
We take the field P(x) to transform under H as

X: y(»)- —,y(Xx) = —,y(-x/x')-=x'y(x),

where

(5 5)

It follows that any theory which is invariant urder
N and translations is invariant under the special
conformal transformations. We note also the com-
mutation relations''"

m2

2 2F

(4.13)

x=Nx= -xyxI 2

Then

(5.6)

with the mass term explicitly breaking scale and
8 invariance, and it generates the field equation

(Z+ m')y(x) = ——,y, '(x).A.

(4.14)

V. CONFORMAL INVARIANCE

A large class of models which are formally
scale-invariant are also formally conformal-in-
variant. " In particular, both symmetries are
present in the Thirring model" and in the con-
structive bootstrap models. " More generally,
conformal invariance will be present whenever
scale invariance is present as a consequence of a
Qell-Mann-Low eigenvalue. " It is therefore nat-
ural to ask if our quasicanonical scale-invariant
model is also conformal-invariant. In this section,
we will answer this question in the affirmative, but
see that the conformal symmetry must be sponta-
neously broken.

The generators of the conformal group are the
generators M„„ofthe orthochronous Lorentz
group, the generators P„of translations, the gen-
erator D of dilatations, and the generators K„of
special conformal transformations. " The special
conformal transformations act on spacetime ac-
cording to

xlf cpxx„-x„—
1 2, , —K(c)x„. (5.1)

The presence of the mass term in (4.13) thus im-
plies the breaking of B invariance in the field equa-
tion.

, y(x)- (x')'a,- y(x), (5.7)

and so the classical field equation 0, P(x) = A.p'(x)
is N-invariant. To establish the N invariance of
our quantum field equation (2.10), the limit in-
volved in the definition (2.18) of the source Z(x)
must be taken into account.

We must determine first the behavior of the di-
mension-two scalar currents j(x) and k(x) under N.
We rewrite Eqs. (2.8) and (2.9) as"

A(y)4(x) -&,(x-y)
gin(x —y)'

k(x) = lim ( P(y)P(x)-a, (x-y)

(5.8)

Using

- [g 1n(x -y)'+1]g(x)}. (5.9)

(- -)g (» y)'
x~y'

we find from (5.5) that

X: j(x)-(x*)'j(x),

(5.10)

(5.11)

Z: k(x)- (x')'[k(x)+ g ln(x')' j(x)]. (5.12)

We see that j and k mix under N transformations
just as they do under the scale transformations
(3.6). The fields j and k form a two-dimensional
reducible, but not completely reducible, repre-
sentation of the discrete group f N, I} (N' =I).

The behavior of the three-dimensional scale
multiplet (Z, X, f,}under N transformations can be
similarly determined. We find

NP„N =K„, (5.2)

The special conformal generators and translation
generators are related by"

X: Z(x)- (x')'Z(x),

X: ff(x)- (x')'[X(x) —ln»*S(x)],

X: f,( )-x(x')'[ L,(x) —inx'Z(x)].

(5.13)

(5.14)

(s.ls)
where N is the inversion operator

¹ x ——=- x =- Nx
xJg (5.3)

We see that [Z, K, L} define a three-dimensional
indecomposable representation of the discrete
group(N, I}.



o(x, c) —= I -2c .x+c'x'. (5.17)

Suppose that the N symmetry is of the ordinary
sort so that the vacuum is invariant. Then the
Wlghtlnall fllllctloll Of j is

~»((x-y)')=&0lj(x) j(y) I0& = „"., (5 18)

a result which also follows fx'om scale invax iance.
Consider next

~»((» —y)*)-=« I j(»)I (y) I 0}. (5.18)

Applying N transformations gives the relation

-c» lny' 1 (x —y)'~,.((» —y)') =
(x-X)4 + 44~12 2 2

(5.20)

which is clearly only consistent if exx =0. The van
ishing of (5.18), however, violates positivity, and
so one presumably must conclude that the N sym-
metry is spontaneously bx'oken so that the vacuum
is not invariant. ~' lt follows that the special con-

The N invariance of our field equation (2.10}now
follows from (S.V} and (5.12). The N invariance of
the theory follows from this and the N invariance
of the equal-time commutation relations (1.2) and
(1.4}. The conformal invariance of the theory fi-
nally follows from (5.2). We note that, if we use
K or J instead of J as the source of the field equa-
tion, both scale and conformal invariance would be
lost. The conformal invariance is not, however,
connected with the 8 invariance. If an irreducibly
scale-invariant source of scale dimension three is
used, the 9 invariance is lost but the conformal
invar iance remains.

