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A unitary transformation is introduced which carries the entire set of integrated local current
densities generating the group [U(6) x U(6) js~+" [with diagonal subgroup SU(6)~~' " 'j into a
newly defined [U(6}x U(6)]8~~ ~ [with diagonal subgroup SU(6)z~ ~j which co~~utes with the
boost in the a direction and with the free-field Hamiltonian. Strong current-hadron scattering
amplitudes are constructed and analyzed in the deep Regge region in order to extract the
hadron couplings to vector and tensor Regge exchanges. This analysis is based upon a can-
onical algebra of strong bilocal currents which is not equivalent to the bilocal algebra of the
current system.

I. INTRODUCTION

Some years ago Cabibbo, Horwitz, and Ne'eman'
pointed out that some features of high-energy had-
ron scattering could be understood by assuming
that factorlzed Regge residues sa'tisfy a [U(3)
xU(3)] 8 algebra. The original Cabibbo-Horwitz-
Ne'eman (CHN) hypothesis was recently modified'
so as to be consistent with the idea of "two com-
ponent" duality, and extended to a full [U(6)xU(6)]z
algebra through the inclusion of the strengths as-
sociated with pseudoscalar-meson couplings and
the "magnetic" couplings to vector mesons. This
algebra of strengths was seen to be consistent with

the results of graphical duality, such as the ab-
sence of exotic resonances in baryon-baryon and
baryon-meson scattering.

In spite of the successes of the algebra of Regge
residues, it has not been possible to date to estab-
lish a link with other algebraic systems acting on
hadrons, i.e., the integrated chiral currents3
[U(6)]~

""and the supermultiplet symmetries
such as' [U(6)] ~"'~. A step forward towards a
unifying picture between these two algebraic sys-
tems has recently been taken by Melosh, ' follow-
ing the suggestion of Fritzsch and Gell-Mann' that
there should be a unitary transformation connect-
ing them. The present work is an attempt to in-
corporate the algebra of strengths into this unified
picture.

In order to achieve this purpose, we construct'
in Sec. II, a [U(6)xU(6)] group, which we denote
by [U(6)xU(6)] 8~~ —-'Ws, whose generators are in-
variant under longitudinal boosts; it reduces at
rest to [U(6)xU(6)] 8 and its diagonal subgroup is
[U(6)]~'"'. Hadrons are supposed to transform
irreducibly under the group W~. This group is ob-
tained by applying a unitary transformation to the

subgroup [U(6)xU(6)] z~
" of the U(12) group gen-

erated by an algebra isomorphic to the space in-
tegrals of the local currents of the free-quark
model.

In Sec. III we discuss the structure of the trans-
formed fields and currents and the effect of the
transformation on the whole U(12). In particular
we show that the anticommutation relations of the
new fields ("strong" fields) do not display micro-
causality and the new currents ("strong" currents)
are not local currents. The group whose genera-
tors are the space integrals of strong currents
can therefore annihilate the vacuum and the sym-
metry limit can be realized linearly, i.e., Cole-
man's theorem' does not apply. %e show, further-
more, that the transformation leads to 72 distinct
"good" operators in the infinite-momentum frame,
in contrast with the ordinary U(12) where only 36
operators survive in the infinite-momentum
frame, '

In Sec. IV we construct some amplitudes, as-
suming that the transformed currents play a dy-
namical role in hadron-hadron scattering. %'e then
show that commutators of strong currents lead to
scaling in the Bjorken region where, in a realistic
model, the commutators are expected to have the
same structure as in the free-quark model. The
assumption that the leading singularity in the
Bjorken region is also leading in the deep Regge
region enables us to show that factorized Regge
residues close on a [U(6)xU(6)] 8~~'I algebra

It is shown in Appendix C that the algebra of
transformed currents does not become equivalent
to the canonical algebra of local currents even at
infinite momentum. The mechanism for this in-
equivalence is discussed in detail.

In Sec. V we give a general discussion of our re-
sults, with some comments on the meaning of the
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lack of microcausality in the anticommutation
relations of the transformed fields. We review
briefly previous attempts to justify —on theoretical
grounds —the algebra of strengths. We argue that
they are either inadequate or, at best, they lead to
a static [U(6)xU(6)] s

"'"" algebra of factorized
Regge residues (which coincides with the static
limit of our [U(6)xU(6)] pg"s). We conclude by
pointing out that there is still some freedom, with-
in our theoretical framework, for the assumption
of the analytic properties of the Hegge exchanges.
This freedom does not change the algebraic struc-
ture of the strengths, but it raises an interesting
question, namely, are short-distance effects in
any way related to typically long-distance effects
like Regge behavior 7

II. THE CLASSIFICATION GROUP

metry of the hadrons, invariant with respect to
Lorentz boosts along the z axis. As a first step,
we use the transformation V=e'~ introduced by
Melosh, ' where

8=-,' d'~q~ stan ' ' '
q x . (2.4)

eisq(x)e-(s &-(s (-(si)q(x)

where

( s ),t, t sy, (-s(),)
yn

;,(,s,) x+m+y, (-s(),)
[2x(((+ m)] '~'

(2.5)

(2.6)

(2.V)

It will be useful to record a few properties of this
transformation:

Let us consider a subgroup [U(6)XU(6)] ~~'"" of
the U(12) generated by the space integrals of local
currents:

and

e-s(s(-(s1) [m+y~, ( ia )]
K

(2.8)

( q)Xfq'xqq(x) .='x q(xl, -.
s(qqx )fq''xq ,( =.)S xqq( ),x, '—,x

where x = [(y, (),}'+m'] ' '.
The transformation (2.4) carries the free-field

Hamiltonian (2.3) to the form

( ,qq)q= xfq'xq'(x)qq;. 'x q(x), .
(2.1)

d xq x -zQ383+ K q x (2.9)

q(q. x ) =fq'xq~(x)xX q(x);,—', .
x(qx ) fq'xqq(x)S ,'.x =q(x), -.

