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Asymptotic behavior of spin-dependent Feynman integrals:
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Several methods for obtaining the leading and subleading asymptotic dependence of the fourth-
order spinor-vector scattering amplitude are considered. Under the assumption of equal
masses, s = 0, and large t, the nonpolynomial asymptotic expansion for the helicity-dependent
amplitude is evaluated and shown to consist of terms proportional to t "lnt + t ™{1nt}2,where
n «0 and m «1. The origin of terms quadratic in lnt is discussed as an example of the
singularity-enhancing properties of spin, and it is shown that a possible mechanism for the
enhancement effects is through the introduction of subtractions to the dispersion relations
of the .theory.

I. INTRODUCTION

Perturbation theory has enjoyed wide popularity
among high-energy physicists because of the suc-
cess it has achieved in conjunction with quantum
electrodynamics. This achievement derives for
the most part from predictions obtained in second-
and fourth-order calculations; exact higher-order
computations are seldom possible due to the com-
plex form that the Feynman integrals of the theory
assume. Spin, in particular, compounds the prob-
lem by injecting into the integrals numerators
which depend on the integration variables and
which are themselves complex algebraic expres-
sions.

Many authors have hoped that a study of spinless
integrals, while meritorious in its own, may also
pave the way to the spin-dependent case. Prima
facie this idea seems plausible, and indeed the
study of scalar diagrams has helped to identify
the types of singular behavior associated with
each integral. ' ' However, the notion that a spin-
derived numerator does not change the singular
behavior of the scalar integral is incorrect.
Azimov, ' for example, has remarked on the trans-
lational effects that spin induces, while Polking-
horne' has pointed out that the presence of in-
ternal-momentum factors in the numerator can
also result in changes to the class of singular
configurations associated with each diagram. The
understanding of these effects, however, has been
very limited and has been concerned only with the
leading asymptotic term in the amplitude, so that
very little is known about next-to leading-order
terms.

%'e wish to examine in this paper the asymptotic
properties of a simple model, that of a spin- —,

'

particle interacting with a neutral vector meson

through a conserved current in fourth-order per-
turbation theory. For this model, we discuss
several techniques useful in studying the leading
and subleading terms in the asymptotic expansion,
and apply them to the evaluation of the helicity-
dependent amplitude for the equal-mass process
at large t (or u) and s =0. Our results point out
several differences in singular behavior between
the scalar and spin counterparts. In particular,
we find that while the singular behavior of the
leading term exhibits only translational effects
(i.e. , it is of the form lnt for the sense-sense
amplitudes), the succeeding terms develop an
enhanced singular behavior of the form t "(lnt)'
(where n is a positive integer). These conse-
quences are of special interest in the study of
Regge properties of perturbative models, such
as the one originally proposed by Gell-Mann,
Goldberger, and collaborators, '" since the sub-
leading terms should be directly connected with
the daughters of the theory. "

Our main approach to the evaluation of the am-
plitude for this process follows a suggestion of
Keller, " and consists of taking advantage of the
Cutkosky rulesis to obtain the imaginary part of
the amplitude, followed by the use of dispersion
relations to recover the real part. At s =0, which
is the point we consider in our calculation due to
the existence of interesting kinematic constraints, '4

the amplitude in the s channel becomes nonphys-
ical; therefore, we circumvent the difficulties of
an analytic continuation by evaluating the ampli-
tudes in the cross channels, and make use of
crossing relations" "to recover the s-channel
amplitude. This method is discussed in Secs. II
through IV, and it has the advantage of yielding
directly the large-t and the large-u limits for the
asymptotic amplitude.
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In Sec. II we consider some preliminaries re-
garding the diagrams involved in the calculation,
and the general approach to the problem. The
evaluation of the discontinuities due to the l-
and I-channel cuts and the application of dis-
persion relations to the recovery of the real parts
are discussed in Sec. ID. These results are in-
corporated with the reduced spin numerators in
Sec. IV, where the t- and u-channel contributions
are obtained. From these, the s-channel asymp-
totic amplitude is regained.

An alternate method for the evaluation of the
amplitude through direct integration techniques
is discussed in Sec. V. This method, which is
illustrated by means of the spin-dependent box-
diagram, allows one to carry out exact calcula-
tions and the results obtained by this approach
find complete agreement with the answer pre-
viously derived. We conclude our discussion in
Sec. VI by using the unitarity principle as an aid
in understanding the effects that spin numerators
can have on the asymptotic form of the amplitude.
In this way we show how the presence of these
numerators can lead to enhancements in the sin-
gular behavior as a result of cancellations be-
tween numerator and denominator factors in the
integrals in question; and how some of the en-
hancement effects are tied to the existence of
subtractions in the Mandelstam representation.

II. SYSTEMATICS OF THE CALCULATION

Spinor-vector scattex'ing is an amenable model
to study since the spins involved can yield non-
trivial and interesting information on the prop-
erties of spin-dependent Feynman integrals while
at the same time the theory has the advantage of
having a renormalizable perturbation expansion.
Even this simple model, however, presents great
calculational difficulties for diagrams beyond
second order, especially if one is intexested in
the spin (or helicity) dependence for other than
the dominant term. For this reason, it is neces-
sary to restrict one's study to the somewhat sim-
pler case of equal masses with the expectation
that many of the features that one finds are shared
with the unequal-mass problem.

The diagrams that contribute to the fourth-oxder
process are shown in Fig. l. These diagrams
have an asymptotic behavior for large t which
consists of terms of the form f " (1nf) for non-
negative integral n and m. If one neglects the
terms for which m=0, i.e. , the polynomial terms,
one is able to set aside the renormalization ques-
tions while keeping the singular features of the
amplitude; thus, in our discussion, we ignore all
polynomial terms arising in the calculation. This

L W

FIG. 1. Fourth-order diagrams for spinor-vector
scattering: (a) planar box, (b) crossed box, and (c)
and (d) corrections to the second-order graphs. Wavy
lines are vectox mesons, solid lines represent the
spin or.

enables us, for example, to ignore any subtrac-
tions to the dispersion relations that we write.

Our calculations make use of the helicity for-
malism of Jacob and Wick, ' with the conventions
as summarized in Appendix A. For s =0, the pla-
nar box [Fig. 1(a)] has a normal threshold cut in
t for t~ 4m~; the crossed box [Fig. 1(b)] has normal
threshold cuts in t for t + 4m' and in u for u + 4m';
while the vertex corrections and self-energy cor-
rection to the second-order crossed-graph [Fig.
1(d)] possess normal threshold discontinuities in
u for u~ 4m'. The diagrams in Fig. 1(c) do not
possess any dynamical cuts in t or u and need
not be considered.

Rules for obtaining the discontinuities associated
with branch cuts due to normal thresholds in
Feynman integrals have been given by Cutkosky. "
Although these rules are given for scalar parti-
cles, they can be applied to integrals having nu-
merator factors provided one is careful not to
introduce any new discontinuities in the numerator.
In addition, caution must be taken in their use
for unphysical values of the intermediate mo-
menta q&, since at these points the Dirac 5 func-
tions (}'(g&' -m&') that replace the propagators
take on complex arguments, whose mathematical
significance can only be ascertained by reverting
back to the much more intricate analysis of sin-
gularities pinching contours in the q&' hyperspace.
At s = 0, the scattering amplitude in the s channel
is at an unphysical value, so that in a direct ap-
plication of these rules one would be besieged by
increased complexity. We can avoid these diffi-
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culties by taking advantage of crossing symmetry;
thus we compute the t discontinuities in the I;

channel and similarly, the u discontinuities in
the u channel, which has the advantage of yielding
the s-channel amplitude for large positive as
well as large negative values of z„ the cosine of
the scattering angle.

