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For the equal-mass scattering of spin-~ nucleons and neutral vector mesons, we discuss
the Regge behavior of the amplitude and consider the questions posed by the existence of
degenerate daughter trajectories within the framework of fourth-order perturbation
theory. A formalism for the identification of daughter contributions is developed and the
algebraic solution to the equations constraining the residues of the daughters is presented.
By applying these ideas to the results of a previous calculation, we find that, while to
fourth order sufficient information exists to resolve the degeneracy and to test for its break-
ing, the daughter contributions cannot be clearly identified due to the presence of new singu-
larities having the form t ln t to fourth order. The possible origin of these terms is
discussed and is tentatively ascribed to the existence of fixed poles of order three at the
negative half-integer values of J.

I. INTRODUCTION

In recent years there has been a continued inter-
est in understanding the Regge ideas from the point
of view of perturbation theory. This interest stems
from the added insight that can be obtained by
looking at models, such as perturbation theory,
when attempting to guess the general analytic
properties of scattering amplitudes. Characteris-
tic of this type of approach has been the success
achieved in representing a Regge trajectory as a
complete set of ladder diagrams.

A question of particular concern regarding per-
turbative expansions for interactions of particles
with spin has been whether the concept of an "ele-
mentary particle" in renormalized Lagrangian
field theory can be fitted within the framework of
an analytic scattering theory. While examining this
question several years ago, Gell-Mann, Gold-
berger, Low, Marx, and Zachariasen in various
combinations' ' discovered one example, that of a
spin- —,

' fermion interacting with a massive vector
boson through a conserved current, for which this
ambiguity is resolved. Studying the leading asymp-
totic behavior for the first few orders of the per-
turbation expansion, GGLMZ found that the fermi-
on lies on a Regge trajectory a(s) passing through
l —= J ——,

' =0 when s = m', and that the critical re-
quirements for the existence of such a result are
the occurrence of a "nonsense" channel and the
presence of the factoring property' 'in the Born
approximation. This analysis has been extended
through sixth order in the coupling constant, "
with some work also having been done on the nth-
order case, ' and it has been shown that the set of
two-body Feynman graphs associated with this
process have a leading behavior which is consis-

tent with the existence of two poles: one of trajec-
tory n (s) and even signature, the other of trajec-
tory -n(s) and odd signature. The suggestion has
also been made that the entire amplitude is analyt-
1C xo

A natural continuation to the study of the fermion
trajectory is to examine how the kinematic con-
straints among helicity amplitudes at s =0 are sat-
isfied in this spinor-vector scattering model.
Abers, Cassandro, Teplitz, and Muzinich" have
used second-order perturbation theory to study
this question and to test the conspiracy hypothe-
sis. They have found that there exist infinite se-
quences of daughter trajectories passing through
each negative half-integer value of the angular
momentum, all of which conspire in a complicated
way with the fermion trajectory to satisfy the ki-
nematic constraints. In fact, there appear to be
at least three sequences of these daughters, since
a single sequence, while satisfying the kinematic
constraints, does not have a factorizable residue
matrix in Born approximation. The exact nature
of this daughter degeneracy-, - however, can only be
ascertained through the study of higher-order
terms in the perturbation expansion.

It is our purpose in this paper to discuss the so-
lution to the question of degenerate daughter tra-
jectories within the framework of fourth-order
perturbation theory and to apply these considera-
tions to a calculation of the asymptotic nonpolyno-
mial terms of the fourth-order scattering ampli-
tude for large momentum transfer t and s =0.'
Our analysis shows that under the hypothesis of
three degenerate daughters, the fourth order con-
tains sufficient information to resolve the degen-
eracy, and simple conditions exist that test for its
breaking. When the Regge picture is applied to the
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interpretation of the fourth-order calculation, one
observes that in addition to the contributions due
to trajectories, there are terms which can be ten-
tatively ascribed to the existence of fixed poles of
order three at all negative half-integer values of
J. These additional singularities complicate the
isolation and analysis of the daughter contributions,
so that when these complications are neglected,
one finds that the daughter trajectories at /= ——,

'
separate but that none of the members of the trip-
let lie one unit of angular momentum below the
mother trajectory. Furthermore, these new sin-
gularities exhibit a more dominant leading behav-
ior than the daughter contributions (i.e., t ' ln't
versus t 'lnt).

Our plan for this paper is as follows: In Sec. II
we show how information on a Regge trajectory
and its residue appear in perturbation theory. For
this purpose we extend the Reggeization formalism
of GGLMZ to include signature, and derive expres-
sions for the contributions of the mother and
daughter trajectories as power series in the cou-
pling constant g2 = s2//4w.

Under the assumption of three degenerate daugh-
ter trajectories at each value of J, we show in Sec.
III that the data available from second- and fourth-
order calculations constrain the factorizable resi-
dues and the trajectory slopes at each J into sys-
tems of 12 equations in 12 unknowns. A unique so-
lution to this system of equations is found by re-
ducing the problem to a series of eigenvalue equa-
tions.