We now introduce an additional unitary transfor-
mation [with SU(3) singlet behavior, and even C
and P eigenvalues], which commutes with (2.1)
and brings (2.2) to a form which commutes with
H&. Let V'=e'~, where

F(o, z,) = 'xqt(x)o, —,'X, q(x),
(2 2) =2 Q gq %tan qx-1 (I 3 (2.10)

F(o„)(.) = d'x q t(x)o, —,'X, q(x),

I'(po, )(.) = d'xq~(x)po. , ,')1,q(x), —

Ho= d xq x —$ cE' V+P& q x (2.3)

The "nondiagonal" part (2.2) does not commute
with n, or H, . Let us construct a unitary trans-
formation G which transforms the entire algebra
into a system representing an approximate sym-

where a =0, . . . , 8. Although the set of operators
listed in (2.1) and (2.2) is the same as the [U(6)
xU(6)] s used by Dashen and Gell-Mann" as a rest,
classification algebra, the "diagonal" subgroup
(2.1) is chosen to be the SU(6)~ ""'*, and the rep-
resentation's structure is therefore different. The
SU(6)(q

' commute with a„but not with the free-
field Hamiltonian'

This transformation has the properties
&&s' ( )e &s' e &s'( -(&s)q( -}-

where

q(
.
() )

1 t 1 Sy ( Ses)
K

„.(,.s ) Z+a+ys(-i(), )
[2Z(Z+ x)]"' '

e s&s'( q&s) -[&-+ s(

where E= [(y V}'+m']'i'.
The combined transformation

brings Ho to the Foldy-Wouthuysen'2 form

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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G HOG — d xq x &le' x, (2.16)

Jd'xqt(x) B„,'X, q(x-),

fd'xqt(x)B„Po, ,'X,—q(x),

d'xq x S~Po'„gA., q x,

d'xq~(x}B„o,—,'X.q(x),

(2.17}

but it is not identical to the transformation used
by Foldy and Wouthuysen .V', applied to (2.2) in
the sense V'I V' ', brings these operators to the
form

The transformed SU(6)I, charges W(X,),
W(po, A,,), WQkr„A, },. W(o, A.,) have the same form
as (2.22), but without the operator B (these are ex-
plicitly given by Melosh').

Defining the quark fields in the usual vray,

d'P m '~'
s(x)= f & „,z g[5(p, s)u(), s)e "'*

+ d~(P, s)1)(P, s)s""],

vrhere 8 refers to unitary spin as mell as spin,
b(p, s) annihilates a quark, and dt(p, s) creates
an antiquark, one finds that

w(p~, ) = cz(p~,)c-'

where B„=( fa,e-'+ Px)/E The. charges of (2.1)
are invariant under V'.

Since the operators (2.17) and (2.1) commute
with II&, the combined transformation

therefore brings (2.1) and (2.2) to the form

8'=GEG ',
vfhich commutes vQth Ho. Furthermoreq

cq(x}C-'=8-"'-'"~e-«-'"&q(x)

=-g 'q(x)

(2.19)

(2.20)

(-icI v+pm)
gag '= (2.21)

d xq~xB—'A. qx,

grhile Pg~ and 0, are left invariant by e "& '~».
Hence

w(p~. ) = cz(p~, )c-'

w, = [U(6)xU(6)];~g~ (2.26)

generated by the charges (2.19}therefore provides
a boost-invariant classification of hadron states.

For states fol' whlcll p= 0 (foI' all (luarks coll-
tained in the hadron) the group %'s reduces essen-
tially to the [U(6)&&U(6)j p''() used by CHN for the
classification of states at rest, and only in this
case can it be reduced over the static SU(6)'"'" as
vill. %e shall assume in what follows that the
physical hadron states are classified according to
irreducible representations of 'vpg,

+ dt(p, s)d(p, s) j (2.24)

expbcitly commutes vnth the boost operator M",
As there are indications that this property may
hold in a realistic theor y, me shall assume it to
hold true hereafter All o. f (2.22) [along with the
transformed charges of (2.11)]is therefore boost-
invariant, and the group

w(o, ~.) =ca(v„~.)c-'

Xp
) g 8 l4(. 1()J.) q(X)

w(o„~.) =cz(o, ~.)c '

d3 qg g~fe(-P~)

(2.22)

Carrying out the operations indicated in (2.20),
one finds that

q(x) =cq(x)c '

(E . ()) E+ Ic+ l'/ Bg

[2E(E+a)]'~'[2x(x+m)] '~' q "}

xpu„-,'Z, e-'"-"'q(x),

w(po. ~.) =cz(po, ~,)c '

d sx q
t x g gss(~'k g)

Slllce q(x) satisfies tile Kleln-Gordon eqllatloll, lt
follows that

(E- fPS')q(x) =0

or

xo -'X e " ' "q(x) ie'q(x) = PEq(x), (8.2)
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q(x)=q, (x)+q (x),

-, .=(", ) j,.",".(,-,)'"
m

q (x}=,q, ~qo(E+x+r'p')gd'(p, s)o(p, s)e"
2 2W K K+m E+K

,~, (E+» —r'p')Qb(p, s)u(p, s)e '~'*,

i.e., the "strong fields" satisfy the Foldy™Wouthuysen equation.
In terms of the momentum space, representation (2.23), the relation (3.1) is

(3.3)

(3.4)

(3.5)

these densities contain only pair terms, and create
and annihilate quark-antiquark pairs.

In Appendix A it is shown that

{q(x),q(x') t) = i(PE+ iS,)a(» x')-
= iPs.~,(x- »') s,A(»—- x ) (3.6)

{q,(x), q, (x')t)= (1+p)ts, t, (x- x'),

{q (x), q (x') j=-(I-p)Leone (x-x').

(3.9)

(3.10)

Although A(x- x'} is causal (it is zero outside of
the light cone}, the operator E is nonlocal, and the
noncausal 6, function enters into the anticommuta-
tor. The noncausal nature of the anticommutation
relations is due to the nonlocal spreading effect of the
transformation 6, and is characteristic of Foldy-
Wouthuysen-type fields (we discuss this point
further in Sec. V}. We shall call densities such
as those shown in Eqs. (3.6) and (3.7) quasiLocaL
to distinguish them from densities constructed of
local covariant fields. At equal times, however,
we recover the canonical anticommutation rela-
tions

{q(x),q(x')) j,o= „o= 5'(x- x'), (3.11)

{q,(x), q, (x') t) ),o,.o =
2

6'(x -x'), (3.12)

{q (x), q (x') t}(,o-, .o =
2

6'(x -x') . (3.13)

From property (a), we see that [U(6)xU(6)] ~~~

The decomposition (3.3) has the following proper-
ties:

(a) For I' in the Dirac x SU(3) algebra of [U(6)x'U(6)]s

q(x)trq(x) =q,(x)tI'q, (x)+q (x) rq (x); (3.6)

these densities contain no pair terms, and decom-
pose into currents carried by quarks and anti-
quarks separately.

(b) For I', in the part of DiracxSU(3) algebra of
U(12) outside of [U(6)xU(6)] 8,

q(x)tr, q(x) =q, (x)tr,q (x) +q (x)tr,q, (x);

current densities form a representation of charge
conjugation, "and may be classified according to
C=(+) or (-), with 36 operators in each class.
Bince the transformation 6 is invariant under
charge conjugation (and parity), and all of the
charges become "good" under this transformation,
we obtain 72 densities and charges even in the
limit for states with p, -~."