The t - and a-channel diagrams giving nonzero
contributions to the s-channeL amplitude are shown
in Figs. 2 and 3, respectively. In each channel,
we work in the appropriate center-of-mass sys-
tem, with the convention that particles a and c
travel along the -z direction with positive mo-
mentum for the t channel, and particles a and b

for the u channel. Associated with each diagram
we have an integral of the form

(b)
P„kb

(c)
P, ,X

kp, X

P,Xd
p+k kgb

= = i+a

p, p2, Xd

ke, kc~„

(
2pygg', N(»(l, f)

(2m)4 D(l, t )
(2.1)

P, 4. p) R

where g' -=e '/4s and the helicity labels (A.] are
given by fX) =A„A.„X~,X~ for the f channel, and

(Xj=k„k~;A„X~ for the u channel. The numerator
and denominator functions, N(q(l, t) and D(l, f),
in the ease of the planar box diagram are given by

N(»(l, t) =V(P„X,)N„,(l, t) u(P„X,)
&~" (}k„k,)c"*(F„A,),

with

(2 2)

N„„(l,t) =y (l' P, m+)-y„(l'+m) y„(l'+P, +m) y, ,

D(l, f) =[(l -P,)'-m2](l '-m')' [(l+P,)'-m'].
(2.3)

Similar expressions hold for the other diagrams.
We proceed now by rewriting the numerator

expression as a polynomial in the integration
variable l; each term of the polynomial being a
tensor in'the components of l. Thus we have

T(»(f) -A((~), t)1+a,((~], f)f

+ C„,((k), f )f"+D.&((k), f }I"&,
(2.4)

where the coefficients A, B, C ~, and D 8& are
obtained by an algebraic reduction of the numera-
tor and depend only on the external variables and
helicities; the terms I, I, I, and I & corre-
sponds to integrals with numerators of the form
1, l, l le, and l l l &, respectively. Thus for
example, I "& is defined as

(2.5)

FIG. 3. u-channel diagrams having a nonzero discon-
tinuity in 44: (a) planar box, (b) and (c) vertex corrections;
and (d) self-energy correction.
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FIG. 2. t -channel diagrams having a nonzero discon-
tinuity in t: (a) planar box, (b) crossed box.

and similar definitions are used for the other
tensors. Care must be taken when using Eq. (2.4)
to adhere to a standard set of labels for the
graphs, since the values of A, B, C ~, and D 8&

depend on the choice of labels.
The procedure for determining the amplitude for

each channel will consist of evaluating the tensors
I, I, etc. , from the discontinuities bI, 4I, etc. ,
by means of dispersion relations; whereas the
coefficients A, 8, C g, and D ~ are determined
by an algebraic reduction of the numerator. This
procedure introduces several subtractions in the
various dispersion integrals; however, these
subtractions will at best modify the behavior of
the polynomial in t '. The evaluation of the dis-
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continuities and the integration of the dispersion
relations are discussed in the next section.

III. EVALUATION OF THE TENSOR INTEGRALS

=[2&t(t-4m')'~'cos8] '5(l')
x 6() f( —(t —4m')'" cose), (3.2)

where cos8=-l P,. Using this relation, the dis-
continuity 6,I can be simply evaluated giving

, , 1-4m' f "'
~, I = -(arm')-' 3, e(t-4m'),

where e is the Heaviside function.
One can determine the applicability of the Cut-

kosky rules to the more complicated tensors J",
I", and I " by analyzing the numerators present
in these integrals. Consider J as an example;
the extension to the other tensors will be self-
evident. The singularities (if any) introduced hy
the numerator l, must be viewed in terms of
the line momenta q& for which the Cutkosky rules
are derived. Note that the denominator of the
integral is symmetric in /, and the range of inte-
gration is spherically symmetric; the tensors

and j must therefore vanish~ sillce they pos-
sess an odd azimuthal symmetry. Defining the
line momenta for the integral by: q, '=q3' =1',
q, '=(l+p, )', and q, '=(l -p, )', we can express the
components of / in terms of the q&

'. %'e find

1
' = (~&)-'(q,' -q.'),

1'=[2(t-4m')"'] '(q, '+q, '-2q, '-2m').

In order to see how the discontinuities are eval-
uated, we begin by considering the tensor inte-
gral I for the t -channel planar box. Its discon-
tinuity A. , I is given by

a, (= —()m) ' J d')ll'(( +)))'-m')

x ii'( (1 -p, )' -m') (l ' -m')-' .
(3.1)

The two Dirac 6 functions can be conveniently
simplified by going to the t center of mass. De-
fining

C(l, f ) = 6'((l +P,)' -m') 5'((1—P,)' -m')

we have the following relation:

C(l, I ) = 5'(1 2+ 2l .P,)5'(l ' —2l P, )

=5'(1' —2l p, )5'(2l (p, +p,))

=(1/)) t )6(l )5(-I +2l, P„)

As functions of the q) ', l', and l' are analytic
and cannot affect the argument used in deriving
the Cutkosky rules. However, we see that the
discontinuities obtained will be those correspon-
ding to 6, (WtI') and h, [(t -4m')' 'I']. This has
little effect on our program because we can write
dispersion relations for b, , (v I Io)/Wt and A, [(t
-4m')'~'I']/(f -4m')"' which would differ from
the expressions that come from 4, IO and 4, I3
merely by a polynomial in t ' Thus upto a
polynomial arbitrariness in the real part of the
amplitude, the Cutkosky rules are applicable to
the remaining tensor integrals.

With these modifications in mind, we can write
expressions for the discontinuities of I . These
are given by

(~ I(,)
Wt, l 'C(l, f )

(2v)2 (l' m'}' (3.4)

[( 4,)„, ,] (I- m } „4l l C(l)f}
(2v)' (l '-m')'

(3.5)

By our choice of labels in the diagram, we see
that C(l, f}, as given in E(1. (3.2), contains as
a factor 5(l '); so that the integral in Eq. (3.4)
gives a vanishing contribution. In fact, any tensor
J & having one or more of its indices equal to
zero can be discarded, greatly reducing the num-
ber of calculations required. In addition, any
tensor having an odd number of indices equal to
1 or 2 will also vanish exactly because of azi-
muthal asymmetry.

The imaginary part of (f -4m')'~'I' for the pla-
nar box can now be evaluated using simple inte-
gration techniques, with the result that

[( 4,)„, ,
]

[(f—4m')/f] '"
8m

x((f 3m')-'—

- (f -4m') '1n[(f -3m')/m']]

&&8(f —4m') . (3 6)

This procedure can be applied without any amend-
ments to the evaluation of the discontinuities of
all graphs shown in Figs. 2 and 3. The results
are presented in Tables I and II.

An examination of these results points out that
the various contributions to the imaginary part
of the scattering amplitude have the form t "+t
&& (1nt }for large I, with n and m non-negative in-
tegers. We thus expect the asymptotic (real)
amplitude to consist of various terms behaving
like f "(1nt}+f (1nf)2. The leading term in this
expansion has been previously obtained' and is
proportional to lnt in the case of sense-sense
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TABLE l. Discontinuities of the t -channel graphs

(t =4m', d, =—8w[t/(t -4m')]'"t, ).
TABLE H. Discontinuities of the u-channel graphs

(u ~4m', 6=—8u[u/(u -4m')j~'I), „).

