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A simple argument is advanced for how it happens that two-dimensional electrodynamics
is a theory of massive spinless bosons.

2 =tgPP+ ,'e'j '(-x, t) dye»- y~j '(y, t).
Next, as is known from work on the Thirring

model, ' the free massless Dirac theory in two di-
mensions may equivalently be discussed in terms
of the associated vector current

j "(», t) =:4r"0:,
and the symmetric, traceless, conserved tensor
operator which may be constructed from the cur-
rent,

&""(» t}=l~Hj",j '}-g""j.j ') .
That is, H= Jdx T~ generates the free-field equa-
tion of motion for g, given the anticommutator
(P(x, t), gt(y, t)}=6(x- y), and the definitions Eqs.
(3) and (3). The result is not obvious, however,
and depends for its demonstration on the operator
equation'

e, y(x, t) =-,'t»(j'+y'j', y},

(3)

(4)

which is true in two dimensions.
It is possible to proceed by postulating a set of

commutation relations satisfied by j" with itself
and with f. ' For the free theory, this is unnec-
essary. The required "current algebra" can be
derived, and is

[j,(», t),j.(y, t)]=0,
[j (», t)j (y, t)]=o,

(»)
(6b)

[j,(x, t),j,(y, t }]=—e,6(x- y} . (5c)

This current algebra is solved by setting'

It is well known that, once the computational
dust has settled, two-dimensional quantum electro-
dynamics (TDQED) collapses to a theory of a mas-
sive spinless noninteracting Bose field. Sophisti-
cated arguments for why this occurs have been
presented by Lowenstein and Swieca. ' The purpose
of this note is to supply a simple way of seeing
why it is so.

The first observation required is that in the
gauge A, (x, t) =0, the interaction reduces to a self-
interaction of the charge density via the (two-di-
mensional) Coulomb potential, '

vV j„(x,t)=e„„e"4(»,t), (6)

where 4 is a canonical (pseudo) scalar field. Then
T"" is the canonical energy-momentum tensor for
this massless field. A consistent choice for an as-
sociated Lagrangian density is

g'" =-,'(e„4)(s~4) .
[Note Wmj„= s&C is also a possible choice. How-
ever, current conservation demands 4 is a mass-
less free field, but places no constraints on 4.]

The result essential to our argument is that,
using Eqs. (4) and (6), one can show that

Ho=- & for'egin&

(6)

where go is the free Dirac field in two dimensions.
This amazing relation is expected to be true only
in two dimensions, and is a result of the fact that
Eq. (4) reduces trilinears in P to a single g. Using
this equation, in the interaction representation Eq.
(1) becomes

2

2 =-'(s„4)(e"4)+— dy I»- y Ie. @(» t)e, 4(y t)
2

--'(e 4)(e~4)-—4'.2 p 27r

But this just describes a massive (pseudo) scalar
field of mass g' = e'/v and nothing else; this was
the desired result.

Admittedly, we have seemed cavalier in obtain-
ing this result, paying little attention to defining
the various operators we have introduced with any
rigor, and substituting free-theory equations into
the interacting theory. In fact, however, a rigor-
ous momentum-space analysis can be carried out.
This analysis verifies the conclusions stated
above.

As an example, consider TDQED in the finite
spatial interval [0,w]. The use of a finite interval
may be viewed as an alternative to Klaiber's pro-
cedure for regularizing the bad infrared behavior
of the theory. "' The particular interval chosen
is a matter of convenience. Any interval of arbi-
trary length L may be adopted. Taking the limit
L»~ at the end of the calculation turns momentum
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sums into momentum integrals.
It has been shown recently' that

H= dx[g Bog —2]

= Q(n- —,')(b~b„+c~c„)
gg=j.

+(p'&4)Q P '( 'p'+ pp+2p'p)„
p=l

where 2 is given by Eq. (1), and

(10)

and an accompanying equation for c obtained by
interchanging 5 —c, where they appear explicitly
in Eq. (15).

The validity of Eq. (15) as an operator equation
may be verified explicitly by brute force. As
mentioned earlier, the key to why this relation is
possible is that p and p~ are bilinear in fermion
operators, hence many terms anticommute to zero
under summation. '

Implicit in Eq. (10) was the consistency require-
ment for TDQED in the axial gauge,

p(p)=p ' ' dx[j'(x, 0)cospx-ij'(x, 0)sinpx] Q I 4'phd &
= 0 . (16)

satisfy Bose commutation relations [p(p), pt(q)]
= 5p, . This Hamiltonian may be diagonalized by
means of a Bogoliubov transformation,

II=e' He '

This constraint follows, essentially, because the
vector current is conserved; but the divergence of
the axial-vector current contains an anomaly.
However, these currents are related by a" = e""j„.
Consistency demands (in this gauge) that Eq. (16)

Combining Eqs. (12), (14), and (16), we have

=(H. —n+ g&(P)p'(P)p(P)+ E. ,
p=l

(12) H=&.+ g &(P) p'(P)p(P) .
p=l

(17)

where H, is the free Dirac Hamiltonian, and
~ oo 2 I

[p'p' pp] &, -
2 p, 0+P

(13a)

p=l
(13b)

&(p) =(p'+ p')'",

E; I &(p) —p-(~ )
The analog of Eq. (8) in this case is"

&o=-.'+T
~

(13c)

(13d)

(14)

Qb, + QPP, b„t, g+(P+k —1)'~'c~p„, ,
p=l p=l

0-1
+Q ~p p~b, ~=0, (15)

where the conserved charge Q = Jdxj 0 This eq.ua-
tion may be verified by explicit, though tedious,
calculation, using identities which follow from Eq.
(4). Fourier-analyzing Eq. (4), one obtains

All reference to the fermions has disappeared.
This is a property of the solution independent of
our choice of interval and of boundary conditions
in the interval. " As the size of the system L-~,
Ep diver ges logarithmically. This is the only
remnant of the infrared problem.

To summarize, one first casts TDQED as a the-
ory of self-interacting fermions by choosing a
convenient gauge. This done, one attempts to rep-
resent as much of the theory as possible in terms
of the currents, based on the experience with the
Thirring model that these are the only genuine ob-
servables. ' ' Unlike the Thirring model, however,
in which g preserves a role as an intertwining op-
erator between inequivalent irreducible represen-
tations of the current algebra, ' the vanishing of
the charge in TDQED deprives g of even this role.
Indeed, the presence of massive excitations follows
trivially from (CI+ P')j" = 0. The point being made
is that p can be eliminated entirely from the prob-
lem. In the language of Ref. 12, there are no
"quasiparticles, " only plasmons.

I thank Professor T.-M. Yan for comments on
the manuscript.
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