The tensor properties of the strong currents
under operations of the proper Lorentz group are
severely restricted by the transformation 6
(space-time translation symmetry is preserved
since G depends on t only through the fields). We
shall show, in what follows, that uP to surface
terms all of the currents of [V(6)xU(6)] zov'"I trans-
form under longitudinal boosts like the fourth
component of a four vector (or third component of
an axial vector), and the remainder of the trans-
formed U(12) densities like (pseudo-) scalars (the
connection with spin is, however, not so direct).
Matrix elements of the strong densities between
states of equal momentum (for which the surface
terms do not contribute} therefore display these
simple tensor properties. It is also true that
commutators of the quasilocal current densities,
according to Eqs. (3.8)-(3.13), also have these
properties for the Dirac~x SU(3) content up to sur-
face terms, and we may therefore construct am-
plitudes of the type considered in deep-inelastic
lepton-hadron scattering.

To prove these assertions, we remark that up to
surface terms, the transformation 6 applied to
any density yields the same result as found in the
integrands of the corresponding charges. For the
SU(3) currents [(X,) in SU(6)~], it is clear that one
obtains the fourth component of a vector. The re-
maining SU(6)~ densities contain DiracxSU(3)
matrices that commute with e„so a Lorentz
boost in the z direction induces the same mixing
with u, as found in the boost of a third or fourth
component. This property ensures the boost in-
variance of the space integral of these densities.
As one can see from (2.22), the remaining trans-
formed densities of (U(6)xU(6)] So~'"o are identical
to those of SU(6)~"'~ except for the Lorentz-in-
variant factor B [this factor may be inserted by
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commutation of any of the densities of SU(6)„'"'~
with the first of (2.22) at equal times) . We there-
fore conclude that all of the densities of VP~ trans-
form like third or fourth components of a vector
under z boosts.

For the remaining densities of U(12), we remark
that y'P commutes with the transformati. ons g de-
fined by (2.20). Hence Class Tensor C P Class Tensor

TABLE I. List of current density classes before and
after application of the transformation V' [cf., Eq.
(2.10)]. The tensors 0, 3, 0', 3', S,P refer to zero and
three components of a four-vector, zero and three com-
ponents of an axial-vector, scalar, and pseudoscalar,
respectively, under z boosts and parity reflection.

~'p=zr'pg '=(gr'g ')(gpg ')

O3A,

good 0(V6)

bad S+~)
good 3' (A3)

+ + BgPfJ g

+ + 03k.~

good

good

good

3I

3I

or, due to the fact that B'=1,

zr'g '=y'» (3.14)
bad S (S) + + B~A,,
good 3'(T " ) — + pfyiX

bad S(T' ) — + B~3A,

good

good

good

3I

Although B is invariant, the extra factor of P re-
duces these densities to (pseudo-) scalars. This
completes the proof of the first part of our asser-
tion.

For the second part, consider the commutator

[q(x) tr, q(x), q(x') tr, q(x')]

q5pz,

y pagA, u
5

y PCr3A

bad P(P) +

good 0'(To )

bad P(T )

good 0'(A )

bad P (V~)

(73Xs good 3 (V3 )

BQq 5g

y tying,
5

Bgy o3A,,

p~5Z.

Bgy fy~A,

Py a3A.,

bad

bad

bad

bad

bad

bad

P
P

= f[q(«)'r, P r,q(x')

+ q(x')'r, p r,q(x)] &,~,(x- «')

-[q(x)'r, r,q(x') —q(x')'r, r,q(x)] e,~(x x )

(3.15)

where we have used 8,'a, (x x') =-B,A, (x- x-') and

s,' a(x'- x) = s,a(x- x'), and the I",. are any Dirac
xSU(3) matrices in U(12). We again remark that
the presence of the ~, term reflects the nonlocal-
ity induced by the transformation G; this contribu-
tion vanishes at equal times.

It is clear that the effective Dirac x SU(3) part of the
strong bilocals appearing in (3.15}are the same
as those of the corresponding quasilocal densities,
where commutators with the momentum operator
play the role of surface terms. This completes
the proof of the second part of our assertion.

For the set of currents for which l, and l, do
not contain y', commutators of the form (3.15)
"close" on a system of 8&&9&2&&2 = 288 types of op-
erators (the number of elements in the Dirac alge-
bra without y' times the number of unitary spin
matrices combined through f or d, and carried by
quark or antiquark fields).

To tabulate the tensor properties of the strong
densities, we restrict ourselves to the Melosh
representation (where V' is applied to the densi-
ties, but not V), since V preserves the Lorentz
properties, with respect to z boosts, up to surface
terms In Table .I we list the DiracxSU(3) matri-
ces, as well as the CP=++operator

Bs = (-io'S, +Px)/E, (3.16}

q(x)t rq(x) = q, (x)trq, (x) . (3.17)

The plus subscript corresponds to a "quark"
current, and the minus to an "antiquark" current.
They are essentially interchanged by charge con-
jugation; sums and differences of these two sets
of 36 operators therefore have definite charge
conjugation, and, as pointed out previously, we
obtain 72 distinct operators even in the infinite-
momentum frame.

For the "bad" densities, we remark that

which occur in the densities between qt(x) and q(x)
when surface terms are ignored, for the original
U(12) densities ( J}and for the transformed sys-
tem (d„).

Since B„is invariant, we may classify" the
densities according to whether or not the remain-
ing factors commute with n, . The first six lines
of Table I contain the "good" densities J„of
[U(6)xSU(6)) 8~~, and we note that these are just
those of [SU(6)]~"'~ with and without the factor B„.
Adding and subtracting corresponding operators
from the first column of the first and second set
of three lines, we obtain the densities J of the two
subgroups of [U(6)xU(6)] ~. These are not charge
conjugation eigenstates; transformed by 6 they
become
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q(x)ti', q(x) =q, (x)tl', q (x)+q (x)tI',q, (x),
(3.18)

q(»)'N', q(x) =q, (x)'I',q (»)- q (x)'I;q.(x),

so that these densities also have definite charge
conjugation properties and create or annihilate
quark- antiquark pairs. Of the V2 distinct operators
obtained by taking sums and differences of these,
36 are Hex mitian conjugates of the others.

e,'(x) = q(x)' q(x},

3.'{»)=q(x)'P
2 q(x),

s;(x) =q(»)'y'
2 0(x),

E.{»)=iq(»)'A"
2 q(»),

e. (», 0) =q(x)'
2 q«),

s, (», 0) =q(x)'P
2

q(0).