It is straightforward to determine the transfor-
mation properties of the fields we have considered
under the special conformal transformations (for-
mally generated by e" 'r), either directly or using
(5.2). The results are

(f)(»)- o '(x, c)P(K(c)x), (5.16a)

j(x)-c '(x, c)j(K(c)x), (5.16b)

k(x)-o '(x, c)[k(K(c)x)—Ino'(x, c)j(K(c)x)],
(5.16c)

Z(x)-c '(x, c)I(K(c)x), (5.16d)

K(x)-a '(x, c)[K(K(c)x}+Ino'(x, c)Z(K(c)x)],

(5.16e)

L,( )-xo '(x, c)[-,' ln'o'(»P(K(c)x)

+ Ina '(x)K(K(c)x) +L(K(c)x)],

(5.16f}

forrnal symmetry is spontaneously broken. The
same conclusion follows directly from the special
conformal transformation properties (5.16), with-
out the use of ¹ It also follows just from the in-
finitesimal tx'ansfox'mations. " The general con-
clusion is that conformal invariance must be spon-
taneously broken if indecomyosable dilatation mul-
tiylets are pxesent. ""

There have been other suggestions, independent
of the presence of indecomposable dilatation mul-
tiplets, that conformal invariance is spontaneously
broken in theories with canonical scaling. Other-
wise such theories must yossess an infinite num-
ber of conserved local tensors, ""and this might
be unacceptable if the theory is not free. Further
discussion of this will be given in Sec. VIII.

The consequences of the (spontaneously broken)
conformal symmetry of our model are of two
sorts. The symmetx'y places interesting restric-
tions on the LC OPE's, which, unfortunately, only
become significant when nonforward matrix ele-
ments are involved. '4 The symmetry also leads to
Ward identities and low-energy theorems in the
Goldstone manner. Because of the apparently
large symmetry-breaking effects in nature, this
program has not yet proved to be particularly
fruitful. %'e will return to these matters in con-
nection with spontaneously broken scale invariance
in Sec. VIII.

y(q) -H (P) + anything, (6.1)

in the context of our 8-invariant theories. Here
H(p) represents any (elementary or composite)
hadron. We will use the methods developed in Ref.
8 for the analysis of processes such as (6.1) in
(asymptotically) scale-invariant theories. The
nonperturbative character of these methods ren-
ders them ideally suited for our puxposes. %e
will see that our quasicanonical theories imply
canonical sealing laws for (6.1), whereas purely
canonical theories in general violate these laws.

In the scalar theory with scalar photons, the am-
plitude for (6.1) is given by

))'{», v)= fdxe"'(0 ~))'(r {)P))0), (6.2)

VI. DEEP-INELASTIC ANNIHILATION

To inquire further into the possibility that R in-
variance is a (broken) symmetry in nature, it is
important to determine the consequences of R in-
variance in experimentally accessjble processes
other than electroproduction. In this section we
will study the important electron-positron annihi-
lation (via single-photon exchange) process,
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n(x, 0; p) ~ d.,(x)N(x, 0; p),
x ~0

(6.4)

where

a{@,o;)')= J««s' ' '
)[)({x)s(J)] )[)g( los ())],

(6.5)

whereas in the quasicanonieal theory, we have

8(x, 0;p) ~ b, ,(x)( (x, 0;p),
~ 2~Q

(6 6)

where the alternative forms (3.27) and (3.33) for
the biloeal operator give the alternative expres-
sions