(a} Planar box [Fig. 2(a)]

QI [ 2(t 3 2}] 1

Zf(t -4m )' I3] = (t -3m ) '

—(t -4m2) 'in[(t -Sm2)/m ]

E[(t -4m )I"]= (t -4m )A[(t -4m )'~ I3]
i"-1

b, [(t -4 2)l33] -- + ln
t -3m t —4m m

3

g Z[(t -4m')'~I13] =(I -4m')Z[(t -4m')I" ],
i=f

6[(t -4 2)3t2I333] 2(t —11m t+22m )2 2 + 4

t —3m

Sm', t -3m'

{a) Planar box [Fig. 3(a)]

ZKI=-2[(u —2m2)(u —4m2)] ~ In[(u —8m2)/m ]

Z[(u -4m ) 2I ]= (u —2m2) In[(u —Sm )/m ]

3

g $[(u -4m2)I "]=-(u —4m2)6[(u —4m2)~12I3]

i=i

h[(u —4m2)I33] =1—
2 2 ln

(u —2m2)(u -4m2) m2

3

p ~[(u 4m')v2I4 ] (u 4m2)6[(u 4m2)I3]

4[(u —4m2)3~2I333] =-q (u —4m2)

u2-5m'u+ 7m4 u —Sm2
+ ln

(u —2m2) m2

(b) Crossed box [Fig. 2{b)]

XI=2[(t —4m2)(t —2m )] In[(t —Bm )/m ]

Z[(t -4m')"'I'] = (t -2m') ' ln[(t - Sm2)/m']

(b) Vertex-correction graphs [Figs, 3(b) and 3(c)]

d.I = (u —4m2) ~ In[(u —sm~)/m ]

h[(u -4m ) I ] =1—
&

ln
u —4m 2 m

Z[(t 4m2)II] (t 4m )TL[(t —4m ) I j

~[(t 2)I33]
t —6m t + 1Qm t —Sm2 2 + 4

'
2

(t 2m2) (t 4 2)

3

P Z[(t —4m')3"I""3]= (t —4m'P[(t —4m2)I'g,

Z[(t -4m')"2I"3] =-a(t-4m')

t'- 5m't+ 7m' t - Sm'
+ lnt —2m 2 m2

amplitudes; therefore, when all contributions
are added together one should expect cancellations
amongst the (lnt)' terms. As we shall see, these
terms do eventually cancel, but the contributions
of terms of the form t (lnt)' for m~ 1 remain.

Once the discontinuity across the cut is known
for each tensor integral, the real part can be
obtained by means of a dispersion relation. By
ignoring polynomial contributions to. the ampli-
tude, we are able to neglect any difficulties in-
troduced by the need for subtractions. Thus, for
example, the dispersing function K, [(t-4m')I"] /
(t —4m ) is, within our sense of equality up to a
polynomial, equivalent to 4,I". A similar ar-
gument holds for all other cases.

The technical aspects involved in the evaluation
of the dispersion relations are discussed in Ap-

g&[(u —4m2)II] = (u — 4m)b2[( u—4m2)~ 2I ]
i=i

m4 u —Sm2
~[(u -4m2)I'] =-,'(u -Sm )+ ., ln

"
u -4m' m

(c) Self-energy graph [Fig. 3(d)]

aI =-1
Z[(u -4m')"'I'] = --'(u —4m')

pendix B. There it is shown that the following
relations hold:

t ln + t I

r In[(x —Sm')/m']

- ——.'a(t)(ln[(t -3m2)/m2]]I+g(t-'),

(2 S)

where Q and R are rational functions of x, van-
ishing for x-~ and possessing a polynomial ex-
pansion in x ' for m'x ' near zero, and f and g are
polynomials in t '. These taro expressions allow
the evaluation of all the dispersion integrals, and
show that the dispersion integrals have the effect
of increasing by one power the logarithmic de-
pendence of the real part of the amplitude over
that of the imaginary part.
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IV. ASYMPTOTIC FORM OF THE AMPLITUDE

Having obtained the asymptotic form of the ten-
sor integrals, we turn to the evaluation of the
spin-dependent coefficients A, B~, C q, D 8&,
which is mainly a tedious exercise in the algebra
of Dirac matrices. Some simplification is ob-
tained as a result of the discussion in Sec. GI,
where we have seen that there are only four in-
dependent tensor integrals, namely I, I', I",
and I"'; all other tensors being either zero or
linear combinations of these four (for example,
the relation

I'++I"=0

holds). Thus there are in effect only four scalar
coefficients E„E„F„andI"„to be determined.
One can rewrite the expansion given in Eq. (2.4)
in terms of these coefficients obtaining

T(~)(t) =E,(]A.},t)I +F,((Xj, t) I'
+E,((A], t)I"+F,((X],t)I'". (4 l)

TQ
1,1/2; -1,-1/2 s

T"
1,-1/2s-lel/2 &

An additional simplification is gained as a re-
sult of working in the cross channels, with s =0;
since this last requirement, combined with an-
gular momentum conservation, reduces the num-
ber of independent helicity states to four for each
channel. These are chosen, for the t -channel
amplitudes which are denoted by T~z, -z .q z, as
the following:

~t ~t g t ~t
1,1;1/2,1/2 s + 1, 1;1/2,1/2 & 0,0;1/2, 1/2 t + 1,0'1/2, 1/2 t

for the u-channel amplitudes, which we denote by
Tpa &d: gc ) 5 &

we choose

~g ~Q
001/2'0 . 1/2 7 101/2t Oi1/2 '

All other nonvanishing amplitudes are related to
these four by the requirements of parity, time
reversal, and charge conservation. "

The procedure of evaluating the numerator co-
efficients consists of algebraic manipulations of
the Dirac y matrices. This is a tedious task
which is somewhat alleviated by the judicious
use of the Dirac etluation: (p -m)u(p, X) =0,
(P+m)v(p, A) = 0; and identities between y ma-
trices such as y~y 1 ~ ~ y & y = —2y " ~ ~ y "1
for odd integral n. The values of the spinors and
polarization vectors required in the calculation
are given in Appendix A. After a long calculation,
the numerators are reduced to simple rational
functions of t, the results of which are shown in
Tables III and IV where the values of the coeffi-
cients of Eq. (4.1}are given.

By combining these coefficients with the values
of the tensor integrals obtained previously, the
asymptotic contributions due to each diagram are
found. These are given by the following expres-
sions:

(i) For the t channel we define

r =m'/t,

L, = ln(4m'/t ),
M, =—(in[(t —2m'}/m'])',

and write the amplitude in the form

T(q(s = 0, t) = -mg (4m v t ) (1 —4m /t) 'T(q& .

(4.2)

We then obtain the following contributions for the
planar box [Fig. 2(a)]:

TABLE III. t -channel spin-dependent numerator factors.

Coefficien Helicities A, , A,, ;A,„,Q 1,1;2,—,
' . 1 10, 0;2, 2 1 0 — ——1 1

~ 2t

(a) Planar box

m[2g (t —4m ) ] Fo

m(2g')-'F,

m[2g (t —4m ) ] E2

m(2g4) 1F
3

2m (t —2m )

2m'(t -4m')

—4m 2

2m (t —4m )

-4m 2

m (t —2m)

t(t -2m2)

—2m 2

-2t

vY m'(t -2m')

v2 (t -2m )

v2 (2t -m2)

(b) Crossed box

m[2g (t —4m ) ] Fp

m(2g4)-'F,

m[2g (t —4m ) ]

m(2g ) F3

2m (t -4m )

4m'

-4m 2

2m'(t —4m')

4m'

-4m 2

t (t -2m')

2(t +m2)

-2t

2m2(t —2m2) (t +m2)(t 2m2) -&2(t -m') (t —2m')

&2(3t —12m t +4m )

~2(3t —m')
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TABLE IV. u -channel spin-dependent numerator factors,

Coefficients Helicities ~, , ~~;~, , ~~ 1,2;-1,-g1 1 1 —— -1—1 1
t p 1, p 1 l, g, 0, 2

(a) Planar box

(2mg4vu )-'F,
{2mg4[u (u -4m2)]i ~)