The application of this formalism to a calcula-
tion" of the fourth-order elastic scattering of a
fermion and a neutral vector boson is considered
in the following sections. Section IV is concerned
with constructing the parity-conserving signatured
amplitudes. The features of these amplitudes are
discussed in Sec. V, where an attempt is made to
understand the origin of the terms proportional to
t "ln't, for n» 1; to fourth order, these terms
cannot derive from a Regge trajectory. The most
plausible explanation we find is the existence of
fixed poles of order three in the left-half J plane.
In Sec. VI we consider the daughter contributions
and show how these can be extracted from the am-
plitude. Then, by combining the fourth-order in-
formation with the results of the second-order, cal-
culation, ' "we solve for the residues and trajecto-
ry slopes of the daughters at J = -~. Our results
are summarized and discussed in Sec. VII.

II. REGGE -POLE CONTRIBUTIONS
IN PERTURBATION THEORY

8(s)=g'P, (s) +g'P. ( )s+ (2.3)

An expression for the asymptotic form of the am-
plitude to each order in g' can then be derived. It
has the form

T(s, t) -K(s, t)t "2~'i,

where K(s, t) is given by

K(s, t) =g'p, + g2(p 2 +p,n, lnt}

+ g'[ p2+(p2n, +p, n, }lnt+—,'p, (n, lnt)']

+ ~ ~ ~ (2.5)
for each trajectory present in the theory. Thus,
the contributions of several poles correspond to
polynomials in t ' multiplying powers of lnt, i.e.,
terms of the form t "(lnt) for n and m non-nega-
tive integers; each trajectory being associated
with a power of t '. In principle then, a given or-
der of perturbation theory yields the value of the
residue to that order in g' and of the trajectory to
one order less in g'.

The generalization of these ideas to the scatter-
ing of particles with spin involves more compli-
cated expressions for the asymptotic form of the
scattering amplitude, with the residues becoming
matrices. However, the principle involved in
identifying the residue and trajectory contributions
remains the same. Several authors' '" "have
discussed the Reggeization procedure for the ease
involving particles with spin. We follow the meth-
od introduced by GGLMZ, based on the helicity
formalism of Jacob and Wack, ' and define, for a
two-body scattering process of the type a+5- c+d,
parity-conserving helicity amplitudes that are free
of kinematic singularities. These are given by the
rule

T'~ ~, , g ~,(s, t)

(I +s)- lv + 2l/2(I s) l v -vI/2T
, X.~, X. 2 X.~

~(-I)"'"n.~,(-I)"'"-"

contribution to the amplitude, for each order of
perturbation theory, coming from a single scalar
Regge pole. Such a contribution is given asymptot-
ically by

T(s, t) P(s-)t ""= P(s) exp[ n (s) lnt], (2.1)

where P(s) is the residue corresponding to the
pole n(s). In a theory in which the interaction is
characterized by a collection of coupling strengths,
which for simplicity we call g', such as Lagran-
gian field theory, one can write the trajectory and
the residue as power series in g':

n(s) =n,(s)+ g'n, (s)+ Z'n2(s)+ (2 2)

When studying the Regge properties of a scatter-
ing amplitude by means of perturbation theory, it
is helpful to keep in mind the general form of the

x (I s)- Iv+ 2l/2(l +s)- l v-21/2T

(2.6)
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+t')", ), ~ ~ (s)E„„'(z)], (2.7)

where tt~)'& . ~ & (s) are parity-conserving signa-
tured partial-wave amplitudes, and the functions
E~„t"(z) are linear combinations of derivatives of
Legendre polynomials and are tabulated by
GGLMZ. In terms of the right-hand- and left-
hand-cut contributions to the scattering amplitude,
these parity-conserving signatured amplitudes are
given by

,'T(),')(s,—z)= T, )')(), ,}(s,z)

+(-1)" " 'T~I~, )(s, -z), (2 9)

Here A. denotes helicity, S spin, and g intrinsic
parity; g=X. -X)„)=X, —))g, M=max()p(, () (),
is the cosine of the scattering angle 8, and v is —,

'
for half-integral J and zero for integral J. The
parentheses around the parity signs are used so
that they may be distinguished from the signature.

A Regge formalism using these amplitudes can
then be developed in analogy to GGLMZ, and one
can extend their results to parity-conserving sig-
natured amplitudes T'» '» . »», which satisfy a
partial-wave expansion of the form

T')',"),„~ ), (s, t)

= g (2J +1)[t ~ 'i . ~ ~ (s)E„„' (z)

T I')z',.}(s, z) - -v[(2a + I)/sinvo. ]

&& [ P (,",)'(s}E„'."(-z)

t ""()E"-'(- }].f»&j tv (2.9)

Since we are interested in studying the elastic
scattering of electrons and massive photons, we
define l =J- -,', and set S, = S, = 1, S, = S, = -,', q, = q,
= -1, g, = q~ =+1. To avoid duplicating amplitudes
we restrict the indices A., and A.„ to the value +-,'
and suppress them entirely, thus writing simply
T» '„, with I,, and A., equal to -1, 0, and +1.

The power-series (asymptotic) expansions for
the functions E„,'"(z) that are relevant to our anal-
ysis are given in Appendix A. By making use of
these expansions, we are able to give the first few
leading terms of the asymptotic amplitude contrib-
uted by a trajectory l =o.(s) having a residue P(s).
We find

where T~ and Ti denote the respective right- and
left-cut contributions, and the symbol f X,]
= A,~, A.~,' A,~, A.~.

