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Stationary states of a spin-1 particle in a homogeneous magnetic field
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We present a simple and complete determination of the energy spectrum and eigenfunctions
of a relativistic spin-I particle with arbitrary magnetic moment in a homogeneous magnetic
field. The particle is described by a four-vector field satisfying the usual second-order
equation including anomalous-magnetic-moment interaction. In the light of our results and
those pertaining to the case when the external field is a Coulomb field, we discuss briefly
the question of consistency of the vector theory at the basic c-number level.

I. INTRODUCTION

The main objective of this paper is to present
an elegant solution of the stationary-state problem
for a relativistic spin-1 particle with arbitrary
magnetic moment in a homogeneous and time-in-
dependent magnetic field. The particle is'de-
scribed by a c-number vector field Q„obeying
the familiar second-order wave equation' as gen-
eralized by Corben and Schwinger' to accommodate
arbitrary magnetic moments. This problem has
been tackled recently in a series of papers by Tsai
and collaborators, '"4 who have obtained the energy
spectrum by an algebraic method which is ex-
tremely tedious in practice (though simple in prin-
ciple) and does not give any indication about the
nature of the stationary-state wave functions. Our
appxoach to the problem is also algebraic, but un-
like the authors of Refs. 3 and 4 we do not rely on
the algebra to decouple the different components
of the field. The observation that the components
can be effectively decoupled right at the outset
enables us to solve the problem in a transparent
way with the aid of no more than the algebra of the
creation and annihilation operators of a harmonic
oscillator. That the problem of a charged particle
in a homogeneous magnetic field can be related to
the harmonic-oscillator problem has been known

for many years, but this seems to be the first
time that this fact has been effectively exploited
in the case of particles with spin.

The problem considered here is of considerable
intrinsic interest. Further, as part of the general
problem of charged vector mesons in interaction
with electromagnetic fields, it is of special impor-
tance because of its exact solubility and perspicu-
ity. In this context it complements the work of
Corben and Schwinger' on vector particles in elec-
tric fields of the Coulomb form. At a time when
vector particles are being assigned a central role
in elementary-particle intexactions, as in the
recent unified theoxies of weak and electromagnetic

interactions, it is pertinent to raise the question
whether at least some of the difficulties appearing
in the perturbation theory of the interacting charged
vector field might not be due to a fundamental
malaise in the basic formulation of the theory it-
self. We discuss this point briefly in Sec. IV. We
shall comment there also on the related problem
of the acausality of propagation of the c-number
vector field in the presence of anomalous-magnet-
ic-moment coupling.

We present the formal solution of the stationary-
state problem in Sec. II, and in Sec. III we bring
out explicitly the nature of the eigenfunctions.
Section IV is devoted to discussion of the results
and other related points.

II. SOLUTION OF THE EIGENVALUE PROBLEM

We start from the second-order equation for
the vector field with anomalous-magnetic- ament

coupling, in the usual form:

(m'+ w"w, )f„—w"w„P„+iewE„„Q"= 0, (1)

where w„= p„- eA„= i(s/sx-") eA„Th—is equ. ation
implies the subsidiary condition

w"Q„=—2 (1 —w)w&P"P„,m'

and on feeding this back into Eq. (1), one gets the

true equation of motion

(m + w"w, )Q~-—2(1 —w)wow I'""p~

+fe(1+ w}E„„Q"=0. (S)

As is well known, Eqs. (S) and (2) together are
completely equivalent to Eq. (1}.

We are interested in the particular case of a
constant homogeneous magnetic field H in the z
direction. Thus we take

A, =-gyH, Am= pe, A =0;
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with all other components of E„„vanishing. It is
then easy to verify that the equations which follow
from (3) for the spatial components p~ (i = 1, 2, 3)
can be expressed in the form

Z2y, =(m'+w2)y, +, (1 —«) w,(w, y -w y, )

&u'= (2n —1)$,
the independent solutions for any n being

y, = In-2&, y =o, y, =o (n=2, s, . . .),
y =0, y, =In-i& (n=i, 2, . . .),

y, =o, y =In&, y, =o (n=o, 1, 2. . .).

(1Sa)

(13b)

~ eH(1 —«)y„ (5a)

E'P, = (m'+ w') P,+, (1- «)w, (w, P —w P,),2m' NIn) = nIn&,

In&=(n') "(n')"Io&. (14)

The states In) are the "number eigenstates" for-
mally defined by

where

w, —w, +xw~, Q, —Q, +x/2. {6)

For any K4 1, one family of solutions is imme-
diately apparent on inspection:

Since we are seeking stationary solutions charac-
terized by the time dependence e '~', we have
replaced (w')'=—( p')' in the above by E'.