8(x, 0; p) = lim lim
d](x+ f. 0'p)

o *2 o lux+a

s(x o) ) = J «v(a)a(ax, 0)t) (6.8)

fol
Denote the minimal dimension of the field opera-

tors in (6.5) by

&(~, 0;)')=
J&f

«e"'" '){]f(~Wv)]

x It[j(0)S'(x)j,

where 8 denotes the retarded commutator, S is a
source operator for the hadron H, ~' and the vari-
ables are z =q'&0, v= q p. In the purely canoni-
cal theory, one has

selves simply in considering the matrix element
(p ~

p(x}(p(0}~p) „„relevant in electroproduction,
which could, at this level, be analytic as in the
free-field case. The singularities do, on the other
hand, reveal themselves simply from consideration
of the matrix element (0~ $(x, 0; p) ~0) relevant in
annihilation. Free-field analytieity is manifestly
excluded in (6.10) since in the absence of interac-
tion (S =0), one has Z &0 and the absence of singu-
larities in (6.10), whereas in the presence of in-
teractions (dimS & 3), one has Z & 0 and the pres-
ence of singularities. Annihilation is thus seen to
probe deeper into the underlying dynamics than
does electroproduction.

In the quasicanonical theory, the LC singularity
in (6.10) is removed in general by the limiting pro-
cedure in (6.7) or by the line integral in (6.8) and
therefore does got give rise to divergences in the
scaling limit of v W(x, v). The quasicanonical the-
ory, which was designed to give Bjorken scaling
for electroproduction, is thus seen to give scaling
for annihilation. Although not surprising, this re-
sult is not trivial. One could imagine ignoring
field equations and assuming that the simple bi-
local (p ~

(t)(x)(t)(0)
~ p} is nonsingular so that scaling

occurs in electroproduction. Scaling would then,
however, not occur in general in annihilation. Our
field-equation approach yields the more compli-
cated forms (6.7) or (6.8) for the bilocals, and
these forms automatically imply scaling in both
electroproduction and annihilation.

The scaling law in the quasicanonical theory is

6 =dim(P =1, D= idmS.

It is shown in Ref. 8 that

(6.9)
v W(a. , v) - F((o), 1 ~ (u ~ ~ (6.12)

&0~@(x,0;p)(0) ~ (x.p) (a+blnx'+clnx p)
X ~0

+ O(x )+O(1/x'), (6.10)

where Z, the slant of (6.5), is given by

F4 ) = w) «e' f(z),

w1th

f(x p) = lim (0~8(x, 0; p)~0).
X 2~Q

(6.13)

(6.14)

Z =a+6 —3 =D-2. (6.11)

The constants a, b, and c are unknown but are
nonvanishing in general The O(1./x') terms in
(6.10) occur if Z & 0 and have the form b„(x')
+=0, 1, 2, . . . , -1, with the b„unknown. The SD
singularities in (6.10) do not contribute to the elec-
troproduction matrix element (P (j(x)j(0) (P).

It follows from (6.2)-(6.5) and (6.10) that the
scaling limit of v W(x, v) will in general be diver-
gent in the purely canonical theory. This diver-
gence is related to the inconsistency of this theory.
The canonical field equations require the simple
vacuum-subtracted product (t)(x)$(0) -h, (x) to be
singular on'the LC if the theory is not free. These
LC singularities do not, however, reveal them-

The result (6.10) now gives the asymptotic behav-
ior

F((()) ~ const&«u (6.15)

The generalization of the above considerations
to the more interesting quasicanonical gluon mod-
el is immediate. There the sealing law is

v W, (f{,v)- F,(~u), (6.16)

in an obvious notation, whereas this scaling would
be violated in general in the purely canonical gluon
model. Experimental confirmation of (6.16) will
therefore constitute further support for the quasi-
canonical approach. It further follows from the
analysis of Ref. 8 that in our theory
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E ((a7) ~ id (6.17)

where

@=D-1 or 6=8 —
2 (6.18)

for a scalar hadron of dimension D (e.g. , a pion
source) or a spinor source of dimension d (e.g. , a
nucleon source), respectively. Also, the multi-
plicity of the produced hadron is asymptotically

(Mic)' ', 1&a —3&0

N(/c) — Ina, a —3 = 0

const, o -3&0. (6.19)

As discussed in Ref. 8, these results can be used
to determine D and d experimentally and thus pro-
vide information on how the observed composite
hadrons are constructed out of their constituents.
Comparison of these determinations of the source
dimensions with other such determinations" will
provide an important test of the consistency and
relevance of the whole approach.