By carrying out the Reggeization process for this
partial-wave expansion one finds that the contribu-
tion of a trajectory J =a(s) to the amplitude is giv-
en by

T(k) i F ~ ( z)cf. t) (A) k + t) 0(+)+( z)-1 +0(( z)-2) (2.10a)

T(')'..— F (-z} '
t) ",

,."2,1P"",.".(- )
' 0((- ) ')(y -1

2~ +1 (2.10b)

(2.10c)

where

F = -2""~ z(n +1)I'(n + —)[v~v sinai'(o. +2)] '.
The Greek indices ~ and v have been used to denote
the sense values 0 and 1, and c „,=1 unless ~ = 0,
v =1, in which case e„,= -1.

The analogy of these expressions to the simpler
forms of Eq. (2.1) is quite evident, and the contri-
butions of a trajectory to each order in the pertur-
bation expansion, though more complicated, can
be similarly identified. For example, in the case
of the electron trajectory which we denote by p, (s)
with residue $„(s), this contribution is of the form

T „",' - -g'v 2 z„„()),,'} '(g,")„,F'(g'), (2.11a)
7'&~) ~ - g ~2(-z) [(g&+)~) F+(gm)

—(-z)-'((',"),.F'(g')],
(2.11b}

T"" --g') 2(-z) '[))'(]"'), ,F'(g')

—3(-z) 'p,'((o"),
"F'(g')], (2.11c)

where

F'(g2) —= 1+g'[ )), ', ln(-z)+f(z ')]+0(g'),

and f (z ') is a polynomial in z '. Here we have
made use of the fact that y.(s) is of the form
p =0+gmp, , +g4p~+ ~ ~ ~ and that its residue g(s)
()= $o+g'g, +g'$, + ~ ~ ~ ) is sense-choosing, so that
at s =o, $, is nonzero for nonsense-nonsense am-
plitudes, and g, vanishes for the sense-sense am-
plitudes.

For a daughter trajectory at l =-1, its contribu-
tion to the amplitude is given by the following ex-
pressions:
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T'„"„-g'M2 e„„(-z)-'M',".,

T'",'„--g' v 2 (-z)-'M&",'„,
- 'MS(-z) 'M'", ' „t

~(k) k —
( (t) k) + 2[ 6k( (4) i) ln( z)

+f(z ')]+0(g'),

(2.12a}

(2.12b)

(2.12c)

where we have labeled the daughter trajectory by
6(s) (6=-1+g'6, + ~ ~ ~ ), and its residue by y=g'y,
+ g y + ~ ~ ~4

An examination of Eq. (2.11) shows that in
fourth-order perturbation theory the contribution
of the electron trajectory to the amplitude is pro-
portional to a polynomial in (-z) ' times ln(-z)
plus a second polynomial in (-z) '. The leading
term of this contribution is of the form (-z)'ln(-z)
for the sense-sense values, and of the form
(-z) 'ln(-z) for the nonsense values. Similarly,
Eq. (2.12) shows that a daughter at l =-1 gives a
leading-power contribution of the form
(-z) 'ln(-z) to sense-sense values of the ampli-
tude, and of the form (-z) ' ln( —z) to nonsense val-
ues of the amplitude. For the purpose of deter-
mining the fourth-order contributions due to the
various trajectories, it is not necessary to go
through the task of a partial-wave inversion of the
amplitude, since one can simply make use of equa-
tions such as Eqs. (2.11) and (2.12) to examine the
coefficients of terms proportional to (-z) "ln(-z),
where n is a non-negative integer, and identify the
respective contributions. This procedure is illus-
trated in Sec. VI.

3
(a)

k=1
(3 1)

For each value of l, Q is a known nonfactorizing
symmetric matrix containing the second-order
contributions due to the residues of the daughter
trajectories.

III. CONSTRAINTS ON DEGENERATE DAUGHTER

TRAJECTORIES IN SPINOR-VECTOR SCATTERING

Let us examine what constraints the fourth-order
analysis places on the daughter trajectories and
its residues. The work of ACTM using second-or-
der perturbation theory has indicated that three
families of degenerate daughter trajectories exist.
For each daughter there are four unknowns to be
determined: a factorizable residue matrix
(y~f);; involving three parameters, and a trajec-
tory "slope" 5,", where the index k labels the
daughter trajectories. Thus, there are a total of
twelve unknowns.

At each negative integral value of l, second-or-
der perturbation theory provides six equations of
constraint, which have the form

In Sec. II we have seen that the information that
can be obtained from fourth order is of two types:
The ln(-z)-dependent terms constrain the residues
and the trajectory slopes, while the purely poly-
nomial terms depend only on the residue slopes
y, . For the purpose of studying the daughter de-
generacies only the ln(-z)-dependent terms are of
immediate interest since only they provide the ad-
ditional constraints that are needed. These are
given by means of the following equation:

(3.2)

where for each negative integer l, R is a known

symmetric matrix determined from the fourth-or-
der calculation. Together, Eqs. (3.1) and (3.2)
form a system of twelve equations in twelve un-
knowns.

Consider the solution to this system of equations:
First of all, note that a trivial test exists to deter-
mine whether the degeneracy is broken; for if the
degeneracy remained, all of the trajectory slopes
would be equal, in which case R and Q would be
related by a multiplicative factor. Thus, the non-
commutativity of Q and R provides an immediate
test for the breaking of the degeneracy. Proceed-
ing with the solution we express each residue y,"

by means of the factorization property as the outer
product of a vector with itself, i.e.,

=V„ V„,(a) (3.3}

where the V„, k =1, 2, and 3, are linearly inde-
pendent (but not orthogonal), since Q is of rank
three. The matrices Q and R can be expanded in
terms of their corresponding eigenvalues and
eigenvectors, both of which are real since Q and
R are symmetric. Thus we can write

Q -v, x, x, +o~, x, +o3x3 3 y

R = p1y1y1+ p2y2y2+ p3y3y3

(3.4)

(3 6)

where the v, are the eigenvalues of Q with corre-
sponding orthonormal eigenvectors x„and the p,
are the eigenvalues of R with corresponding ortho-
normal eigenvectors y, .