(4.5)

IV. THE ALGEBRA OF REGGE RESIDUES

In order to study the algebraic properties of the
couplings of Regge exchanges to hadrons, me shall
construct spin-averaged absorptive parts of the
form

e"' P J, x, J~O NP dr,
(4.1)

where J', (x), J~ (0) are "strong currents, " and the
hadron states Iraq(p)& are in small representations
of [U(6)xU(6)] q»'e. Since we shall extract the
algebraic properties of the commutator on the
light cone and go to the deep Begge region to de-
termine the Regge couplings, it is necessary to
study the light-cone behavior of certain current
commutator s. Let us consider the vector-vector
commutator

[e.' {»),e', {O)]= --.'[[e,(x, 0) —e, (O, x)]d.„
+ i[e, (x, o)+ e, {o,»)]f.„]s,~{x)

+-,'i{[s,(», 0}+s, (0, »)]d,~
+ i[i, (x, o) —s, (0, x)]f,~)S~,(x),

(4.2)

the vector-"scalar" commutator"

[e,'(x), 8', (0)j =--,'{[e,(x, 0)- 3, (0, x)]d.
+ i[3,(x, 0)+ e, (oy x)]

f/'�]sob�(x)

+-,'i{[e,(», 0)+ e, (0, x)]d„,
+ i[e.(x, 0) —e.(0, «)]f.„]s,~,(x),

(4.3)

and the "axial-vector-pseudoscalar" commutator

[0,' (x), P~ (0)]= ,'i{[s, (x, 0—)+ s, (0, x)]d„,
+i[s, (x, 0) —e, (0, x))f„,je,a(»)

- -,'{[e,(», 0) —e, (o, «}]d„,
+ i[e, (x, 0) + e, (0, x)]f„,]S,a,(x),

(4.4)

mhere, in our model,

In the Bjorken limit of (4.1), the commutators
(4.2), (4.3), and (4.4) contribute to the integral
only in the neighborhood of the light cone. It is
shown in Appendix 8 that in the Bjorken limit both
b,(») and b,,(x) contributions to the amplitude scale
in the same way. The model expressions (4.2)
and (4.3) therefore provide a representation of the
general form of a light-cone expansion (with sin-
gularities characteristic of Bjorken scaling) in the
scaling region, which me mould expect to find in a
realistic model.

Let us analyze the diagonal (in momentum) ma-
trix elements of (4.2}, (4.3}, and (4.4). The sym-
metric and antisymmetric combinations

e."(»)=-,'[e.(», o) ~e. (o, x)],
3',"(x)=-,'[s, (x, 0)+ s, (0, x)]

ax'e elements of tmo distinct tensor operators be-
longing to the adjoint representation of the group
'W» (including charge conjugation). For the first
of these,

e."(»)-w(1,), e."(x)-w(p~. ), (4.V)

and for the second~

e' (x)-W(P1, ), s'.-'(x) -w(~. ), (4.3)

mhere ™means "transforms like. " Applying the
signer-Eckart theorem to these tensor operators,
(we explicitly assume thatin ,the symmetry limit
in mhich me are morking, the singlet components
have the same reduced matrix elements}

(4.10)

where f ' (x-p) are even and odd real functions,
respectively, and the factor po corresponds to the
transformation property of the bilocals under s
boosts (the additional x' term is less singular on
the light cone}. The coefficients C, , and C»», are
Clebsch-Gordan coefficients normalized according
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to

2P'C.',".()'(p- p') = &N(p) I II'()(. ) I &(P)&,

2p'C, .5'(p- p ) =&~(p) III (p~. ) lfi(p')&.

In the Ejorken ~egion, the diagonal (in momen-
tum} matrix elements of (4.2), (4.3), and (4.4) can
therefore be written as

(4.11)

&Xp) l[d.'( ),P (0)]If'(p)&

[f(+)(

—f' '(»'P}f.h. c.","o]O'S oA(x)

—«[f(-)(» p)d.„c."",

+f"(X'P)f. C.,
".

]O'Sod�«(»}.

(4.14)

As shown in Appendix B, the i~0& and co&a con-
tributions scale in the same way; using E(ls. (BV)
and (88}, we obtain

(%".,") . „,. -) )([E('(I/(u)+iF' )(I/o))]

"(d.h C.,".+«f.h. C.",.), (4 15)

(I„'),o „„-„.w[F"(I/o))+ iE' )(I/o))]

+,", ) . „,.h,
. —«(i[E('(I/(d) iF' )(I/o))]-

x(d, C,"",—« f.„C„"",), (4.1V)

(4.16)

t» ( .t}=f »*'&&t * ( &} &ttt (4.18)

In the large-o) (deep Itegge) limit, at least part
of the absorptive amplitudes calculated above in
the Bjorken region can be expected to show Regge
behavior. " The asymptotic form of these ampli-
tudes is determined primarily by the long-distance
behavior of f ')(x p}, i.e., large x on the null

&N(p) I [6:(»),():(0)]Ifi(p)&

«[f(-)(x,p)d C}}}«t

+f"(» p)f.„c„",]p s,a(»)
+«[f(+)(»,p)d C)ITN

-f (»'P)f. C. .]P (),&,(»,
(4.12)

&i))(p)I[i),'(»), 8'(0)]li}I(P)&

i[f(+)(x,p)f C}}t)}t

+f' '(x p)d c "]p's a(»)

+i[f('(» p)d C""

-f'-'(x'p)f. „C,"",]p's, o. ,{»),
(4.13}

plane x, = 0. At small x, f")(x p) takes on the
value of a universal charge; f( )(x p), however,
vanishes at small distances. The shape of the
function f ')(x p) could be very different for meson
and baryon states, and its universal value at &=0
could have. no bearing on the universality of Regge
couplings. The scale of f( )(x p), moreover, can-
not be determined by its value at & = 0. %e have
shown elsewhere, "however, that the observed
universality of Itegge couplings may follow from
the canonical algebra of strong bilocals. In what
follows, we restrict ourselves primarily to a
discussion of couplings within Inultiplets.

It is possible, for example, that E )(1/o)} does
not take a factorized Regge asymptotic form; this
possibility would permit a diffractive part in all
of the three amplitudes. Picking out the negative
charge conjugation exchange from E(I. (4.15) and
the positive from E(I. (4.1V), one obtains in this
case the result given in a preliminary communica-
tion. ' In Appendix C, it is shown that the relation
between the p, -~ limit of the algebra of ordinary
local currents and the corresponding limit of the
algebra of strong currents is not that of a direct
unitary equivalence, since V' does not have a
mell-defined operator limit; we did not find,
therefore, the complete structure of the biloeal
coupling operators in this earlier work. Our al-
gebraic conclusions remain correct, however,
since they correspond to a special ease of the
present analysis.

Another possibility is that E ')(I/o))+iE( )(I/(t})
provides a faetorized Hegge coupling, but that
E ')(I/(o) —iE( )(1/(t}) is diffractive; in fact, an
amplitude of the type E(I. (4.1V) might be expected
to have a strong diffractive component. It is also
possible, of course, that both F"(I/(o) +E )(I/o))
take on factorized Regge form.