VII. LOW-ENERGY CONSEQUENCES

In the preceding sections, we have discussed a
number of high-energy consequences of R invari-
ance —primarily Bjorken sealing. To further indi-
cate the relevance of R invariance in nature, it is
important to seek further consequences and com-
pare them with experiment. It might be expected
that R symmetry, being spontaneously broken,
would have associated low-energy theorems which
are approximately valid in nature. There have, in
fact, been several attempts to deduce Adler con-
sistency conditions from an assumed invarianee of
the 8 operator under R transformations of the pion
field." In this section we shall study such low-en-
ergy consequences of R invariance in our quasi-
eanonical theories.

In the previous approaches, "the applicability of
R invariance was severely limited by the fact that
R transformations could only be applied to neutral
fields because of the noninvariance of the electric
current: QtF„P: or: gy„g:. As we have already
stressed, this problem is elegantly circumvented
in our RSI theories in which the electric current
and all other observables me R-invariant.

Consider first the scalar quasicanonical R-in-
variant theory. The R invariance imylies that the
n-to- m particle scattering amplitude
T„(k„.. . , k„;k,', . . . , k' ) vanishes when any four-
momentum is set to zero." If a mass term is in-
cluded in the model, then not only does the zero-
momentum point become unphysical (k' = m' & 0),
but the low-energy theorem itself becomes invalid
because the R invarianee is broken. If m~ is suf-

ficiently small, it might be hoped that the low-en-
ergy theorem is not too badly violated.

In a more realistic model containing an elemen-
tary pion field w, (a = 1, 2, 3) and other .elementary
fields y, (i = 1, . . . , N), if one has invariance under
shifts of the pion fields in the absence of a pion-
mass term, the scattering amplitudes will vanish
whenever a pion four-momentum is set to zero.
The experimentally mell-satisfied Adler consis-
tency conditions will therefore be satisfied in such
a model, and this follows without invoking PCAC in
any form. Furthermore, this is sufficient to give
the Gell-Mann charge algebra" and all of its ex-
perimentally well-satisfied consequences such as
the Adler-%eisberger relation. Thus, much of the
progress in particle physics of the past decade
(Gell-Mann charge algebra, the Adler consistency
condition, Bjorken scaling) may be understood in
a unified way as consequences of R invariance. In
the presence of the pion-mass term, the low-ener-
gy theorems become invalid and unphysical, but,
because of the small pion mass, they should re-
main as good approximations.

The pion is, however, presumably not an ele-
mentary particle, and so it must be asked how the
above conclusions are altered when this is taken
into account. Suppose in the scalar R-invariant
theory that the composite "pion" is a bound state
of two of the elementary scalar particles. If j(x)
[Eg. (2.8)] is a good interpolating field for the pion,
then there will not necessarily be an interesting
low-energy theorem, because j is R-invariant. If
k(x) is a good interpolating field, interesting low-
energy theorems will be obtained because of the
behavior [Eq. (2.14)] of k under R transformations.
The theorems will, of course, also be valid if both

j and k are good interpolating fields, because one
is free to use k and the (on-shell) amplitudes are
independent of the choice of fields if they are suit-
ably normalized.

In the more realistic R-invariant quasicanonical
gluon model, the low-energy theorems will be val-
id if the R-variant pseudoscalar field (-gy, p) is a
good interpolating field for the pion. The nucleon
interpolating field (-ggg) may be either R-invari-
ant or R-variant, since the nucleon mass is pre-
sumably too large for the nucleon low-energy the-
orems to be physically relevant. Under these cir-
cumstances, the R-invariance of the model exem-
plifies the above-mentioned common origin for the
consistency conditions, charge algebra, and scal-
ing in what is probably the most physical model
yet studied.