Both sets of eigenvectors are linearly indepen-
dent. Thus they can be used to represent the vec-
tors V, by means of two unknown real matrices A
and B, which are defined by the following expres-
sions:

3 3

g„=Q A „x„=+B „y„. (3.6)
n=l f1= 1

These matrices have the property that (B 'A) „
=y x„, so that only one of them is really un-
known. Defining L=B ~A and rewriting for system
of twelve equations in terms of A we find



REGGE BEHAVIOR AND DAUGHTER DEGENERACIES IN. . .

5, =UMU ',
with M being given by

M = A p 'I pI A I, ',

(3 8)

(3.10)

all of which are known quantities. %e see, there-
fore, that U is required to be the similarity trans-
formation that diagonalizes M, and the trajectory
slopes are the eigenvalues of M. This solution is
unique if one requires U to be orthonox mal.

This determines A = UA~ and gives us the solu-
tion for the trajectory slopes 5~,'~. One can then
work back and construct the residues y~'~ by means
of Eq. (3.6). Our unknowns are therefore expres-
sible in terms of the eigenvalues and the eigenvec-
tors of Q and R, and the solution of the twelve
equations reduces to the task of solving a series
of eigenvalue problems.

The fourth-order calculation, we find, can pro-
vide an answer to the question of degenerate
daughter trajectories in spinor-vector scattering.
In order to apply these ideas, it is necessary to
calculate the asymptotic fourth-order amplitude at
fixed s, and f» large It I; from this one can in
principle extract the matrices Q and R. In the fol-
lowing sections we turn to the evaluation of Q and
g and to the analysis of the fourth-order "data. "

(3.7)

A 5,A=I pL, (3.8)

where o =-diag(&r„o„o,}, 5, =-diag(d'~, 5)~, d~~), and

p-=diag(p„p„p, ). The matrix l. is known from the
eigenvectors of Q and 8 and has the property of
being unitary.

Considering first Eq. (3.7), we see that o is re-
quired to be positive definite if a solution is to ex-
ist. Later on we will see that this is in fact the
case. A particular solution to this equation is giv-
en by Ar=diag(do, , v'cr, , v a, ), and the most gen-
eral solution is A = UA~, for an arbitrary unitary
matrix U. Equation (3.8) can then be used to de-
termine the conditions on U. One finds a relation
of the forxn

large u. %e restrict ourselves to considerations
of the amplitude for s =0, where the kinematic
constraints hold, and in addition, we consider only
the case of equal masses. This equal-mass re-
striction is made in order to simplify the kinematic
constraints, which would otherwise have to be sat-
isfied at s = 0 and s = (m, -m, )', where m, and m,
are the masses of the particles. Although no proof
exists, it is anticipated that the equal-mass case
results are at least qualitatively the ng, - ng, limit
of the more general ca,se. Even in this simplified
form, the calculation is rather extensive. The
technical aspects are discussed in a companion
paper, "and here we will be concerned only with
those features of the intexaction that axe relevant
to the Regge behavior of the theory.

In fourth order, the set of graphs that exhibits
the Regge behavior consists of boxes, crossed-
boxes, and second-order corrections. These dia-
grams are shown in Fig. I. The amplitude repre-
sented by these graphs contains both t-channel and
u-channel discontinuities, so that one must calcu-
late the contributions due to each cut and then con-
struct signatured amplitudes by using the pre-
scription given in Eq. (2.&).

As we have seen in our previous discussion, for
the purpose of studying the properties of daughters,
only the nonpolynomial terms of the high-energy
expansion of the amplitude are needed. This is a
fortunate simplification in our case, fox one can
then set aside questions of renormalization which
only have a bearing on the polynomial terms. Fol-
lowing the conventions defined in ACTM, with the
spinor as the "number two" particle in the Jacob

L W/
IV. THE ASYMPTOTIC BEHAVIOR OF THE

FOURTH -ORDER PROCESS

The evaluation of asymptotic next-to-leading-or-
der terms in Feynman integrals with spin numera-
tors is a topic in itself for which very few applica-
ble techniques exist. This is due mainly to the fact
that spin introduces essential complications into
the theory, thus making even low-ordex' perturba-
tive calculations a difficult task. In our case, we
are interested in studying the fourth-order contri-
bution to the amplitude describing the scattering of
electrons and massive photons for large t and for

FIG. 1. Fourth-order diagrams for spinor-vector
Scattering.
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Ty y/z, y i/g ( 3$ + 22$ 60$ + 92$ )Mg

+ (1 —28g+148l' —196g')N„(4.la)

Ti, i/2: o, -i/s = ~~( 2&+14K 38K +44K )Mq

+ M2(1 —16g + 58g' —52g')N„

(4.1b)

To |/2 0 |/2 ( 2/ +28/ 112$ + 154$ )Mi

+ (2 - 24g+ 112)~- 168)3)N, , (4.1c)