Let us assume that E(')(I/(t}) + iE( )(I/(t)) takes
on the factorized Regge asymptotic form

E('(I/(o)+ iE' )(I/o)) = Q a„(o"-P(o", (4.19)

where"

p —p str. curr. phadr. (4.20}

It follows from Eqs. (4.15) and (4.16) that the cou-
plings of vector and vector-scalar strong currents
to Regge exchanges are given by

P tlt c(}tt.f .c ( )

P
ttt. c&ttt. d C (+ )+ abc y

(4.21)

and the hadron couplings (including the singlet) by

ph}}dt. Ctttt C ( )
(4.22}

ph}}dt. C}}(N C —(+ )
This result implies exchange degeneracy for had-
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ron-hadron amplitudes.
If F ' factorizes and F does not, we would

reach the same conclusions for the hadron Regge
couplings.

The connection with exchanged spin is obtained

directly by charge conjugation, which determines
the symmetry of the amplitude under u-channel

crossing, and therefore the signature factor in

each case." From this and Eq. (4.11), it follows

that the W charges,

(4.23)

are proportional to the couplings of hadrons to
vector and tensor trajectories, respectively, as
originally conjectured in CHN.

V. DISCUSSION

We have shown that the one-particle coupling of
hadrons to Regge exchanges in the forward direc-
tion is given by the algebra of [U(6)xU(6)] P~'"',
an algebra constructed around SU(6)~"'"' and acting
on small ("constituent") representations. If the

strong bilocal operators are sensitive only to the
representation structure of the constituent quarks
of the hadron states, yielding as reduced matrix
elements functions with similar asymptotic be-
havior ($ -0), we would find a coupling scheme
which is universal for mesons and baryons in ad-
dition to the symmetry that we have derived for
multiplets. This result, in fact, can be shown to
follow from the canonical algebra of strong bi-
locals. " The Fourier transforms of the matrix
elements of the bilocals f«i" (x) and Ri'«(x) as $ -~
correspond to universal charges; universal Regge
couplings therefore suggest a dual relation between
large- and small-g behavior.

If F '(&)+iF~ «(&) factorizes [as assumed in

Eq. (4.20)], the elastic amplitude Eq. (4.15) in the

deep Regge .region would be completely described
by simple linear couplings; there would seem to
be, in this case, no room for a diffractive part. "
Qn the other hand, for example, if F~'«($) factor-
izes, but F~ «($) does not, the behavior of Fi «(()
would be characteristic of cut contributions, which
would not be expected to have linear universal
couplings. "

It is shown in Appendix C that the unitary oper-
ator V' does not have a well-defined limit, but its
action on the fields is asymptotically well defined.
Since the resulting anticommutation relations for
the fields defined by Eq. (3.1) are not asymptoti-
cally the same as those of the local free-quark
fields, the limiting transformation is not canoni-
cal, and the algebras of local currents and quasi-
local strong currents at infinite momentum are

therefore not equivalent. The extent of a residual
similarity of the algebras in the deep Regge region
is described in this appendix in the framework of
the free-field model.

The anticommutation relations (3.8)-(3.10) of
the strong fields do not exhibit microcausality
(even though the equal-time anticommutation rela-
tions are the usual ones). It was not our object to
construct a consistent relativistic field theory with

these operators, but only to use them as a calcula-
tional aid in discussing the structure of a theory
with strong currents. However, it is interesting
to recall that the variable x appearing as an argu-
ment in a covariant wave function does not corre-
spond in a simple way to the position of a particle.
The position operator as shown, for example, by
Newton and Wigner, " is highly nonlocal in such a
representation. In the Foldy-Wouthuysen repre-
sentation" [closely related to (3.1)], on the other
hand, the position operator has a simple local
representation [i(t«/sp)]. The coordinate x appear-
ing in the Foldy-Wouthuysen wave function does
correspond to the position of the particle in a way

analogous to that of the Schrodinger wave function
in the nonrelativistic theory. The restriction of
interaction to the point described by a position
eigenvalue would be unrealistic from the viewpoint
of a local covariant field theory, and it is there-
fore not surprising that the fields of a second
quantized Foldy-Wouthuysen-type description do

not satisfy local causal anticommutation relations.
Fields transformed by the Melosh operator V have
similar properties (in the transverse directions).
It seems that this loss of microcausality is nec-
essary in order to consistently discuss any model
for an approximate symmetry such as SU(6)~'~
(Ref. 8).

Finally, we wish to discuss some of the previous
attempts to relate the pattern of observed high-
energy Regge couplings to the algebra of currents.
Testa" and Cabibbo and Testa" used light-cone
techniques in the current system; their amplitudes
were also related to the matrix elements of bi-
local operators, and could therefore be assumed
to have Regge asymptotic behavior for u -~. The
couplings were assumed to be approximately de-
termined by the first (local) term in the expansion
of the bilocals, i.e., the matrix elements of
charges that are the integrals of local currents.
This approximation is not valid since Regge
asymptotic behavior must depend strongly on long
distance (x -~) properties of the bilocal operator,
and not just on its short distance (local) limit. A
similar result would have been obtained from an
application of the Wigner-Eckart theorem, as-
suming the states to be classified according to a
group generated by charges that are the integrals
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of 1ocal currents . Aside from the difficultie s
raised by Coleman's theorem, ' these couplings (at
least in the case of Ref. 25) would refer to a clas-
sification scheme applicable to hadrons in which
all quarks "contained" would have to be at rest.
This configuration would not be consistent with
the type of state required by Melosh' in his pro-
posed resolution of the G„/G» problem.

In our treatment, the physical particle states
are classified according to a group generated by
integrals of densities that are not local. Regge
asymptotic behavior is extracted from the trans-
form of a quasibilocal operator including its long
distance (x -~) properties, and the application
of the Wigner-Eckart theorem leads to the result
that the couplings are given by the matrix ele-
ments of charges that are not the integrals of local
currents. Two examples of distinct phenomenolog-
ical consequences are as follows:

(1) If, as concluded by Cabibbo and Testa, "it is
the local currents that generate the [U(3)xU(3)] {{
symmetry of the Regge couplings, then the Regge
region of deep-inelastic neutrino scattering should
display the tensor property of the couplings. In
our view, the local currents do not transform ir-
reducibly under the classification group, and
hence the ratio of isovector-odd charge conjuga-
tion to isovector-even charge conjugation Regge
coupling strengths in deep-inelastic neutrino
scattering, for example, would not be expected to
be consistent with the ratio of Clebsch- Gordan
coefficients of [U(3)xU(3)] 8.

(2) Cabibbo and Testa" pointed out that the iden-
tification of the matrix elements of the local den-
sities uo and u, with the couplings to tensor tra-
jectories implies that they are of the same order
of magnitude. This leads, in some models, "to
disagreement with extrapolated values of the 0
term in mN scattering. There is no reason for
these matrix elements to have the same order of
magnitude in our theory, since these local den-
sities do not provide the couplings to tensor tra-
jectories. Moreover, the identification of these
densities with the symmetry- generating charges
would lead to the absence of a D-typecontribution
to the baryon masses in these models in disagree-
ment with the mass spectrum.

Estimates of these effects can be calculated in
the framework of our model; this will be done
elsewhere.