(2mg4&u)-'F 2

{2mg [u (u -4m )] ~) F3

~2m 2 -2 (u —2m2) u —7m 2

(u +4m2)/m2

(u +4m2)/m2

-~2m2

-v 2(u —5m')/m'

-W2/m'

(b) Vertex corrections (sum)

(u -m )(2mg vu) Fp

(u -m2){2mg4[u (u -4m2)]i 2}. iF i

(u -m2)(2mg va ) F2

2 (u —5m 2)

-2(u +5m )/m

2v 2(u-3m')

(c) Self-energy graph

(u m2)2(2mg Wu) Fp

{2mg [u (u -4m )]~ ) F
-2(2u —5m ) -(u —13m )/m -v 2(u —vm')

V 2/t:(u -m2&2]

T...„„„=—(1 —8g+10g') (1-4g)-'M,

+2];-'(1 —12j+51/' —70],") (1 -3];)-'L, ,

(4.3a)

-z, -1;uz, ig2= ( ] + ]i ) ( — 0) M

-2(2 —19K+38&') (1 —3g) 'Lt (4.3b)

Too v2in= 2& '(1 6&+6]' 16& ) (1 4&) 'Mg

'(1 —5]; —14],"+48&') (1 3];) 'L, , -
(4.3c)

&2T |yo2 y 2= f (1 4& 5+& 8& ) (1 4g} Mg

'(3 —11)-2(2+16)~)(1-3g) 'L, .

(4.3d)

For the crossed-box graph of Fig. 2b we find:

T.. .q q
2--2—(1 —10) 22]+,") (1 —2];) 'M,

+ 2(1 —4&)L, , (4.4a)

T. . .i i 2(21 —2f —6],") (1 —2r) 'M, +2(1 —4$}Lg,

In terms of these definitions, the contribution of
the u-channel box [Fig. 3(a)] is found to be

T, ,(~, ,~,
——2(1 —2$) '[(2$ —7( )M„+(1—4$)L„],

(4.6a)

Tg-v2 -z +2= 2(1 2(} [(1 3$ $ )Mu

+ 3(1 —4()L„],

To |gg 0 |g2 (1 2() [ 2(1 5$ + 8$ )M+

(4.6b)

+ ] '(1 —16('}L„], (4.6c)

W2 Tyyg2 0 yg2= (1 2$) [(2 15(+30( )Mg

+ 5 '(1-2() (1-4()L.]
(4.6d)

the sum of the vertex correction diagrams [Figs.
3(b) and 3(c)] give a contribution of the form

Tf~)(s=0, t) =-mg'(4w'vu} '(1-4m'/u) '"T[~) .
(4 5)

(4.4b)

T .„0,0„,=-,'j-'(1 —4/+2], " -4f') (1 —2f) 'M, -

+& '(1-2K) (1 4l)L, - (4.4c)

v 2 T „.„, „,= f-'(1 -4l + 5f' —10],") (1 -2f) 'Mt

+ t '(3 —14l'+ 8(;2)L, (4.4d}

T|,y/g;-z, -|y2 = ( 5) [ $( ()M

+(1 —6$) (1 —4$)L„],

A

1/2; -1,1/2

O. |g2;o &12
= ( t') [( k+ $ )MI

(4.Va}

(4.7b)

(ii) For the u channel we define $ =m'/u with
u =4m' —t, L„=ln(4m /u}, M„—={in[(u —3m')/m)P,
and write the amplitude in the form

+ $ '(1-4$) (1 —14(')L„],

(4.7c)
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&2 T, „,.»„=(1 —P) '[(2 —11)+11$')M„

+(7 —30$) (1-4()E„]; M, -=[(1—2&) (1-4g)] 'M, .

the self-energy graph of Fig. 3(d) gives

(4.Vd) For the left-hand-cut contribution to the am-
plitude (u-~, s=0), we obtain

&2 Ty yg2 o yg2 (1 4$) (1 Vg+ 18$ )

(4.Bc)

T,,„2,, ~)2=- ( — h)'( — 5) ( —5) 'L. ,

(4.Ba)

x,~ = -g'™[8~&'(1—4&}'"]

xy~
Ace Xg;X61,Xy ~

where T~q is given by

T y yy2 y gin ($ g 22( +22/)Mg

+ (5 ( —31(2 —25 (~+ 132$ )L„,

(4.11)

(4.12a}

T'g, g . ~ ~ ),,=i@'v f [Bmv'(1 —4K)]

X~~
X.g, X.g; ),g, X,y y

with T~z~ having the following values:

T', „,, „,= (-3g+ 22&' —60&'+ 92&')M,

+ (1 —28&+ 148$' —196&')L, ,

(4 9)

(4.10a}

"5 '(1 —() 'L. . (4.8d)

Once all diagrams for each channel are added

together, the s-channel amplitude is recovered
by means of crossing matrix relations; these
relations are listed in Appendix C. In this way,
one obtains the asymptotic s-channel amplitude
corresponding to the limits of large t and of large
u. The amplitude coming from the right-hand cut
in z, (t-~ and s= 0}is given by

rh

T;,( .20,(~
—-&2(- )+4( }M„

+We(4t -25g'+54~'-42(')I. „,

To,u2 O.u2=(2$ —6&'-4&'+45')M.

+(18(,-62]' +62(~)I.„,

(4.12h}

(4.12e)

Ty yy2 Ogy2 &2( $+6$ 12( +4) )/gal

+&2(2( —13$'-4g'+42)4}$„,

Ti,un;-gxl2=($ 3$ +65

+ (11(—19$'+ 27$' 48$'}I„-,

(4.12e}

T ggg2 yyg2=(( 5( +2) +6) )M+

Tg y 2 o y 2:W2( 2& 1 +&438$ +4&4}Mg

+&2 (1 —16& + 58(' —52&')X, ,

Z"„„.„„=( 2g+28g' —112''+152)')M,

+ (2 —24/ + 112$ —168/~)L, ,

(4.10c}

+ (9$ —55('+ 91(' -36( )I

vrhere we have defined

M„-=[(1-2[) (1 —t)] -'M„.

(4.12f)

T; „,.„„,=&2(6g2-26g'+20'')M,

+~2(1 4g~6g' —12'')1.„(4.10d)

T y JgInyg2 ( g + 14$ 64$ + 84$ )Mg

+ (1 —8& + 16&' —12&'}X~, (4.10e)

Ts, ,q. . ..q,
——(& + 6$ —36&3 + 44& )M,

+(1 —4&+44&' —116&')L g, (4.10f)

I,—= (1 —3&) 'I,

A look at: the asymptotic expressions that ax'e

obtained show that, aside from the factor pro-
portional to Wtwhich comes from the kinematic
singularity in the amplitude, the asymptotic de-
pendence is of the form t "(lnt)+t (1nt)'for
n, m non-negative integers. Moreover, the leadhsg
(lnf }'dependence has been canceled by the pre-
cess of summing up all contributions, thus leaving
the expected lnt leading behavior. " This can-
cellation, however, does not take place for the
next leading order, an effect which can be attri-
buted to the singularity-enhancing properties of
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spin numerators. The basis for this mechanism
will be considered in Sec. VI, where the unitarity
condition is discussed.