Tg y/2 0 |/2 l2 (6$ 26$ +20/ )Mg

+v 2(1-4&+6&'-12&')N, , (4 ld)

T|,ua; -i,x/a=( l +14'' —64& +84t; )Mt

+(1 —sl. +1«'- »t')N„(4. 1e)

~-t, um; -z, |/s=(&+6K 36k +44K )Mt

+ (1 —4l + 44)' —116g')N„(4.1f)

with f —= m /t, g*-=e /4w, and

Tz(), ,}=ig (t-4m')"'[Smz'(1-4m /f)"'] '

xT(} ) ~ (4.2a)

M, =- [(1-2m'/l}(1 4m'/-t)]-'

x [»[(&—Sm')/m'] j', (4.2b}

N, = [1—Sm'/f] -'ln(4m'/t). (4.2c)

(b) The. left-hand-cut contributions are of the
form

Tg y/2 i |/2 ($ $ 22$ +22) }M+

+(5( —Sl ~'-25['+132~')N„,
(4.Sa)

and Nick formalism, "me find the following ex-
pressions for the nonpolynomial part of the helici-
ty-dependent scattering amplitude:

(a) The right-hand-cut contributions for the six
independent amplitudes are given by

T1,1/2: 0.-1/R ( ~ 45 )Mg

+ 0 2 (4 t' - 25 $
2 + 54 ( ~ - 42 (4)N„,

To, s/a; o, ua (2$ 6t 4$ +4]' )M&

+(18$ -62]'+62]')N„,
1 a, -t/s; 0, |/a = ~2(-$+ 6( -12$ +4) )M„

+ ~&(2$ —13(' -4('+42 (')N„,

(4.3c)

(4.3d}

T&,z/I; -x |/a=(& 35 +6( -105 )M„

+(115—19]'+27 ]'-48(')N„,
(4.3e)

T-z. i/2: -i,vm =($ 5( +2) +6) )M„

+(9$-55$'+91('-36(')N„,

M„=- [(1—m'/u)(l —2mz/s)] '

x (»[(s —3m')/m'])', (4.4b}

N„=-(1 -4m'/u)[(1 —2&/M)(1-m*/u)]-'

x ln(4m'/u). (4.4c}

From these expressions one constructs parity-
conserving amplitudes that are free of kinematic
singularities, in accordance with Eq. (2.6). Ex-
panding in an asymptotic series in t, and forming
signatured amplitudes, one obtains the following
expressions for the right-signatured amplitudes
A(s}+ [ c/(4 ~2 2)]A" (s)+ .

with $-=m'/M& and

Ti( x,}= r'~&-[8m&*(l -4 m/u)"'] 'T(, },
(4.4a)

A ~i'i,' - [ 2 +24/z + 1/zz —25/(4z') + ~ ~ ] ln(-g) + [ 2/z —1/z' + 19/(2z') —15/(2z') + ~ ][ ln(-1 - 2g }]', (4.5a}

A, i; - (k) M2[ 2+11/z —3/zm + 67/(4z~) + ~ ~ ~ ] ln(-g)

+ (+)~& [ 3/z —9/(2z') + 29/(4z') —7S/(8z') + ][»(-1—2z)1',

A 0 0" - [4+24/z +6/z —1/(2z ) + ~ ] ln(-g) + [ 8/z~ —6/go+25/(2g4) + ~ ~ ~ ][ln(-1 —2z)]~,

A 'i', -(k)l/2 [-2/z+1/z' —6/g'+37/(4z')+ ~ ~ ]ln(-z)

(4.5b)

(4.5c)

(4.5d)+ (+)~& [ 1/z' —9/(2z') + 21/(4z') —VS/(8z') + ~ ~ ~ ][ln(-1 —Sz)]',
I

A" ",;-[ -2/z —12/z'+ 23/z'+ 153/(4z') + ~ ~ ~ ] ln(-z) + [ -6/z'+3/z' —51/(4z') + ~ ~ ~ ][ln(-1 —2z)]', (4.5e)

A ~'ii', - [ 2/z + 2/z'+ 53/z' —161/(4z'} + ~ ~ ~ ] ln(-z) + [ -2/z' +9/z' -49/(2zi) + 49/z'+ ~ ~ ~ ][ln(-1 - 2z)]',

(4.5f}
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Similarly, the wrong-signatured amplitudes with A ' defined above are found to be

A t,'I, - [ 2+ 14/z —10/z'+99/(4z') + ~ ] ln(-z) + [ 4/z —7/z' + 15/(2z') —15/(2z') + ~ ~ ][ln(-1 —2z)]',

A ~'~, - (+)W2 [ 2 + 3/z —12/z' + 19/(4z') + ~ ~ ] ln(-z)

+ (a) v 2 [ 1/z —3/(2z') + 2 3/(4z') —63/(Sz') + ~ ][ ln(-1 —2z )]',
A to'~o —[ 4 —12/z + 16/z~ —29/(2zs) + ~ ~ ~ ] ln(-z) + [ 4/z + 11/(2z ) + ~ ~ ~ ][ln(-1 —2z)],
A t'I, -(z) V 2 [-2/z+5/z' —5/z' —7/(4z')+ ~ ~ ]ln(-z)

+(+)v 2 [-1/z2 —3/(2zs) —1/(4z }—23/(Szs}+ ~ ~ ~ )[ln(-1 —2z)],
g t'I, - [ -2/z + 10/z' —24/z'+ 123/z'+ ~ ~ ] ln(-z) + [ -2/z' —10/z'+ 27/(4z~) + ~ ~ ][ln(-1 —2z)) ',
A t'~, - [ 2/z —16/z'+ 16/z' —361/(4z') + ~ ~ ~ ] ln(-z) + [ 9/z' —49/(2z') + 48/z'+ ~ ~ ~ ][ln(-1 —2z)]'.