Kislinger and Young" extracted expected asymp-
totic behavior from the matrix elements of bilocal
operators and discussed the transformation prop-
erties of the remaining Regge residues under the
Dashen-Gell-Mann form-factor algebra. " Their
approach did not require a pole-dominance argu-
ment [they referred, however, only to local SU(3)
currents]. It was possible to show in this frame-
work that the commutator of vector exchange
residues does not generate exotic couplings, but
the structure of the rest of the algebra and a con-
nection with [U(6)xV(6)] 8 was not accessible. An

effective completion of their program was carried
out for the current system by Reddy. "

APPENDIX A: ANTICOMMUTATION RELATIONS OF THE "STRONG FIELDS"

From E(ls. (3.4) and (3.5),

&(I, ( ), ~.( ')')= 1+/ d'p m 1 1+P
2 (2n)' z(a+m) E+({(E+z —y'p') gu(p, s)u(p, s) (E+K+y'p') e '~ {* *'&

2

(Al)
and

d3p
{q (s), q (s') )=( } ', (E ssys'p)g (ps, s) (p, s) (Es —y'p) )s

8

Using the well-known relations

g u(p, s)u(p, s) ~)= [(y"p&+ m)/2m]p s g v(p, s)v(p, s) = -[(m -y "p{()/2m]p s

S 8

the Dirac operators entering (Al) and (A2) can be easily evaluated between the projection operators

(

(1 a/)/2, since odd operators cannot contribute. Dropping all odd operators, one obtains

and

1 -P
(E+~ + y'p') P(E+ K —y'p')

pE-y'p' yi pi m --1—p 1 —p K(K m)(+E K)+

(A2)

(A3)

(A4)
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from which it follows that

[P~ (") '1+(" ) ]=[((+P)/2] f [P P/(P~) Ie

(A5)

&(*-*')= -[(/(P~)'] f ('1 /PP')

x~e —ein -(x-*') it (*-x'))

[i(-(*),i (x')']=[2-P)/2] f IP'P/(»)']8"" * '.
(A6)

Defining, as usual,

i~(x-x') =~,(x-x') -~ (x-x'),

g, (x-x') =h, (x —x') 4-6 (x —x'),

we see that

(A7)

i[p(-~'+ )22')"'+ is ]&(x-x') = 1 d3P ~ x-x' ~ ~ t

(2]() 2P
[[p(p2+ 2)22)1/2+pO]e it (*-* ) []3(p2+2222)&/2 p ]Olet( xx )].

" d3p"[(I+)i) ""*'+(I-[~) "'""]
2]( 4 2

=ip(),a, (x x')—s,a(x —x') .

Adding (A5} and (A6}, one obtains, with (A8}, the anticommutation relations (3.8}. Since

pa,x, (x —x')=+[1/(Pa)']r (d'p/2)e'+'p * 1,

Eqs. (3.9}and (3.10}follow.

(A8)

APPENDIX B: SCALING OF THE LIGHT-CONE BILOCALS Representing f (x p) as

Consider the typical integrals

r d'xe"'p j'(x p)s a(x) (B1)

(B2)

(Bl) becomes

(B3)

«P(&)(P'+(P') f P'»'(P ~ (P -P)~(P'+(P')(4(P'+(P')'- (P')')

=-2&p' d(+ ( q +$p & q'+(' +2vg-m' e q0+(p0 B4

where v=P q. Going to the Bjorken limit [v-~,
-q'-, 2v/(-q') =(d =const. ], we then obtain

It is the second term of (B6) that corresponds to
the spin-zero part of the amplitude, and we there-
fore find that the spin-zero part of (Bl) is

-2@p0—E — q0+ —p0 (B5)
-](F(1/o)} (B7)

The factor po[q'+ (1/o/)po] represents the tensor
properties of the amplitude; choosing a timelike
vector n" = (1, 0, 0, 0), we may write

1 0 „1q'+ P =""Pu" q +

1„u„~ —P. q. +—P. + q„+—P„P.

~g g+ p2 +g00 p+~m2

(B6)

in the Bjorken limit.
Similarly, substituting (B3) into (B2), we find

that it yields

-2&&P' d5& 5 q'+kP'

x d'k5' q+gp-k 5 q +$p ' — /P ')

((iF — . (B8-)
1

g . 4(i
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APPENDIX C: RELATION BETWEEN THE LIGHT-CONE
ALGEBRAS OF LOCAL CURRENTS AND QUASILOCAL

STRONG CURRENTS AT INFINITE MOMENTUM

where

q'(x') = Uq(x)U ' (C8)
At finite momenta, the light-cone algebras of

local currents and quasilocal strong currents are
not expected to be equivalent since they are not uni-
tarily related. The strong current u, (x) is related
to a corresponding local current by

v, (x}=G(x )v, (x)G '(x ). (Cl)

The commutator of two such quasilocal currents
at unequal times cannot be expressed as a unitary
transformation acting on the commutator of the
corresponding two local currents, since the oper-
ator G '(x,)G(yo) does not reduce to unity for xo
eyo. In the infinite-momentum frame (P,-~), if
G(x,) were to approach a limiting form, the xo de-
pendence would disappear and we would expect to
find the two algebras to be isomorphic. Unlike the
Melosh transformation V, V' contains "bad" oper-
ators, and the transformation 6 does not have a
well-defined l.imit as an operator. It is this prop-
erty which is responsible for the transformation
of certain bad operators in the U(12) system of
local currents to "good" operators in the strong
system. The mechanism for this phenomenon is
most easily discussed on the level. of the free-
quark fields, since the canonical light-cone alge-
bra is constructed on the basis of their anticom-
mutation rela. tions.

For the covariant quarks, the anticommutation
relation

where o'=is'/~is'
~
is defined in terms of the

Fourier representation, and we note that

(1+ s g) e(sic)Po'
v2

The relation between Eqs. (C4) and (CV) can be
easily understood in view of the asymptotic form
Eq. (C9). Calculating the anticommutator between
g'(x') and q'(y ') t using Eqs. (C4) and (C9), we find

(C10)

1,, z+m- iy 8~ (1+a,)[q'( '), q'(y') }=~(I+~'o')
[2 (, )],~, (1 .),',.

a'+m+ iy 8g 1
x[2 ( )]xp2 ~p(l y& )

x is'[~, (x'- y')- p, (x'-y')],

(C11)

can be calculated directly by applying the transfor-
mation Eq. (3.1) or Eq. (2.20) [the invariance of
the Dirac equation, used in deriving Eq. (3.1),
preserves the equivalence of the two forms], with
derivatives taken with respect to x", to q'(x'). In
the p, ~ limit, the transformation Eq. (C8) has
the asymptotic form

(q(x), q(y) t] =i(iy" „8+)my' (nxy)
becomes asymptoticaQy

(q'(x'), q'(y'} j--(1 +}.r, s'&(x'-y')(1+u, )

