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Kershaw's power-series representation for the single-loop Feynman amplitudes is cast
into a new integral representation which, as a generalization of the Euler-Pochhammer type,
is closer in spirit to the Veneziano representation than the conventional Feynman-parameter
representation. Landau singularities, which are obscure in the power-series expansion, are
recovered in the new integral representation. Explicit calculation is carried out for the
cases N=3 and N=4.

I. INTRODUCTION

Recently, Kershaw' has derived a new power-
series expansion in several variables for the class
of single-loop Feynman amplitudes, namely (after
dropping an unessential numerical-constant multi-
plier),

The new integral representation, being a general-
ization of the Euler'-Pochhammer' type, is closer
in spirit to the Veneziano representation' than the
conventional Feynman-parameter representation.

For the sake of clarity, we shall demonstrate
explicitly the case N =3 (triangle graph) in Sec. II
and the case N=4 (square graph) in Sec. 111. Ex-
tension to higher-order single-loop graphs is
obvious.

II. THE TRIANGLE GRAPH

where

S$ gpss
+ gy) p

For N = 3, due to a slight technical complication
as may be seen from (1), we find it more conve-
nient to consider a slightly modified function,
namely,

n= n&»

and the scalar variables u;, are defined as
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where
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We use the Pochhammer notation: (a)„=I"(a +n)/
I'(a).

The normal threshold' behavior u, &
=1 is readily

seen as the convergence requirement for the power
series. ' However, the existence of the anomalous
thresholds' and all the other higher-order Landau
singularities~' are not at all obvious in an expres-
sion like (1). The question is then: Given a pow-
er-series expansion like (1), is there a simple
way to see the Landau singularities besides the
trivial ones u, &

=1/ Of course, it is assumed
that starting from Eq. (1) solely, we are not al-
lowed to go back to the original Feynman-parame-
ter representation.

The purpose of this note is to derive from (1) a
new set of integral representations whereby the
Landau singularities are recovered to each order.
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The double sum in k„k, in (6) is recognized as
the Appell E, function, which has the following
integral representation'":

(6)

With the aid of the identity (a)„„=(a+r),(a)„ the
right-hand side of (5} can be decomposed into

(a ) (a )
(3) 3 kg 2kj

(c)„, k,!
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The k, sum gives then simply a Gauss, F, function, in the variable x,(1- t,)/(1 x,-t,)(1-x,t, ), which in turn
is cast into an Euler integral representation. The answer is(s)t, r(c)

G (as, as, as,' c;xi t xs, xs j

1
x dt, t '& '(1 —t,}' 's '(1 —x,t,) 's

0

1

dt, t,&-'(I —t,)'-'s-'s-'

x[1 —x,t, —x,t, (1 —t,}/(1 —«,t,)] ".
Thus, the modified triangle-graph amplitude has from (4) the following integral representation:

(8)

1
F('~(u, ~) =-—,

' dt,dt, (1 —t,) "'(1—t,) "'[(1-u„t,)(1-u„t,) -us, t, (1 —t,)] '.
0
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The well-known anomalous thresholds come from the vanishing of the denominator function, subject to
the standard pinching argument, namely, at the extremum in t, and at the end point of t =1. We have the
following identity:

1 1 —2g12 1 —2u, 3
D -=(1 —u„t,)(1 —u„t,) —u„t,( —t,) ~, ,„„,„, , =( 8u»u„) ' — u» — ss ~

1 —2~,3 1 —2u23 1
(10}

The vanishing of this determinant in (l.0) is immediately recognized as the source of the anomalous thresh-

olds. ' [For a technical point regarding the convergence of (8), see the Appendix ]

III. THE SQUARE GRAPH

For N=4, we have in an obvious recursive manner, (dropping an unessential IIsn, factor)

(1 1 1 1) nj
(s)

' tt»+s1$+tt14 tt19 ss+ s4 18 ss+ s4 tt14+ s4+ s4F '(u„) =
Njf ff12 ff13 fl14+ ff23+ fl24+ jf.
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In (12), we insert the representation (8) for G(@.

The summations over +13 and g,4 become trivial.
The n~ sum gives another 2E, function. Thus, we
have altogether a threefold integral representation:

1
t"'"( ttt =-I f dt,dtpt. tt —t,)"'

0

I

where the denominator function is

D, = [(l-u„t,)(1 -u„t-,) -u„t,(1 —t,)]

x [(1-u„t,}(1—u„t,) -u„t,(1 —t,)]
-u„t,(1- t,}(1—t,)(1-u„t,)'. (14)

x(1 —t ) "'(1—t,) s '

{I—u„t,)D,-', (13)

The pinching conditions' now for both t, and t„
together with the end-point condition t3 =1, result
in the following identity:
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where is used which, strictly speaking, holds for" "

with

~(alSa$4t alSN$4t alcttSS) t (16) Rec&Reb&0,

)arg(l —z) (& tt.