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)

(4.6f}

These are the data that we need for the study of the
daughters.

V. FEATURE'S OF THE AMPLITUDE

Consider our expressions for the nonpolynomial
part of the fourth-order amplitude. The leading
terms are proportional to (-z)'ln(-z) for the
sense-sense amplitudes, and to (-z) 'ln(-z) for
the nonsense amplitudes. These are the terms
that were calculated by GGLMZ and were used to
show the existence of the electron trajectory. The
coefficients of these terms satisfy the factorization
condition and our results find exact agreement with
the values obtained by GQLMZ. These leading
terms come only from the right-hand (t-channel)
cut, thus conforming to the behavior expected for
this process; namely, there are two mother tra-
jectories [one with value +n(s) and even signature,
the other with value -a(s) and odd signature],
which together correspond to a leading behavior
that derives alternately from t-channel cuts in
even orders of the coupling constant g' and u-
channel cuts in odd orders of g'.

The next-to-leading-order terms in the ampli-
tude are of the form (-z) ln(-z) and (-z) "

x[ln(-z)]', for nt and n positive integers. Those
terms linear in ln(-z) contain the contributions of
the various trajectories in the theory; however,
the presence of a contribution proportional to
[ln(-z)]' is a rather surprising result. In Sec. II
we have shown that, to fourth order, such a con-
tribution cannot have a moving trajectory as its
source. Therefore, it suggests the existence of
additional singularities in the complex angular-
momentum plane, to the left of the electron trajec-
tory. Before studying the daughter contributions,
we consider the origin of these new terms.

There are several types of singularities in J that
could conceivably give rise to this effect, such as
cuts, fixed poles, and essential singularities. Un-
fortunately, in attempting to understand the origin

of the [ln(-z)]' terms, it is very difficult to dis-
criminate amongst the various types of singulari-
ties, since the way they enter into the amplitude is
not well understood and very much model-depen-
dent. Most of the discussion in the literature re-
garding these singularities is limited to scalar
models of the interaction, such as scalar ladder
diagr'ams, and it is not clear that these results
can be extended to the spin-dependent case, where
shifting effects in J are possible" and essential
complications exist;" For example, a scalar
planar box diagram cannot give rise to terms pro-
portional to [ln(-z)]', whereas the spinor-vector
planhr box does. Nonetheless, we make use of
these results to at least explore the qualitative ef-
fect that these singularities have, with the under-
standing that our results will be rather speculative
in nature.

A possible argument that justifies the [ln(-z)]'
contributions through the existence of a cut is sug-
gested if one views the box and crossed-box dia-
grams of Fig. 1 as depicting in some'sense the ex-
change of two Regge poles —i.e., two electrons.
The analytic properties associated with such an
exchange have been studied for the scalar interac-
tion by several authors, "'"who find that the iter-
ation of two Regge poles produces a branch cut.
This cut, with a branch point at J=2o. (-,'s) —1, is
present whenever there is a third double-spectral
function p,„. Such a picture seems to suggest that
a cut must exist, but, since spin can have a trans-
lational effect,"the position of the branch point
might be shifted away from J=0. On the other
hand, although the way in which a cut affects the
asymptotic behavior of the scattering amplitude is
not well understood, a crude model which assumes
a partial-wave dependence of the form [ I —a, (s)] ~,
for some p &0 near the cut, '4 indicates that one
might expect a contribution of the form t "~ ~'~/

(Int)~" to the amplitude. Thus, if this is indeed
the case, one could rule out a cut as the source of
the [ ln(-z)]' terms.
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A second type of singularity connected with the
existence of p,„ is the singularity that was first
noted by Gribov and Pomeranchuk" in connection
with the Froissart-Gribov projection. This essen-
tial singularity is found by examining the discontinu-
ities that are present in Q, (z} for negative integer
l; however, such a singularity manifests itself on-
ly in the wrong-signature amplitudes, which is
contrary to the behavior we observe.

The most plausible explanation is that offered by
the existence of fixed poles at all negative half-in-
teger values of J. The contribution Tr~(s, t) that
a fixed pole at f=&u with residue g'))+O(g') would

make to the scattering amplitude can be deduced
from the Sommerfeld-Watson integral, provided
that one can draw a contour around this pole. If
we assume the pole to be of order n, we have as
the contribution of the leading term

T~p(s, t) ~ —,'ig'z

x dl 2l+1 P, -z l —e "sinful

-g'xt (-Int)" '/(n- I)!.
Thus, a fixed pole of order 3 could give rise to a
[ln(-z)]' behavior in the amplitude which would

justify the observed terms. Unfortunately, very
little is known about the properties of these fixed
poles and one is unable to draw any further impli-
cations. The only conclusion that one can form is
that if these poles exist, they occur at all negative
half-integer values of J, beginning with J=--,',
since the leading coefficient of [ln(-z)]' is z '.