(C2)

(C3}

where all derivatives refer to x' " (x~ =x~). Since
y commutes with e„ the operators induced by
the Melosh transformation cancel to unity (it is
therefore possible for the Melosh transformation
to have a well-defined asymptotic limit at p, -~),
but

(1+n.).'i2 i"-[&.(»'- y'}(I-~)
—n. (x'-y')] )

where we have defined

q ( ) = A~}q( ) U(Ji} -'=gq(Ji-'x)- (C8}

and x =A g for pg ~. The strong quark antlcom-
mutation relation, however, becomes asymptoti-
cally

~ /

(q'(x'), q'(y') }- I },~, [i2n(»' y')-
+pa, (x'- y')]

=(,
' -.}„.[(1 p)n, ( '-y')

—(1 —P)n, (x'-y'}],
(cv)

q'(x') =(UGU ')q'(x')(UG 'U '}, (C13)

so that if UGU ' were to exist as a unitary trans-
formation at p, —~, the anticommutation relations
would necessarily be the same. Prom this con-
tradiction it follows that G (in particular, V'} has
no well-defined operator limit, and the algebra of
local currents cannot therefore be strictly equiv-
alent to the algebra of quasilocal strong currents.

-'(I+~'o')(I+~.)(l-y'o ) =(1+p ). (C12)

Since h, (x') contains e " and n (x') containse" *, this result brings Eq. (Cll) to the form
of Eq. (CV).

We have therefore verified that the asymptotic
forms of the anticommutation relations of the local
fields q(x) and the strong fields at p, -~ are not
the same. Equation (C8), however, implies that
in any finite frame
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The mechanism for the survival of certain bad
operators in the current system can also be easily
understood with the help of E(I. (C9}. For example
(up to surface terms),

2(I r'c—')P(I+ r'o') = o(2o' (C14)

occurs asymptotically in the 6 transform of
(I~(x)pq(y); n2o' commutes with the remaining op-
erators induced by the Melosh transformation and
is "good" in the current system (this result agrees
with the infinite-momentum limit of the form of
the operator 8}.

In the following, we show that:
(a) It is the residual pair terms of t)' (which re

tain time dependence) that provide the asymptotic
results discussed above in the infinite-momentum
limit; the one-particle terms vanish, and the pair

terms do not have a mell-defined operator limit.
(b) The part of the transformation G already pro-

posed by Melosh, i.e., the operator S, does have
a weD-defined limit. The pair terms vanish, and
the nontrivial transformation induced by this op-
erator at infinite momentum is entirely due to the
one-particle terms.

(c) There is a formal residual similarity between
the two algebras in the deep Regge region within
the context of the free-field model; the corre-
spondence is obtained by discarding pair terms,
negative frequency parts in the wave functions of
j(x, 0), and positive-fre(luency parts in the wave
functions of j(0, x) in the system of local currents.

In terms of free-field annihilation-creation op-
erators, the transformation (2.10) may be written
as

8'= —,
' d 0 —

0 b~

hays

5 kys'u kys iy ugly s' +d A, s'dkys e ky s iy v k, s'

+e'""'I) (u s)d (12 s')s (0 s)iy'v(k s')

- e " a(as)a(at n') , (a,ss)si s'e(at t, e l] tan '('), — (C15)

where we use the notation k( &

= (k0, -k). With the help of the transformation law

p pO 1/2
Vf(I, s)V-'= (,}, f(n', s), (C16)

where O'= A 'k, we find

mUS'V ' = ~ d'0', 0,, b~ 0', s 0 0', s' u~ 0, s iy'u 0, s' +d~ 0', s' d 0', s v~ 0, s t',y'v 0, s'

I t0y 0 ll2
+[(,)0(

', ,()j,j2[b~(k', S)d~(k(t ], 8')ut(k, 8)iy2V(I2( ), S)82(" +
Ak' Ak&' ) y

-a(a', s)t(a(i, s')ei(a, s)is'e(a( n )e " a
]sItan ( '),'(Ctt)'—

written as

2(y'+y( )) =(1 2),~2(1, 0, 0, -2))

(Zu' )'=]2'=(A]2'}'

Using

(C18)

(C19)

dt(Itt s't}d(i2' s))

n'] - a] (( t))aa
(c21)

u~(u, s)iy2u(k, s') = '
[o2,o, lc'j„.

2m

=-v'(I, s}iy'v(I, s'), (Cgo)

we see that the one-particle terms of (CIV) can be

For v ~ly
+ ok'

(1 2)lt(2 (1 P)1/2 t

(A&')' -0"/(I - 2)'}'~2
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also, so that the inverse tangent function may be
replaced by —,'m, and the whole operator goes to
zero as O((1 —v')'/') (provided that we have con-
vergence of the integral).

For the two-body terms, Eqs. (C18) and (C19)
permit us to write the kinematical coefficient as

(k "k(",)'" [2k "(Ak')'/(1 —v')'" -k'"]"
[(Ak')'(Akt &)']"' (Ak )'

as v 1. The exponentials are

&2 jk ~ 42 j(Aj),'px

-
exp[+2ik "x'/(1 —v')'/'].

Finally, using

u (k, s)iy'v(k( ), s')=i
2

o'+ (k,
W

(C28)

2y I 0 1/2
{C22)

we obtain

=-vt(k, s)iy'u(k( ), s'), (C24)

PI + l/2
(f/S f/-')(" - —-'. v d'k, (5'(k, )d'(k', „s)exp[2ik" '/(1- ')"]

+d(k', s)5(k(' ~, s')exp[-2ik''x /(1 —v ) ]}{1 (C25)

where the limit of Eq. {C18)defining k(' &, i.e.,

2(Ak')'
k(' )

=
( ~,/, (1,0, 0, -v) —k'

must be taken with caution (cross terms preserve
the norm). The contribution (C25) may be easily
undetected if the limit is taken in terms of the
fields q(x) in Eq. (2.10), and a change of variables
is made in coordinate space." The factor
(1—v')'/' in the denominator prevents us from ap-

I

plying the Riemann-Lebesgue lemma to the ex-
ponential factors uniformly in v, and an inter-
change in the order of the integrations and limits
is unjustified. The operator limit of Eq. (C25) is
therefore not well defined.