The remarks above are meant only to illustrate
some possibilities for the low-energy significance
of R invariance. Much work remains to be done to
see if these ideas can be implemented in a consis-
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VHI. SPONTANEOUS BREAKDOWN

OF DILATATION SYMMETRY

The R symmetry in our models must be sponta-
neously broken, and the resulting low-energy ef-
fects were discussed in Sec. VII. If the dilatation
symmetry is also spontaneously broken, there will
be further low-energy theorems which may be of
interest. In this section we shall briefly look into
these matters.

One argument that scale invariance is spontane-
ously broken in our models is based on the Pohl-
meyer" theorem. Consider, for example, our
scalar model. Since the scalar field P has the
canonical dimension one, if the vacuum were in-
variant to scale transformations, the two-point
function would be a constant multiple of the free-
field two-point function:

(0 (p(x)p(0) ~0) =const x 1
X -SEX (8.1)

According to the pohlmeyer theorem, p must then
be a free field and our theory would be a free one.
This argument is not completely compelling be-
cause the presence of the 9 symmetry leads to the
possibility that an indefinite-metric formalism
may be necessary and this could vitiate the theo-
rem. Because of our ignorance of such dynamical
properties of the model, we are obviously in no
position to reach a definite conclusion. There is,
however, certainly a strong suggestion that the
scale symmetry is spontaneously broken if our
model is not a free-field one.

A second argument'2 that scale invariance is
spontaneously broken in our models is based on
the conformal invariance. We have seen that, in
the absence of spontaneous breaking, non-com-
pletely-reducible representations of dilatations
(with canonical or noncanonical dimensions) are
incompatible with conformal invariance and posi-
tivity. The conclusion is, again, not compelling
for the above reasons and because it requires a
possibly overly strong form of conformal invari-
ance." Nevertheless, there is again a strong sug-
gestion that the scale invariance of our models is
spontaneously broken.

Let us now assume the spontaneous breakdown
and explore the consequences. The usual low-en-

tent and predictive way. If such a program is suc-
cessful, the consequent common origin for many of
the highlights of the recent era of particle physics
will be most remarkable. Such a unification of
pion-pole dominance and Bjorken scaling, in the
framework of a consistent equal-time and light-
cone current algebra, seems to us to be very ap-
pealing.

ergy theorems and Ward identities associated with
scale invariance will then be valid and pole-domi-
nance assumptions will lead to interesting and
testable predictions. "'" These predictions can be
deduced by either a dispersive approach" or an
effective Lagrangian approach. 3' In the latter
treatment, a scalar field o(x), the Goldstone bo-
son, is introduced with the unusual transformation
properties

z[B, o(0)] =b 'f, -

e"Do(0)e "o=o(0)+b 's,
(8.2)

(8.8)

under dilatations, where 5 is a constant with the
dimension of length. The field o(x}can be thought
of as the logarithm of an ordinary scalar field y(x)
with nonvanishing vacuum expectation value:

o(x) =5 'ln[bx(x)]. (8.4)

Any mass term in a Lagrangian, for example,
2 2 (8.5}

Then the Lagrangian becomes manifestly scale-
invariant even though all particles (except o) have
nonvanishing masses (at least in the tree approxi-
mation, when e" is expanded as 1+2bo+ ~ ~ )
Finally, explicit scale-symmetry breaking can be
introduced to provide e with a mass and the scale
current with a nonzero (but smooth) divergence.
Various broken-symmetry relations can then be
deduced in the manner familiar to us from current
algebra and PCAC. The results of such analyses,
which are consistent with experiment, are re-
viewed in Refs. 30 and 31.

There is a possible relation between the above
formalism and the reducible representations of the
dilatation group. Consider a scalar field A(x) of
dimension d:

A(x) X A(Xx).