V. AN ALTERNATE METHOD

N(l, t ) = 2mg' N(l, t) .
N(l, t ) is as defined by E(I. (2.2), and we have
omitted the helicIty labels {&]. The four-dimen-
sional integration on / is performed by making
the change of variables A =l+~3P, —n4P, and

applying standard methods. Since any numer-
ator having an odd dependence in k vanishes as a
result of this integration, and since the numerator
is at most a cubic polynomial in 4, the spin nu-
merator can be written as

N(l, t) =N(l(k, a„a„t), t)

=dt(II„ Im„ t }+B(n„a„t)0', (5.2)

plus vanishing terms, where A and B are helicity-
dependent functions. The integration of k thus
gives

r(s=a, t)1ts+ [t„(t)+t,(t)),

The new features in our calculation can be cor-
roborated by means of an alternate scheme. For
this purpose, we consider in this section the t-
channel planar box diagram as a.representative
example and discuss an alternative to the Cutkosky
rules approach. This scheme takes advantage of
some symmetry properties of the integrals and
of the properties of dilogarithms, and enables
one to directly evaluate the integrals in question.
%bile the method is somewhat more involved
than the one previously used, it has the advantage
of giving exact solutions and, at the same time,
it provides useful insight into the modus ojerandi
of other asymptotic methods, such as the tech-
niques developed by Federbush and Grisaru. '

Consider the integral representing the planar-
box diagram of Fig. 2(a). In terms of the Feynman
a parameters it has the form

1 4 4
Q'(s=Q, t) ', =11(dat)Q pat —i)

/=1

N(l, t)
j

~

~
)

~ ~

4 ~ I l
[~(i,{ ), t}l'

with

t(t),=Q f Il'( d)aQ(ga, -()
(5 4)

which is essentially a rotation of the axes by 45
degrees. This, however, displays adscititious
symmetries of the integrand. Applying this trans-
formation and carrying out the ot, and a, inte-
grations one finds

2 '~' * (1 —2x}A(x, y)
A t2 y [ 2 52(~)]2 (5.6)

(5.7)

(t)(a„a„t) =- a,a, t

-m'[ I —(a, + a, ) + (a, + a,)']+ i e .

At this point it is possible to extract the leading
behavior of t by noting that for large I; the domi-
nant term must come from making the denomi-
nator, (())(a„a„t) as small as possible; thus
one I'estI'lets Irg and/or Ixd 'to values near zero.
This is the approach suggested by Federbush
and Grisaru, who showed that the correct leading
asymptotic value is obtained by neglecting terms
which are small whenever the n's that multiply
the asymptotic variable in the denominator are
restricted to values near zero. This result, they
showed, was independent of the size of the range
[0, e'] to which each a was restricted. In our case
for example, the integral I& would be approximated
by taking

(l)((IQs Crdt t) = otQQdt —PS + I C s

and restricting the limits of integration in n, and
a, t tohe ranges[0, 8~] and[0, 8~], respectively. In
the case of the scalar numerator [i.e., A. (c(„c(„t)
=1 and B(n„a„t}=0] one finds exact agreement
with the value of the leading term that is obtained
from integrating the dispersion relation for AI in
Table I. %'hen one attempts to extend this method
to integrals with a dependent numerators, one
finds that the results of the integrations in e, and
e4 are not always independent of e,' and e4'. Fur-
thermore, this technique does not yield any infor-
mation on subleading asymptotic terms.

Returning to the integration of Eq. (5.1), we
proceed by introducing a new set of variables to
replace the e's; thus we let
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xo = [—f +[/(1 —3K) ] '~ ] (1 —4f) ';
thus, for large f (f small) x, has the form

x -0+g''-g+-'g '+ ~ . -

(5.8)

Region I includes the hyperbolic singularity
path y' = 5'(x), so that in order to carry out the

y integration for this xegion, one must check to
see that the principal value exists. Although we
shall omit the proof, one finds by carefully de-
fining e-neighborhoods around the hyperbolic
singularity path, and splitting the integration
range into appropriate limits in ~, that all e
dependence is canceled at the end of the calcu-
lations; and that the contributions coming from
c neighborhoods of y'=5'(x) vanish as c-0.

It is interesting to note the interpretation that
our picture gives to the limit t-~. In this limit
the value of x, goes to zero while the hypexbo-

where 5'(x) -=(1 —4$)x'+2&x —f with r =-m'/t. The
functions A(x, y) snd B(x,y) are obtained from
A(a„a,) and B(n„a,}by applying the above trans-
formation, and the small imaginary part i& in the
denominator has been omitted with the under-
standing that these expressions actually x efer to
the Cauchy principal value of the integral.

With the aid of Fig. 4, one can see the advantage
gained by changing to the x-y variables. The path
of singularities of the integrals in Egs. {5.6) and
(5.7), which corresponds to zeros in the de-
nominator, i.e. , ym= 5'(x), has the form of an
equilateral hyperbola when viewed in the n, —e,
frame of reference. In the x-y fxame this path
becomes symmetric in the y variable, thus making
the y integrand symmetric.

In order to carry out the y integration, we
separate the range into two regions: one fox
which 5'(x) is non-negative (called region I),
where the integration obtains hyperbolic functions;
and the second region where 5'(x) is negative,
thereby resulting in trigonometric functions after
integration. The dividing line for these two re-
gions is given by x=xo- p for p a small positive
number, where xo is the positive root of 5'(x)
and is given by

(b) „y

FIG. 4. Integration boundaries for the g-chanel
planar box diagram: (a) n space, and gQ x-y space.

la y'= 5 (x) tends to its asymptotes. The con-
tributions coming from region II and from the
section of region 1 to the left of y'= 5'(x) will
therefore be negligible in the limit of large I;.
Since after the y integration is performed, the
hyperbola coalesces into the point x =xo, which
is tending to zero, the asymptotic behavior of
the integral must be determined by the properties
of the integrand in the neighborhood of xo. In the
language of Federbush and Qrisaru, . this is just
the statement that the e's should be small, ex-
cepting that our refinement indicates that the
leading behavior is actually connected with letting
x=2(a, +a,) tend to x,-0+/'~'+ . from the
right. Fux'ther more, the general nonpolynomial
asymptotic behavior is given only by the behavior
of the integrand for y'» 5'(x).

The y integration is simple to perform, and

only terms which are even in y contribute. Thus
one obtains for the contribution of region I the
following expression:

1/2 z—16v'T{0, f ) = dx ~, , ', + dx -,'5'(x, f) [5'(x)] '~'ln[[x+ 5(x}]j[x —5(x)])

+ dxG x t Qx "~ln x+5x x —5x (5 9)

where E(x, t) and G(x, t) are defined in terms of
the

A(x, y) =-A,(x)+ tA, ( )y'x
B(x,y) B,(x)=—

by the relations
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Jl(x, t) = 2[-A,(x)+ f 5'(x)A, (x)]/t',

G(x, f) -=2[2B,(x) -A, (x)]/f .
(5.10)

(5.11)

I= in[ [x + 5(x)]/ [x —5(x)]]

The contribution coming from region II is similar
to the above expression, except that the inte-
gration limits are [O,x,] and the logarithm func-
tion is replaced by 2 tan '(x/[ —52(x)]'").