Vfe observe now that the operators m, and m

obey an algebra equivalent to that of a simple har-
monic oscillator. In fact, with

a=(2eH) ~~2w„a =(2eH) '~
w

we haves

[a, a~] = 1, [a, w, ] = [a~, w, ]= 0.
Since n, commutes with everything, it will be re-
placed by its eigenvalue P„which we shall write
also as (2eH) '~'a, wherever this helps to simplify
the notation. (Unlike a and a, a, is just a number,
-~ & a, & ~.) Now, noting that in view of (7)

w, '+ w, ' = —,'(w, w + w w, )

= eH(aa~ + a'a)

where

is the number operator, we rewrite (5}as

((u' —X,)P, = (1 —«)$'a'y

(&u' —X )Q = -(1 —«)$'(a )2$„,

[v' —(2N+ 1)$]g~= (1 —«)('a, (aP —at/, ),

(ioa)

(10b)

wherein the following abbreviations have been used:

$ =(eH/n»'), ar'=(E' —m'-P, ')/m',

and the operators X„X are defined by

X,= [(2N+ i)g ——.'(1- «)t']

+ [(1+«)$ —';(2N+1)(1 —«)('j. (12)

The equations (10) for p„Q, and Q, decouple
completely in the special case v=1, and we imme-
diately obtain the possible values of ro2 as

(u'=(2n+1)$, n=o, 1, 2, . . . . (i6)

The constants c„can now be determined by intro-
ducing (17) and (19) in either Eq. (10a) or (lob):

c = [n(n+1)]'~'&

x(1+(n+ —')(+ «[1+ (2n+ 1)$+—'g']'~2j '
= [n(n+1)] '~'( '

x(1+(n+ —')$ —@[1+ (2n+ 1)$ + —'t'2]'i') (20a)

To obtain the remaining solutions we must solve
the coupled equations (ioa} and (lob} first. By
eliminating Q or Q, from these two equations one
obtains, for any ~11,
{(&o'-X,)((o'- X ) + (N'+ 3N+ 2)(1-«)'&»

-2[(1-«)$'+2)](ru'-X,)}$,=0, (16a)

((a)' —X,)((u' —X ) + (N' —N)(1 —«)'$»

-2[(1—«)g' —2&]((u' —X ))P =0. (16b)

Thus Q„Q are eigenstates of the number opera-
tor N. Equations (10}permit only the following
possibilities:

0 =In+»,

n=1, 2, 3, . . . (17)

(18a)

(18b)

where c„,c„' are constants.
Substitution of Eq. (17) has the effect of replacing

N in (16a) by (n —1) and in (16b) by (n+ 1}. With
these replacements, the curly-bracketed expres-
sions in the two equations become identical, and
either of them can then be solved, with the result

(u' = [(2n+ 1)(+—,'(1 —«)(']
+e(1 —«))[1+(2n+1)$+—'t']' '
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Then c„' is obtainable from (llc}:
c„', =a,$[(n+I)'/'- c„,n'/']

x f ~ $ + e [1+ (2n + 1)t' + —'$ ']' 2] ' (20b)

reduces Eq. (22) to

—+ —,'eII( o
= 0, (24)

It may be noted that these are indpendent of ~.
In the case of the two special solutions (18),

Eqs. (10a) and (10b) degenerate into the single
equation {&u'-X )~n+ I) =0, n+1=1,0. The ener-
gies associated with (18a) and (18b}are therefore
determined by aP=(X )»=„„, with n=O and -1,
respectively, i.e.,

(u'=(X )„,=(2- «)(+(I —«)$' (n=O),

(u'= {X)„,= -«$ (n= -1) .
(21a)

(21b)

III. THE EIGENFUNCTIONS AND THE ENERGY
SPECTRUM

It is important to recognize at this point that
what we have been calling the "number eigenstate"
~n) is not really a single state at all. In fact, an

infinity of states lurk behind this symbol. One can
see from general considerations that this should
be so. The "harmonic oscillator" operators a and
a defined in the preceding section involve taboo

degrees of freedom of the particle, pertaining to
its motion projected on to the x-y plane. Clearly
the states of a simple (one-dimensional) harmonic
oscillator cannot adequately cover this two-dimen-
sional motion, for which one needs a doubly infi-
nite set of states. %e shall now see by solving for
the "vacuum state" ~0) that it is really a superposi-
tion of an infinite number of states ~0; m).