If another scalar field'

B(x)=o(x)A(x) (8.8)

is formally defined, it transforms under dilatations
as

B(x) A [B(M)+5 '(in')A(W)]. (8.9)

Thus A and 8 formally constitute a two-dimension-
al indecomposable representation of the dilatation
group. Similarly, A, 8, and C =o 2A constitute a
three-dimensional representation.

can then be made formally scale-invariant by mul-
tiplication by appropriate powers of bX =e"; for
examples

(8.8)
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The above considerations suggest that indecom-
posable representations have a natural origin in
theories with spontaneously broken scale invari-
ance. It is, however, difficult to assess the sig-
nificance of the construction. It is certainly not
clear, e.g., from (8.4), that c(x) is a local field
operator. " Whatever o(x) is, the construction
(8.8) is only of interest if B(x) i s a local field. If
o(x) is a local field, the product in (8.8) must be
precisely defined to make B(x) local and well de-
fined. If only the ordinary px'oduct is involved, the
inversion c(x) =B(x)/A(x} again suggests that c(x}
is not an ordinary field. A warning is provided by
the example of free-field theory, where the ab-
sence' of indecomposable representations means
that constructions such as (8.8) do not produce lo-
cal fields.

It was shown in Sec. IV thai the mass term to be
appended to our scalar theory is m'k(x). The for-
mally scale-invariant version is

m'k(x)s""*' . (8.10)

u(x} 2ry(x)+r'gx =. «0'x+
i(x) s i (x)

and so, since

(8.11)

Let us inquire into the R-transformation properties
of (8.10). If k(x) is identified with c(x)j(x), we
have

7.(x}= ,-= T(x)+ .A(x)
R i(x) (8.12)

p(x)=- . = p(x)
1
X

(8.13)

the operators o, 7., and p formally define a three-
dimensional indecomposable representation of the
B group. If, on the other hand, o(x) is defined by
(8.4) with y(x) an ordinary scalar field which
transforms as usual,

X(x) = X(x)+r,
R

(8.14)

c(x) = h 'Inb[li(x)+rj=—o„(x), (8.18)

1 k

2b jt+2rg+rs (8.18)

is required in order that (8.10) be formally B-in-
variant as well as scale-invariant. Considerations
such as these may be intexesting, and we hope to
take them up at greater length and depth in a future
publication.

and so the continuous infinity of operators
(o, (x)

~

-~ &r &~} define another representation of
the R group. Finally, we note that the tx ansforma-
tion property
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We show that even for some external lines on the mass shell, the procedure of dropping the
mass-insertion term in the Callan-Symanzik equation is justified for the form factor at high
squared momentum transfer in a certain class of models. This provides a very quick method
of summing leading contributions in perturbation theory, as well as summing the next-to-lead-
ing terms.

INTRODUCTION

In the Lagrangian formulation of quantum field
theory, because of the singular behavior of prod-
ucts of operators at short distance there are anom-
alies in the Ward identities, compared to naive
ones. For example, the Callan-Symanzik equation'
is the correct Ward identity for broken scale in-
variance in perturbation theory. Another aspect
which has been emphasized, mainly by Syman-
zik, '" is that this equation can be used to estimate
the asymptotic behavior of Green's functions.

In general, the usefulness of this equation may
be limited due to the following reasons:

(a) We are ignorant with respect to the mass-
insertion term.

(b) The parameters which appear in this equa-
tion are unknown.

(c) Even if we know something about (a) and (b),

we need to face the problem of the solution of this
equation.

In spite of these restrictions, there are situa-
tions in which our knowledge of the asymptotic be-
havior of Green's functions can be improved or
some results from the perturbation theory can
easily be reproduced, using this equation.

Let us consider, for example, the asymptotic
behavior in momentum space of Green's functions
in such a configuration that no partial sum of ex-
ternal momenta can be zero (except for the over-
all energy-momentum conservation), or be on the
light cone, i.e., the situation of so-called non-
exceptional momenta. When all external vari-
ables are very far from the mass shell and Eu-
clidean (all p,'- -~), from the usual arguments
on power counting 4 the inhomogeneous term can
be dropped, ' ' and we are left with a homogeneous
partial-differential equation of first order govern-