Two general types of integrals need to be con-
sidered in order to evaluate the amplitude in Eq.
(5.9). These are

1/2
C" = dxx"/(5'(x) [5'(x) -x']),

Ep
(5.12)

1/2 x+5 x9'4 = dxx"[52(x)] ~21n . (5.13)x —5(x)

Type C" integrals are evaluated by simply sepa-
rating the function into a sum of fractions; D"'

on the other hand, requires an elaborate procedure
which consists first of an integration by parts in
which one defines

dv=x" [5'(x)] "dx.
This reduces Eg. (5.13) to integrals of the form
C" plus the following integral:

&ln[z + (z' —a'}"'] (5.14)

where z =x+ &/(I —4j}and 42=——,
' &/(I 4f -), with

6 being the discriminant of 62(x) = 0, i.e. , b, 2 =4/2
+4/(I 4t-) T.his last integral is extremely in-
volved. One way to evaluate it is to introduce the
change of variables I] =z+(z' —a2)"2; the denomi-
nator then assumes the form of a quartic poly-
nomial in te which can be factored into two real
quadratic polynomials. By separating the factor
multiplying lm into a sum of'two fractions, one
is then able to ca,st this integral in dilogarithmic
form. This calculation then obtains

3

(E=-,'(»» ( —-', (»»1'(»»
* »(n-'[1 ~ (1-41)"'](»»

1 4 )»(i[1»[(—(1 —4()'"],»]

—L12{2v [1+(1 —4g)'"], 8)+Li2(2/1 —(1 —4&)'~2]» 8] —Li2( 2&[1+ (1 -4t')'"]» 8]» (5.15)

where o=-(1-3&)'"and cos8=2o.
The integrals corresponding to region II can be

evaluated by means of similar integration tech-
niques. However, it has been previously remarked
in connection with the effect that asymptotic t has
on the hyperbolic singularity path, that their con-
tribution will be at most a polynomial in t '.
That this is so can also be gleaned from the fact
that for 0 ~x &xp the integrand is bounded and has
a uniformly convergent power-series expansion
in t -'; so that term by term integration of the
power series is possible. For the purpose of
studying nonpolynomial asymptotic behavior, this
contribution can therefore be ignored.

Through the use of E(I. (5.15) and the integration
techniques outlined above, one is able to evaluate
the contribution to region I exactly. The final
answer consists of a rather complex algebraic
expression involving a number of dilogarithms.
By a careful application of dilogarithmic relations
such as those listed in Appendix B, one can then
compute the asymptotic expansion of the result.
One finds, not surprisingly so, exact agreement
with the t-channel box calculation that was obtained
by the Cutkosky rules approach.

An analogous approach to that discussed above
can be used in evaluating all other graphs. If

one considers, for example, the integral corre-
sponding to the t-channel crossed box, one obtains
expressions similar to E[ls. (5.3) and (5.4) with
the denominator Q replaced by

(j'(&» 422» 422» 424» ~) f (421» 422» [22» 424)

+ ( (21422 —c42 &4)f

for some function f(a„a„a»c[,), and subject
to the 5-function constraint 5(Q', ,a, —1) . In
this case one introduces two rotations by defining

1 j.
1 2(+1 +2)» yl 2(+1 +2)»

1 j.
x2 2(422+ +4)» y2 2(422 [24)»

which transform the 5 function into 5(2x, +2x, —1).
The picture associated with the singularities of
the integral becomes in this case that of a hyper-
boloid in four dimensions intersecting a plane.
The hyperbolic surface thus obtained tends to its
triangular asymptotes as t becomes large, and
the analysis can proceed along a similar but some-
what more complicated line as before. The domi-
nant asymptotic behavior, in fact, becomes clearly
determined by the values of the e's near the apex
of the hyperboloid and the problem is again sim-
plified by virtue of the geometrical picture asso-
ciated with the integral.
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VI. ELASTIC UNITARITY AND ENHANCED
SINGULAR BEHA VIOR

In this section we study the origins of the in-
creased singular behavior observed in our am-
plitudes in terms of the unitarity principle. Two-
body elastic unitarity provides an alternative way
of examining the fourth-order process, since it
relates it to second-order amplitudes and allows
one to view the scattering process in a comple-
mentary and useful way. For a t -channel pro-
cess, in which large t corresponds to high energy,
unitarity can be expressed in the form

D, ( s(z„t ), t )= (Sv lt )
' (t -4m') "'

dQ, A „s', t A& s", t, ,

(6.1)

where A(s, t) is an amplitude, D, (s, t) is the dis-
continuity across a t -channel cut and i, n, and f
label the initial, intermediate, and final states,
respectively; t+ = t + is for small positive e;
s'=2q, '(1-z', ) and s"=2q, '(1-z", ) are related
by the addition theorem for cosines:

z', =z, z", + [1-(z,")']' ' [1—(z,)']"'cosP

and 0, and Q refer to the intermediate-state
phase space.

The amplitudes A f„(s', t) and A& (s", t) can be
written by means of the Mandelstam representation
as dispersion integrals in s, over the s and u
discontinuities. By making use of this represen-
tation in Eq. (6.1), and interchanging orders of
integration, one obtains

D, (s, t)=(t —4la'P'(4 Ht )
' f d.sfds, ([D'(s, „t ,)"0 (s„t )]„"

80 so

x[D,"~(s„t, ) D+„"~(s„t, )]}U(s„s„s,t), (6.2)

where D'"(s„t) and D+(s„ t) refer to the discontinuities of Af„and A&, respectively, and where the Man-
delstam unitarity function" U(s„s„s,t) is defined by

1 2'
U(s„s„s, t) = zv dz f dy[s, —s'(z'„ t)] '[s,—s"(z,', t)1 '.

~]. 0
(6.3)

In writing Eq. (6.2) we have assumed an unsubtracted form for the Mandelstam representation; later on
we will point out what modifications subtractions introduce.

The phase-space integral given by U(s„s„s,t) can be shown with some effort to give"

s —s,—s, -2s,s,(t —4m') ' —WK
(6.4)

where

K —= s'+ s,'+ s,' —2(ss, + ss, + s,s,)

—4ss, s,(t —4m') '.
This result, together with Eq. (6.2), provides a
way to compute the fourth-order discontinuity
from the second-order amplitudes.

The relevant diagrams contributing to the uni-
tarity equation up to fourth order are shown in
Fig. 5. As can be easily seen, the discontinuities
associated with these second-order processes are
simply given by Dirac 6 functions in the appro-
priate energy transfer variables. Thus one can
write

D,'"(s„t ) =A,(s„t) 6(s, -m2),

D„'"(s„t) =0,

D+ (s„t) =A»(s„ t)6(s, -m'),

D+ (s„t ) =A»(s„ t)6(u, -m'),

where A„A», and A» are given spin-dependent
functions, and u, =4m' —t —s,.

Using these expressions for the second-order
discontinuity, the integrations in Eq. (6.2) can be
carried out. One then finds that the fourth-order

V

FIG. 5. The unitarity relation for the t -channel
scattering up to fourth order.



3540 SAMUEL PRUM

discontinuity in t is given by

D, (s, t) =A(t)U(s, =m', s, = m', s, t)

+B(t)U(s, =m', s, =3m' —t, s, t),

where

(6.5)

A(t) = (t -4m')' '(4w'Wt ) '[A, (m', t)+A„(m', t)]

and

B(t)=(t —4m')"'(4v'Wt } 'A„(3m' —t, t).
The analysis of D, (s, t) reduces thus to a con-
sideration of the properties of U(s„s2, s, t).

Keeping in mind that a logarithmic dependence
for D, corresponds to a (lnt)' behavior in the
amplitude, we can study the form of the logarithm
in U(s„s„s=0, t). We find that in general U

contributes a lnt behavior for large t, and only
at the value s = 0, s, =m' = s„a limiting process
cancels the lnt contribution. For the values of U

in Eq. (6.5} we obtain

t -4m'
U(s, = m', s, = m', s = 0, t ) =

ppP(t 3'

r
j. 21K

dz' dP[s, —s"(z", t)] '
j. 0

to the discontinuity D, . Such a term gives rise to
a lnt dependence in D, , which is present, con-
trary to the previously discussed case, also for
the direct box diagram. Thus we have a clear
example of how a diagram, which in the scalar
case has an nonlogarithmic imaginary part, can
be so affected by a spin numerator as to develop
a more singular dependence in t —in this case
lnt.