By definition, a~0) =0. Recalling that a=(2eH) '/'
x (w, + iw, ) and substituting w, = -i(e /8 x) + 2eHy and

w, = -i(B/sy) —,eHx, we rewrite —this defining equa-
tion as

The first of these is seen to be a special case of
Eq. (19) taken with e =+1. The value of c,' in (18a)
also then turns out to be the special case of (20b)
with n=0 and e =+1. Equation (21b} too is a spe-
cial case of (19) with n = -1, but it belongs to e
=+ 1 if (1 —&$) &0 and to c = -1 if {1—2() &0. This
is because the square root in (19), which by defini-
tion is positive, is ~1 —2& ~

for n = -1.

with the general solution

e -8» E g/ 4f'($ )

&-e»P2/4f (pel4)

(25a)

(28b)

where p and g are polar coordinates in the x-y
plane and f($) is an arbitrary function of $. We
expect that f(() can be expanded in powers of $.
The requirement of finiteness of the wave function
at the origin demands that only non-negative
powers of ( -=pe' be present. Thus g, is an arbi-
trary linear combination (suitably restricted to
ensure acceptable asymptotic behavior as p- ~)
of the functions

e-eaP2/4„k&ck4
Ok „e (26)

ne -engr'/q k
nk

»Kq/c
nk 8~ 2 t

n, @=0,1, 2, . .. . (27)

Since $ = pe'~ and g = pe ', it follows that tt„,
~x e'~' ~ and hence that it is an eigenfunction of
I.,= (xP, —yP, ) belonging to the eigenvalue' m
= (k —n). It is therefore advantageous to use m
instead of k for labeling the states and we shall
use the notation

~nm)-g„„, , n=0, 1, 2, . . . , m = n, -n+1, . -. .

where the b~ are constants. It is this infinite set
of functions which goes under the symbol ~0) of
the preceding section. By repeated application on
the g» with a, which may be written as (8/tt()
—&eHg apart from constant factors, we determine
the set of functions covered by the symbol ~n) to
be

(at)tl
4n. —(„,),/. 4na

8 8-i—+—+ —,eH(y —ix) g,(x, y) =0.
ex ay

(22)

/=X —Sg

We have written g, (x, y) for ~0) in the coordinate
representation, suppressing the variable z which

plays no role here. A change of the independent
variables to

a~n;m) =n'/'~n- l, m+1),

a ~n;m) =(n+I)'/'~n+ I;m —1).
The changes in m and n are coupled since the
action of a or a does not change k =n+m.

With this elaboration of the meaning of the "num-
ber eigenstates" we return to a consideration of
the energy spectrum. When the anomalous mag-
netic moment strength a has any value other than
unity, the spectrum consists of three distinct
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branches. One of these is given by (15), which
gives, in view of the definition (11) of e,

(E/m)' = 1+ (P,/m)'+ (2n+ I)&,

y, =y =0, y, =~n;m), n=0, 1, 2, . . . .
(29)

(E/m)' = 1+ (P,/m)'- «(, (30c)

obtained from (21b), which is a special case
(n=-1) of (30a) or (30b) according as (1 ——,'() &0
or &0. The eigenfunetions belonging to these
levels are

= In+ 1;m- 1},
P = en' In —1;m + 1),

y, =c„',(n;m),

(31)

where e =+ 1 and e =-1 go with (30a) and (30b),
respectively, and the c„,and c„', are given by Eqs.
(20). The existence of three branches is associ-
ated with the three independent spin orientations
of the particle. The eigenstates of the z compo-
nent of spin, S„are characterized by

y, =y =0 (S, =O},

Q, = Q~ = 0 (S~ =+ 1), (32)

=4.=0 (S,=-l)
In view of this, the branch described by (29) is
seen to have S, =0, but the states (31) belonging
to the other two branches are not eigenstates of
S„which reflects the coupling of spin and orbital
motions. A curious effect of the spin-orbit cou-
pling is that the positive e branch, which includes
(30a} and (30c) for any $ ( 2, has an extra value
of n (n=-1) compared with the spinless case,
while the negative e branch has one value too few,
n=0 being absent in (30b). This imbalance is re-
moved if $ increases beyond 2.

In the special case ~=1, the spin and orbital
degrees of freedom are decoupled, as is evident
from (13), and all three branches are degenerate
(except for the lowest two levels).