(A2)

(A3)

&(a, b, c}-=a'+b'+c' —2ab —2bc —2ca.

Thus the vanishing of the denominator in (13),
subject to the pinching argument, implies the van-
ishing of the determinant (15), and the Landau
singularities for the square graph are immediately
recognized. '

IV. CONCLUSION

We have recovered the Landau singularities in
a new integral representation of the Kershaw pow-
er-series expansion for the single-loop Feynman
amplitudes, in particular for the cases N =3 and
&=4. The representations (9) and (13), which are
different from the conventional Feynman-parame-
ter representation, are more natural from the
point of view of generalized hypergeometric func-
tions.

Extension of the present consideration to higher
N-point single-loop Feynman amplitudes is
straightforward. On the other hand, whether
Kershaw's analysis can be generalized for graphs
with several loops remains to be seen.
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Restriction to the single-loop Feynman amplitudes
calls for special values of the coefficients such
that conditions such as (A2) are not fulfilled. The
implication of this is that the t, integral in (8} and
the t, integral in (13) may be ill defined at the
upper limit of integration (t =1}. To cure this,
two approaches may be invoked:

(a) One decrees that the function Gtst in (8) be
formally defined for Re(c —a, —a, ) & 0 and its
identification with F in Etl. (4) be done by analytic
continuation afterward at c = 2. The discussion of
the algebraic structure of the Landau singularity
made in the text remains valid. It should be noted
that changing the values of the coefficients a, and
c will not affect the. algebraic structure of the
singularity manifold in the tttt variables. (It may
of course alter the Riemann sheet structure of
the functions involved. }

(b) Alternatively, one may deform the integra-
tion contour to avoid the point t =1. A modified
Euler integral for,E, reads" "

APPENDIX

In going from Etls. (6) to (8) and also from Etis.
(12) to (13), the Euler integral for,F„namely,

r(c)
r(b)r(c —b)

1
x tftt' '(1-t)' ' '(1 —zt) '

0

(A1)

where the closed contour encircles the point g =1
in the counterclockwise direction. In this ap-
proach, the t, integral in (0) and the t, integral in
(13}would be thus modified. This entails a slight
modification of the pinching argument for the de-
nominator functions. The points t, =1 for (10}and
t, =1 for (15}are no longer end points of integra-
tion, but serve as additional pinches for the con-
tour. The algebraic structure of the singularity
manifold remains the same.
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We call a quantum-field-theory model quasicanonical if it is defined by canonical equal-time
field commutatiou relations (e.g. , l Q(x), P(0)]S(x ) = —i64(x)) and local field equations [s.g. ,
Q+(x) =M(x)], and is locally invariant to scale transformations Ie.g., (II)(x) p@(pg)).
IThese requirements are not consistent if the model is purely canonical, i.e., if J(x) is the
simple Wick product:fII)3(x):. ] Canonical Bjorken scaling is valid in such models provided
that the field equations are also locally invariant to R transformations f@(x) P(x) + r] and
the physical currents are R-invariant. We discuss here further properties and consequences
of these models. (a) We incorporate positivity and R-invariance restrictions on light-cone
expansions and deduce ths form of ths consequent bilooal operators [e.g., fde o ti):y(gx)y(O):].
(b) We exhibit a Hamiltonian formulation of the theory, both in the massless and massive
cases. (c) We show that the theory is locally conformal- and inversion- [@(x)—(x2) «y(-x/x2)]
invariant. These symmetries are spontaneously broken. (d) We discuss the implications of
the model for deep-inelastic electron-positron annihilation. Exact scali11g is obtained. (e) We
study the possible low-energy consequences of the (spontaneously broken) R symmetry.
These include the PCAC (partial conservation of axial-vector current) consistency conditions
and the Gell-M~~~ charge algebra. (f) %e consider the arguments for and consequences of
a spontaneous breakdown of the dilatation symmetry.

I. INTRODUCTION

Canonical quantum field theory is based on can-
onical field equations such as'

i]i(x) = )i: i]i'(x):,

and canonical equal-time commutation relations
such as

[ j(x), y(0)]()(x') = -f()'(x) . (1.2)

This framework is unfortunately inconsistent ex-
cept in the free-field case A, =0.' This is because
(1.1) and (1.2) imply the short-distance (SD) behav-

ior: i]i(x)$(0):-)i(in@'): i]i'(0):, which precludes
the existence of the simple Wick product: i]i'(x):
in (1.1). The conventional approach to this prob-
lem is to give up (1.1) and (1.2) and to define the
theory by the renormalized perturbation expansion.
Then the source term in (1.1) is replaced by a
complicated limit which subtracts oil't ths singular-
ities and (1.2) must be abandoned entirely. ' Al-
though consistent and explicit, this framework has
been useless when strong interactions are involved.
In particular, it seems impossible to understand
(exact or approximate) canonical Bjorken scaling
in this way. 4