The singularity enhancement effects that spin
produces are thus shown to be connected with
the existence of subtractions in the Mandelstam
representation. These subtractions are not, how-
ever, the only way in which one can view the
singularity producing mechanism, for our dis-
cussion of Eq. (6.1) could have also proceeded by
inserting the appropriate second-order expres-
sions for A&„and A&. These consist of spin-
dependent numerator s divided by single propa-
gator -type denominators. Proceeding, one would
then obtain integral expressions of the form

U(s, = m, s2= 3m2 —t, s =0, t) =2(t —2m') '

We therefore conclude that whenever the coef-
ficient B is nonzero, which corresponds to the
inclusion of the crossed-box contribution, one
can expect a polynomial-times-(lnt)' type of de-
pendence in the amplitude. This is in fact the
behavior observed in the case of scalar scattering,
which corresponds to setting the coefficients A
and B equal to constants; the answer obtained
from Eq. (6.5) for this case is in full agreement
with the values of the tensor integral I of Table I.

When one extends the analysis to spin-dependent
amplitudes, a second mechanism for the genera-
tion of a lnt dependence in D, arises; this is
through the presence of subtractions in the dis-
persion relations used to replace A, „and A& in
Eq. (6.1}.For the scalar case, such subtractions
were not necessary since the absorptive part of
the amplitude vanished at large t. However, for
the case with spin, where numerators affect the
convergence, subtractions are almost always the
rule.

Subtracted dispersion relations, when inserted
in Eq. (6.1}, modify the unitarity integral and
give rise to additional terms with a single linear
polynomial factor in the denominator. Thus, for
example, one obtains additional contributions of
the form

[s'(z', t) -m'] [s"(z",t) -m ]
'

where N(z", t) is some spin-derived function. The
mechanism for producing a lnt dependence can
then also be viewed in terms of the existence of
cancellations between the numerator and denom-
inator factors of the integral. These numerator
factors are of course the same ones responsible
for the introduction of subtractions to the Man-
delstam representation.
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APPENDIX A: CONVENTIONS, SPINORS,
AND POLARIZATION VECTORS

A summary of the conventions used in calcu-
lating the fourth-order amplitude is presented
here. In our calculation, we consider the elastic
scattering of a massive photon having initial four-
momentum k, = (B,kn, ) and helicity A., by an elec-
tron of equal mass with initial four-momentum
P, =(E, -kn, ) and helicity X~ in the s-channel center
of mass. The final four -momenta are labeled
k, =(E,ktt) and P, =(E, -kn), with helicities X, and
A~, respectively, where the scattering angle is
given by cos8, =ii 8,. Helicity states j p, A.} are
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constructed following the phase conventions of
Jacob and Wick, "and are normalized to give
(p, xlp', x'& = 5'(p -p')i}„'„. The invariant scatter-
ing matrix is defined as

e+($'„X,) = (W2)-'(0, X„i,0),
=m '(-q, , O, O,Eg),

e(k„X,) = (l2 )-'(0, -X„i,0),

AN =+1

x. =0

Ty y . ]( y (s t)=(k p 'g x ITlk p 'x x

with T being related to the S matrix by

(f I&lt&=&f I i&+( /i2E') 84(p, + k, p. --k,)

x&f1 Tlt&,

where
I i) and

I f& denote the respective initial
and final two-particle states. In terms of this
definition, the differential cross section is given
by do/dn= Ivr/2EI'

Spinor and polarization vectors for each scat-
tering channel are constructed by using the Jacob
and Wick prescriptions, with the following choices
for the "number two" particles: In the s channel
these are taken to be particles b and d (the two
electrons); for the t and u channels, particles
a and 5 are chosen. The spinor normalizations
are taken as

u.(p, x) u( p, x') = 5„g,
T(p, X) c(p, X') = —8», ,

and the polarization vectors are normalized to
unity. Working in the appropriate center-of-mass
frame for each channel, the following parameters
are obtained:

For the s channel, we define
I
2

q, =-,'(s -4m')"'

and take the x-z plane as the scattering plane.
The polarization vectors are hence given by

(-~2) '(0, xi, )0, x, =+1
~(k„x.) =

m '(q, , O, O, E, ),

( H2) '(0, — ,hoes ,8, i, X, sin8, ), X, =+I
e*(k„x,) =

m '(q, ,E, sin8, , 0,E, cos8,), X, =0

and the spinors describing the initial and final
nucleons are

(P„) [2«(E+m)] ='" (Z'+, ™~
2A.q q,

u(p„x,}=[2m(E, +m}]-"'X'„,
x (E, +m, —2X~q, ) exp(- i 8, —,o,) .

For the t channel, we set s = 0 and define E,
= ~ u t, q, = ~(t —4m')' 2 . The four-momenta for the
process (see Fig. 2) are then k, =p, =(E, , O, O, —q, ),
and k, =p, =(E„O,O, q, ). The polarization vectors
have the form

=m '(q, , 0, 0,E,), x, = 0

and for the spinors one obtains

«((t„«,) [«m=(E+m)], -"*(«'
2x,q,

V(P„X,) = (-1)""'"[2m(E,+m)] '"
x( 2X~ q, , E, +m) X ~

In the u channel (Fig. 2), with s =0, E„= Wu, —

and q„-=—,'(u -4m')'", the four-momenta are given

by

k, =p, =(E„,O, O, q„)

and

5;=P, =(E„,O, O, -q„).
The polarization vectors are

.g„g)=(W2)-'(0, -x, , -i, o),
=m '(q„, O, O, E„), x, =O

e+(f„x.) = (vY)-'(0, x. , i, 0), x.=~I

=m '(-q„,O, O, E„), X, =0

and the spinors are given by

( „«))[«(E2+m=)] "m* („2XqqN

u(p„X,) =[2m(E„+m)] "' (E„+m, —2X,q„)xt

APPENDIX B: THE INTEGRATION
OF DISPERSION RELATIONS

Oar aim in this section is to describe in some
detail the procedure for carrying out the disper-
sion integrals used in this paper. Consider first
an unsubtracted dispersion relation

for an arbitrary function I with imaginary part
6,I. Later on, we will comment on the modifi-
cations needed to account for subtractions. For
the class of diagrams of interest here, E,I can
be taken to be of the form b, f(t) =Q(t)+E(t) lnt,
where Q and A are rational functions of t, vanish-
ing for t ~, and possessing a polynomial ex-
pansion in t ' for m't ' near zero. This leads to
two types of integrals requiring consideration,
1..e. ,
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I,(x) = dt Q(t)/(t -x),
4m2

(B2)
ln(4m'/t)
t"(t-x) ' (B6)

I,( ) = dt R(t) lnt
4~& t -x (B3)

The integral given by I, is easily evaluated by
means of conventional techniques. I„on the
other hand, cannot in general be expressed in

4rms of elementary functions; its solution in-
volves the dilogarithm function" Li,(x), defined vn-1

P —v
= —(v" '+ pv" '+ ~ ~ + p" ')+ P" '

P —v

a change of variable to v =4m'/t gives

I"(x) =x "P "" dvv"„, lnv
P-v '

where P =—4m'/x. This integral is then cast in

dilogarithmic form by rewriting

(B9)

ln(1 —t)
p

and the modified dilogarithm function Li,(x, 8}
4efined by

ln(1 —2t cos8+ t')
0

(B4)

(B6)

and one gets

I", (x)=x " dv +f(x ')lnv

P —v

1-p=x " lnmP —jn(1 —P) lnP + Li,
P

+g(» ')
se functions are extremely practical in the

ebs, luation of asymptotic behavior, since they
pessess many interesting properties. In particu-
lar, Li0(1) =+07(', Li,(-1}= -~»w' and the following
.rel)ations hold:

Li0(x)+Li,(1/x)=0m' —0(lnx} —ivlnx, x& 1

(B6a)

Li,(-x)+Li,(- 1/x) = —~0w ——,'(lnx)', x & 0

(B6b)