[The range of m is always that given in (28).] The
other two branches are given by

{Elm)'=I+ (P,lm)'+ (2n+ I)t + -.'(I —«)g'

+ (1 —«))[1+(2n+ I}&+ ,'f']'—~',
n=O, 1, 2, . . . , (30a)

which includes (19) with e =+ 1 as well as (21a);

(E/m)'= 1+ (P,/m)'+ (2n+ I)(+ —,'(1- «)t'

—(1 —«) $[l + (2n+ 1)$ + —,'$']'~ ',
n=1, 2, 3, . . . , (30b)

which corresponds to (19) with e = -1; and

IV. DISCUSSION

The derivation given above, besides being sim-
ple, goes beyond the work of Refs. 3 and 4 in de-
termining all the eigenfunctions. It has been noted
already by Tsai and Yildiz' that the spectrum of
E' (which they obtained for the case p, =0) is posi-
tive-definite only in the ease of minimal coupling
(«=0). For any «w0, the spectrum includes nega-
tive values (corresponding to imaginary values of
E, which have to be considered unphysical) if ( is
large enough. If a+0, for instance, the expression
(30c) becomes negative if the magnetic field is
large enough that m'«$ =e«H &(m'+ p, '). On the
other hand, since (E/m)' of Eq. (30b) becomes
-(2n+1)«) for large $, it is negative for «&0. It
may be instructive to view this phenomenon from
a somewhat different point of view, and say that
as far as motion along the z axis is concerned the
particle in the presence of the magnetic field be-
haves as if it had an effective mass m, ff =E P3'.
This effective mass becomes imaginary in one or
'the other of the modes if z0 and H is large enough,
and in such a "tachyonic" mode real energies are
possible only if p, '& ~m,a'~. The occurrence of
tachyonic modes implies aeausal propagation of
the field, as has been pointed out by us recently, '
though this acausality does not show up in the
nature of the characteristic surfaces' associated
with Eq. (3).

The inconsistency of the theory with F10 in the
presence of large external magnetic fields' H such
that aeH& m', which is manifested through the
appearance of tachyonic modes (imaginary ener-
gies), cannot be explained away in terms of
"quantum effects" which may be expected to take
place at such enormous field strengths [and are
not taken into account into Eq. (3)], for such an
explanation would raise the question as to why a
similar inconsistency does not arise with minimal
coupling. In fact, in the case of spin-& particles,
even with an anomalous magnetic moment x the
energy does not become imaginary, however strong
the magnetic field may be.' " (However, the
ground-state energy does become zero at aeH = m',
which could give rise to strange effects. "}

Implicit in all the above considerations is the
supposition that It, is a fixed quantity, independent
of H. If ~ arises from radiative effects, there is
no reason why it should stay constant. In fact,
consideration of the radiative corrections to the
electron propagator in an external magnetic field
H shows that though the ground-state electron en-
ergy in the presence of H initially decreases lin-
early with H as if the electron had" «= (o/2v),
yet as H increases to large values the energy
reaches a positive minimum value and then starts
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increasing. " However, it is not at all clear that
radiative effects can erode a preexisting large
anomalous moment (as in the proton) sufficiently
to prevent the energy from touching zero.

In the case of vector particles, too, it is possible
to arrange that E' never becomes negative, by
making ~ a suitable function of H. In fact one can
readily see from Eqs. (30) what the limits on a

should be (as a function of H) for this purpose. For
positive ~, the most stringent condition comes
from Eq. (30c), which requires that xt' & 1. For
negative x it is the lowest of the levels (30b), that
with n=1, which sets the limit. One finds that
the condition is

~K~ & /[1+ (4/g')(1+ 3$)]"'- 1) - 3/$

for large $. Thus one should have

-3$ '&K&) '

at large field strengths, if imaginary values of E
are to be avoided. It is conceivable that these
limits might be honored if a were solely due to
radiative effects (though this question is more
difficult here than in the spin-& case because of
the large-momentum behavior of the vector-me-
son propagator). But it does not seem plausible
that a preexisting anomalous moment (such as
that of intermediate vector bosons of the Weinberg
theory, "x= 1) can be reduced, by radiative cor-
rections, to the extent required by the above in-
equality.

Apart from this problem, the vector theory
faces serious difficulties when external electric
fields are present. In fact it was observed by
Corben and Schwinger' many years ago that the
regular solutions for the vector field equation in-
cluding interaction with a static Coulomb field do
not form a complete set. With just minimal cou-
pling (x=0), admissible solutions exist only for
equal values of the total and oribital angular mo-
mentum quantum numbers j and l. The wave func-
tions for j = l+1 and j = l —1 become singular at
the origin. The situation is considerably improved
when an anomalous magnetic moment of one unit
is assumed, but two states (j =0, 1= 1 and j = 1,
l= 0) are still wanting. "

Thus even in the simplest (exactly soluble)
situations the theory of the charged vector field
turns out to be inconsistent. Then a question to be
seriously pondered is to what extent the use of
standard perturbation-theoretic procedures based
on the usual concepts of the vector field are really
meaningful in problems involving charged spin-1
particles, for example, in theories involving vec-
tor mesons as particles mediating weak or other
interactions.
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