To complete our study of the infinite-momentum
limit of S', we now show that the limiting value of
the commutator [S', q(x)] is due to the two-body
part of S'. Extracting only the two-body part of S'
from Eq. (C15) and carrying out the required spin
sums, we find

d'a m '"

Under an infinite Lorentz boost,

y k +y'k'-m (). 3—e "'k(k, s)
2

y'iy'u(k, s) tan (C27)

-& (2) m 13 j./2

[(~» ),&q(x)U ] -(.)(.~)
(2 )3/2 kto '..kz+/(1 vR)l/2

(C28)

The mass and transverse pieces do not contribute due to the factor (1—v')' ' in front, and

4"+ ~')r'
2 2

Passing y' through this factor, we obtain the projection operator (1+o.')/2 acting on u(Ak ', s) and v(Ak', s);
in the limit v-l, it takes on the eigenvalue unity on these wave functions. We therefore obtain

[(f/S V-')(", f/q(x) f/ '] --i—'((y'o''q'(x'), (C29)

as required by Eqs. (C8), (C9), and (C10). The one-particle contribution to this commutator contains the
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factors

(y'-y')y' 1+~'
() k(( + ~)Y S(1 o2)1/2 S(1 2)1/2 &

passing y' through to the left leaves the projection operator (1-a')/2 to act on the wave functions u(k, s),
v(k, s). The one-body terms in S therefore do not contribute to the transformation q-q in the infinite-mo-
mentum limit.

In contrast to this situation, it is just the one-particle terms of the Melosh operator 9 which contribute
to the transformation q-q in the infinite-momentum limit, and only these terms survive in the limiting
form of the operator. In terms of annihilation-creation operators, the transformation (2.4) may be written
as

'k —
0 b k, s b k, s'u~ k, s i uk, s' -d k, s d~ k, s' e~ k, s -i v k, s'

+ bt(k„s)dt(k( ), s')ut(k, s) -, u(k( ), s')e" '

Ik l-d(k, s)k(k& ), s')ot(k, s) ~&,
~

u(ki ), s) s" tan '

The asymptotic form of the first of the two-body terms is

d'k' 2k" ' '
exp 2)PI+~0 $ ~2 ~/~ Qf Qt s dt PI sl ~f API

With the help of the asymptotic result (Ak" =k'~ =k~)
(Csl)

p( )
- (,(

0 m „ ir k(ir k Fr k)"u

kissy

'k sk( )~8 =
S

o' ' +
(ko )2

[(r k"+o (o h")o +0{(1-o')' ')] =0(1) (css)

we see that the expression (C31) is well conditioned, and the Riemann-Lebesgue lemma can be uniforinly
applied (a similar result holds for the second of the two-body terms).

The asymptotic form of the first of the one-body terms of (C30) is

d k' fy'I"(1-o2)"-'m k'(k, s)k(k, s~)u'(ak, s) „u(Ak', s ) tan-' (css)

Using

u (k, s)y .k u(k, s') =
3 to k, o'k]„

2' ~ &3~as' I 2~&/2 &o 'k
e oJsg' ~

we see that the factor (1—iP)' ' cancels, and (with a similar result for the second term) the infinite-mo-
mentum limit of the one-body terms of (C30) is well defined. '

It is of interest in this simple example to see explicitly how the contribution of the bvo-body terms to the
transformed quark field vanishes in the infinite-momentum limit. Carrying out the necessary spin sums,
the commutator of 8 with q(x) at equal time is found to be
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d'k m '" y'k' y-'k'+m, .y' i'
[S,q(x)] = ,q,

—, —
3

y'i „-,—u(k, s)k(k, s)e ""
y'k'- y'k' —m o iy' k'

(k )dp(k )
„.„

Sm ~k

( )'( )"'+ P g 5 y8 F88

0 0+ j j ~ ~J.
~yk +y'k'-m Oiy k

( ) (k ),g. ..
2m y ik'I""

-iy k u(Ak', s),
0 3 + 3

y iy k v(Ak', s}=
&

iy k v(Ak', s)

and the two-body terms

-iy' k'v{Ak', s},

y iy k u(Ak', s) = iy k u(Ak', s)

where the last two terms are due to the two-body
parts of S. The sum of all terms yields, of
course, the usual result. However, in the p, -~
limit, the one-body terms in E(I. (C34) take on an
asymptotic form [all factors of (1—v')'~' cancel]
proportional to

0 3 3y yoiy' k~u(Ak s)= iy k u(Ak s)

where x' = A 'x. Using the relation (CS), we ob-
tain

[v."(x'), v,"(0)]

--(I, ,g, &'A(x') (d„,+if ~)q't(x')-,'X, q'(0)

—(&. if. )e'( )l0&-.s'(x')I,

(CSV}

and using the relation (CV) in the form

[q'(x'), g'(y')~)--(, ,~, &' A(x'- y'), (C38)

we find

[I(."(x'),v,"(0)]

—
(I „2 xsa (d a +if.s )0' (x')2~c q'(0)(I+Ad

0+ 3 3
y yoiy' k'v(Ak', s}= i y~ k'v(Ak', s)

&&a
' A(x'),

-(d„,—if.„)q'(0)-,'Z. q(x

(C39)

We have shown, so far, that the algebra of strong
currents is not equivalent to the algebra of local
currents, and studied in some detail the mecha-
nism responsible for this inequivalence. In the
remaining paragraphs of this appendix we shall
discuss the residual similarity between the two
algebras in the deep Regge region, within the con-
text of the free-field model.

Let us consider the asymptotic forms of the corn-
mutation relations among local currents

where o~ acts on A(x') and not on the field opera-
tors, We have shown in Appendix B that the 6,
singularity produces a scaling contribution which
is just i times the scaling contribution of the h
singularity. This means that b„scales, but 6
provides o'nly a vanishing contribution [cf. E(ls.
(AV)] in the kinematical region of interest (q' &0,
$ &0). In their application to the asymptotic cal-
culation of scaling amplitudes, we may write Eqs.
(CSV) and (C39) as

Vv.'(x) V-' = v."(x')

-(,,~, [v,'(x')+v,'(x')],I

and the strong currents

Vv'. (x) U-' = e."(x'),

(C35)

(C36) and

—(d.~-if.~)q'(0)k&. q'(x')
]

(C4o)

[v,"(x'), v~"(0)]

is' A~(x') I+ (I „'2)is2 )«.~+ if.w)q' (x')k&. q'(o)
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[8"(x') 8 "(0)]

1+P
2 i/2 abc

Up to surface terms (we are, in effect, consider-
ing only diagonal in momentum matrix elements},
we may use the transformation (C9) and the rela-
tion

5(& r'—o')P(&+r'o') = o"o'

to obtain

ie'4 x 1+o', , ~, 1-o'
[8,"(x),8,"(0}]-

(
', ,&, (d„,+if„,)q' (x')-;z, q'(0) -(d.~- ff ( )q' ( )a&. q'(x')

(C42}

where o'' acts on the quark fields. This result is
identical to that of Eq. (C40) for the local currents
except for the selection of positive-frequency com-
ponents of the quark fields in v,"(x', 0) andnegative-
frequency components in v,'0(0, x') (this combina-
tion maintains definite charge conjugation for the
coefficients of d,~ and f,~) and the exclusion of

pair terms.
The similarity between the two algebras that we

have found is based upon an explicit use of the
free-field model, and therefore (except for general
transformation properties) could be directly ap-
plicable only in the zeroth order of perturbation
theory.
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