VI. ISOLATION OF DAUGHTER CONTRIBUTIONS

Let us direct our attention to the terms linear in
ln(-z}; it is from these terms that we wish to ex-
tract information on the daughter trajectories of
the theory. We have shown in Sec. II how the vari-
ous trajectories exhibit themselves in the pertur-
bation expansion, and how information on the
fourth-order part of the residue matrix of a tra-
jectory at l =e is contained in the coefficient of the
term (-z)' ln(-z}.

Since any trajectory above l =o. can also contrib-
ute to (-z)"ln(-z), it is necessary, in order to
identify the contribution due to the trajectory at a
given l =n, to determine what additional trajecto-
ries exist above it; one must then subtract out
their contributions. Thus, for example, in the
case of the daughter trajectory at l =-1 it is nec-
essary to remove the mother trajectory and its
wrong-signature twin. Once this is done, the ma-
trix R that is necessary for the analysis discussed
in Sec. III is determined.

In a similar way, one can determine R for the

daughter trajectories at other negative integer val-
ues of l. However, for the purpose of studying the
degeneracy question, the analysis of the daughter
trajectory at l = -1 is easiest and sufficient.

The unexpected possible existence of fixed poles
at the negative-integral values of l creates addi-
tional difficulties. This is evident from the fact
that a fixed pole at l =-1, having an asymptotic be-
havior of the form (-z) '[ln(-z/z, )]' for some
fixed z„could contribute to the terms linear in
ln(-z} if z, was other than 1; i.e., if the scale of
the asymptotic behavior was not really known. The
true values of R would then be inaccessible. This
concealment of the daughter contributions is not
restricted to fixed poles, but could also come about
if a cut or an essential singularity were present,
since the closing path of the contour of integration
in the Sommerfeld-Watson integral would have to
be distorted. For the moment, let us disregard
these possibilities and detail the subtraction pro-
cedure for isolating the contribution of the daugh-
ter at l =-1. We will then apply this procedure to
the coefficients of the terms linear in ln(-z), ne-
glecting the [ln(-z)]' contributions.

The Regge asymptotic forms for the contribu-
tions of the two mother trajectories and the daugh-
ter at I = -1 have been given in Eqs. (2.11) and
(2.12). It is the sum of these contributions that
make up the scattering amplitude up to the second-
leading-order term in z. To second order in the
perturbation, this means terms of the form (-z) '
for the sense-sense amplitudes and of the form
(-z) ' for the nonsense amplitudes, while to
fourth order in the coupling constant they are
terms proportional to (-z} ' ln(-z} and (-z} '
xln(-z), respectively. If one identifies the coef-
ficients C&'~" of these second-leading-order terms
in z with an expansion of the form

O't2) 4 g2(c(&) &) ~ g4(O(k) 2) (6.1)

(6.3b)

(d'") .- =~2[3(pi)'(5' ) .. .+(&"").. .].
(6.3c)

The matrices Q and R have been defined previous-

one can write the following expression relating the
mother and daughter contributions:

(C,"')„„=M2(Q'"')„„e„„, (6.2a)

(&""),= )I 2 [(5"),, —(Q"'), .], (6.2b)

(d,"'), , = ~2[3',',(t t"), , +(Q'"'),
(6.2c)
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ly, and they are the quantities that we need in or.-
der to carry out the analysis described in Sec. III.
Q, which is the sum of the residues of the daughter
trajectories, is given in the work of ACTM, who
calculated the second-order amplitude and carried
out the partial-wave inversion. " However, for the
purposes of illustration and corroboration we re-
evaluate Q in this paper using our subtraction
method.

One can identify the matrix coefficients C,' ' by
expanding the second-order amplitude of ACTM in
a power series in (-z) '. Also, from the leading
term in this expansion, one can determine through
the use of Eq. (2.11) the values for the mother tra-
jectory and its residue which are needed in order
to apply Egs. (6.2) and (6.3). This procedure yields
the following results:

-14 (+)3v 2 10
C'," =(4v 2 ~') ' (+)3v 2 12 (~)5W2

10 (+)5 v'2 -16

(6.9b)

From these coefficients, the values for the ma-
trix R follow; they are given by

(~)II M2 10
R~' ' =(Bw') ' (v)ilv 2 -24 (v)3M2

10 (v)3 v 2 -4

(6.10a)

-14 (v)3 v 2 -12
R~'~ =(81r'} ' (T)3 v 2 12 (T)7'

-12 (v)7v 2 -22

9
C", ~' =+(2v 2 m)

' (+)v 2

I

(~)M2 1

2 (+)v 2

(~)v 2 1

(t'~'~') =+(4w) '(2, (+)v 2 )

u', (h'o"), , =+(»} ',

p, ,
' =y(2w) '.