Li,(x, 0}= Li,(x}+i we(x —1)lnx, x & -1
(B6c)

Li,(x, 8) + Li,(1/x, 8) = —~)T' ——,(ln.x)'+ —'()7 —8)',

0 &8 &2w. (B6d)

Noteworthy is the fact, as these relations show,

Clat the dilogarithm has an asymptotic behavior

af the form

Li,(x),~ ——,'(ln x)'+ const,

«ith a similar expression applying for Li,(x, 8).
R terms of the dilogarithm, one can then easily

evaluate the asymptotic series expansion of I„
since the integrand has been assumed to be uni-
formly convergent. Thus one expands R(t) in a
~micr series in t ' and carries out the term by
tetm integration by expressing each integral in
lilegarithrnic form. By using relations such as
these given in Eq. (B6), one can obtain the asymp-
totic behavior and sum up the series to obtain
Oiosed expressions. For example, if we write

R(t )= Q a„t
n

aud consider

= 2»-"[in(4m'/x)]'+h(x '), (B10)

up to a polynomial in x '.
For integrals of the type of I„asimilar result

can be obtained by expanding Q(t) in a power
series in t '. Term by term integration is then
carried out by using the substitution v = 4m'/t,
and Eq. (B9); the resulting series is then summed

up. As a result one obtains the following relation:

I,(x) = dt, Q(x) ln
Q(t) 4m'

4m
(B12)

up to a polynomial in x '.
Although Eqs. (Bll) and (B12) provide a general

solution to the problem, it is instructive to eval-
uate a specific example without resorting to a
series expansion in order to point out some ad-
ditional techniques useful in handling diloga-
rithms. Consider the discontinuity function
itt. ,[(t—4m0)' 'I'] for the t -channel planar box
obtained in Eq. (3.6), as a.n example. For this
function, the integrals I, and I, are given by

[1 —4m'/t] '"
I,(x) = (sv)-' dt, (B13)

t, ( )=(8 ) fdt(t(t —*)'() —tttt'/t)'")
4m2

x ln[(t —3 m')/m'] . (B14)

I, is evaluated by changing to the variable v =4m0/t

where f, g, and h are polynomial functions of x '.
Thus, it follows that I,(x) has the following as-
ymptotic form:

I,(x) = dt „~„——,'R(x) (lnx)', (B11}
R(t)lnt

4m2
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and making use of standard tricks of integration.
One then obtains up to a polynomial in x '

where p=c+ex, 6=ac —bc, and a, b, c, and e
are arbitrary constants, and

I, =
2 ((I —P)'in ln[P(1+ P) ]+(2w/3 W3))

(1 —4m /x)'i2
ln(4m'/x), (B15)

—2Li, [(a+bx)/(D/C)'", 8]

+ 2Li, [a/(D/C)"', 8]

+ Li,(-bc/5), (B16)

where P —= 4m'/x.
For I„we take advantage of two useful integral

relations which we list. These are

e dt ln(a+ bt) = ln(b/e}ln( p/c) —Li,(-bp/())c+et

(B17)

with cos8 = (aC ,'bB—)/—v'CD and D =Ab' abB+-Ca',
for arbitrary constants a, b, A, B, and C.

The substitution w = (1 —4m'/t }'",when inserted
in I„reduces this integral to an expression of
the form

j.

I,=[x(l -P)'"] ' dw[w' —(1 —P)] '[ln(l+3w') —In(1-w')] .
0

(B18)

The expression involving the first logarithm in the integrand is of the form of Eq. (B17), while the second
term can be expressed in the form of Eq. (B16) by writing ln(l -w') as ln(1 -w)+ In(1+w). In this way,
the integral is evaluated with the result that

I,=P[4m'(1 —P)"'] '(In(a/)7) In(y/a)})+Li, (q/a) —Li,(a/)7)+2Li, [v3 )7/Wy, 8'] —2Li, [-v3 n/Wy, 8 ]],
(B19)

where a =(1 —P)'i' —1, )) =(1 —P)'i +1, y=4 —3P,
and cos8' =+[3(1—P)/y] '~'. Hence I, has an as-
ymptotic dependence of the form

I, , „——', [x(1 —4m'/x)"'] '[ ln[(x —3m')/m']] '

(B20)

up to a polynomial in x ', which is the same ex-
pression one obtains on the basis of Eq. (Bll}.

The existence of subtractions in the dispersion
integrals does not cause any new difficulties.
Rather, by modifying the functions R(t) and (L)(t)
to include the extra subtraction factor in the de-
nominator, the convergence of the integrand is
retained. Thus the line of reasoning leading up
to Eqs. (Bll) and (B12) continues to be valid and
the results obtained remain unchanged.

amplitude for any two channels has the form

e( 1)a(x() ( 1)|)(P() g ds( (g )
f= a,b, c,g

(C 1)

where e is an arbitrary over-all phase, cr and g
are channel and helicity-dependent phases, and

dz„ is the Wigner function. The crossing angles
(}), are channel-dependent functions of the kine-
matic variables; for:he case of equal masses,
the t to s crossing angles are given by the follow-
ing expressions:

co sf,' = —co sf,t

= —cosP,'

= cosg~t

APPENDIX C: CROSSING RELATIONS
FOR HELICITY AMPLITUDES

Crossing relations connecting the scattering
amplitude for the various channels have been
obtained by several authors. " " In our discus-
sion, we make use of the results of Hara, "who

has calculated explicitly the values of the phase
constants associated with each choice of the "par-
ticle number two" assignments in the scattering
process. For a two-body elastic scattering
a+b-c+d, the crossing matrix connecting the

sg 1/2

(s -4m') (t -4m')

and the u to s crossing angles are given by

cosgg = cosl/J",

= —cosP,"

= cosp~

su 1/2

(s -4m') (u —4m'}

(C2)

(C3)
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Thus, at s=0, all angles are equal to —,'m.

With the explicit "particle number two" as-
signments that were given in Appendix A, the
phase factors o and q have the following values:

at=qt=O,

g"=A, +X, —2X

The over-all phase factor e can be determined
for the spinor-vector scattering problem by com-
puting the second-order amplitude in the various
channels, and comparing the s-channel answer
with the results obtained through the use of cross-
ing relations. When this is done, one finds that

t u

As a result of applying the crossing matrix of
Eq. (Cl) to the t- and u-channel amplitudes, one
obtains the following crossing relations:

+0,1/2;O, i/2(0~ t) ( 22) (~1,1'1/2, 1/2+ ~-l, -l;1/2, 1/2)

~/~~
2( l, l/2;-1, 1/2 1, 1/Rl 1,1/2) r (C5a)

t t t~ 41,1/2;41, 1/2(0& t) ( 4 ) ( l, l;1/2, 1/2 ~-1, 1;1/21/2 ~00;1/21/2+ + ~10;1/2, 1/2)

~g fO
1,1/2; 1, 1/2+ 4 l, -l/2; l, l/2 0,1/2;0, 1/2 + " 4 1,1/2;0, 1/2) t (c5h)

8 1 t t~ 1,1/2; l, l/2(0& t) ( 42) ( l, l;1/2, 1/2 -4 1;1/2, 1/2 ~0,Oil/2, 1/2)

~1~~
11/2i 1-1/2 1 1/Ri 1 1/2 OIl/2:Os 1/2) ~ (C5c)

~ 1, 142/; 0%1 /(2Ott ) ( 2 j ~ ) (~l, ll 1/2, 1/2 ~ l, -l;1/2, 1/2 ~ 10;1/2, 1/2)

=(&j'2~2) (7'1 l/2;-l, -l/2 7'l, -l/2;-1~1/2+~ 7'l l/2:0 1/2) (C5d)
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