(6.4)

(6.5)

(6.6)

(6.7)

(6.10b)

An examination of Q and R for each signature
shows that these matrices do not commute, which
implies that the degeneracy of the daughter trajec-
tories is removed by the fourth-order interaction.
An explicit numerical solution can also be com-
puted by using the technique outlined in Sec. DI.
The matrix Q~'~' can be rewritten by means of a
similarity transformation as

o' =(4w) ' diag(1. 4567, 6.6845, 9.8588),

Inserting these values into the equations for Q we
find

9
q~ & =+(4~)-' (+) M2

1

(a)v 2

(a) M2

(+}v2, (6.8)
7

-24 (~)11v 2 -12
d,'~ =(4M2~2)-' (+)»M2 -24 (~) v 2

-12 (+)v 2 2

(6.9a)

which is in complete agreement with ACTM.
To determine the matrix R we obtain the coeffi-

cients C~'~' from Eqs. (4.5) and (4.6). In so doing
we disregard any contributions to the in(-z) terms
that come from writing

[ in(-I —2.)]'= [in(-z)]'

+21n2[1 —(2z) '] ln(-z)

+f(z '),
where f(z ') is a polynomial in z '. This is equiv-
alent to the assumption that the fixed-pole contri-
butions are distinguishable and purely [in(1 —2z)]'
times a polynomial in z '. We then have the fol-
lowing expressions:

with eigenvectors given by

x, =(0.1518, (+)0.9640, 0.2185),
x~2'~' =(-0.4578, (+)0.1274, O.S799),

x,' ' =(0.8760, (+)0.2336, 0.4220}.

Similarly, for Z~"' we find

A' =(Bm ) 'diag(-40. 060S, -16.2618, 4.3226),

=(Bw') 'diag(-33. 1094, -5.6010, 14.7104),

with their eigenvectors given by

y~,
'~' =(0.7289, (+)0.6736, -0.1222),

y,'~' =(-0.4800, (+)0.6307, 0.6097),
ys'~' =(0.4882, (+)0.3854, 0.7830),

y,' =(0.5536, (+)0.2279, 0.8010},

y~~ =(-0.8319, (+)0.1059, 0.5448),

y~,'~ =(0.03931, (~)0.9678, 0.2482).

From these expressions one can construct the ma-
trix M and solve for the trajectory slopes 5, and
for the factoring residues. These are found to be
given by the following quantities:

5,' = (2w) 'diag(-13. 179, -2.9S9, 0.7520),

5, = (2w} 'diag(-3. 758, -0.7611,9.935),
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V[,']' =(4w)-'(-0. 9989, (+)1.346, 0.2029),

V [,
'] ' = (4]]') '(-2.143, (+)0.2561, 1.505),

V ['] ' = (4m)-'(1. 869, (+)0.3400, 2.155),

= (4w) '(1.546, (+)0.7544, 2.411},

V[2' = (4w) '(-2.571, (+}0.08462, 1.091),

= (4]]) '(-0.02623, (v)1.193, 0.2639) .

The residues can then be reconstructed by taking
the outer product of each V, with itself.

The values for the trajectory slopes 5',", which

are obtained under the assumption of total decou-
pling of ln(-z) and [ln(-1 —2z)]2 terms, can be
seen to be incorrect. The reason for this is that
the Lorentz-pole analysis of ACTM, which is in-
dependent of the degenerate nature of the daughter

trajectories, still applies and requires that at
least one of the trajectories be exactly one unit be-
low the mother trajectory at s =0. This is not ver-
ified by the calculations and one concludes that the
additional singularities encountered undermine the
ability to extract the daughter behavior.

VII. DISCUSSION

%e have studied the interaction of electrons and
neutral vector mesons within the framework of
fourth-order perturbation theory in order to make
use of such a laboratory of Feynman graphs so as
to learn more about the nature of the degenerate
daughter trajectories that are associated with the
electron. In our analysis, me have shown how one
can extract the daughter contributions from an am-
plitude which is assumed to be purely Regge-like,
and how one can use this information in fourth or-
der to test for the breaking of the degeneracy of
the daughter trajectories. The application of these
ideas to the calculated data has exhibited a signifi-
cant new phenomenon; namely, the existence of
additional singularities in J to the left of the elec-
tron trajectory. These singularities by their na-
ture dominate the next-to-leading-order behavior
in the amplitude and complicate the separation and
identification of the daughter trajectories. Thus
we find that a simple-minded approach to the sep-
aration of the daughter contributions fails to give

consistent results.
Although these additional singularities seem to

be justified by ascribing them to fixed poles of or-
der three at each negative half-integer J, our
identification is to a large extent heuristic and a
careful study of the properties of cuts, fixed poles,
and essential singularities is needed in order to
properly deal with this question. In particular,
one would like to know the exact form of the con-
tributions of these singularities to the perturbation
expansion in order to enable one to extract the
daughter terms. Also, since these fixed poles
constitute the next-to-leading-order terms in the
amplitude, understanding the role that they play
in the interaction is essential to developing added
insight on the kinds of corrections needed in Regge
models.

For these reasons, it would be useful to turn
once again to our laboratory of Feynman graphs
and calculate the nonleading behavior of the sixth-
order terms. Such ~, .alculation would be able to
elucidate some of the questions we have posed.
For example, the u '(lnu)' terms would now em-
body the daughter trajectories as well as the fixed
poles, thereby giving additional constraints helpful
in identifying the daughter contributions. It mould

also be interesting to see whether this calculation
corroborates the explanation of our findings in
terms of fixed poles. The elucidation of these
questions, however, is not an easy task; and the
complicated behavior that me have exhibited points
out in some sense the limitations of the perturba-
tive approach.
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APPENDIX A

'gfe list below the asymptotic series expansions
for the functions E~~(z) of GGLMZ that are rele-
vant to the (spin- —,')-(spin 1) scattering process:

(-1)" l(l —1) [ l —(2n —1)]
()+-') [(--'(2 —3)] ]

'
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where

z=t+ ,', -z, =[a 2 2'r(l+-.')]jar(E+2).
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