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From considerations of analyticity and convergence it is shown that the virtual Compton amplitude
can be expanded as T„„(qo )'- Q w" 0")(' ~ ), . where the variable w is obtained by
conformally mapping the cut plane of analyticity in q 0 into the inside of a semi-infinite strip. This
expansion reduces to the usual Bjorken expansion in the limit of large qo.

I. INTRODUCTION

The hadronic contribution to the inelastic scat-
tering of electrons from an unpolarized target is
described by a tensor

w„„=-,'+&pl j„(o)ln& &nl j„(0)lp&

T„,= d ""pT j„j„0p. (2)

From inelastic electron-proton scattering, infor-
mation is available for negative q' and positive
v=p q/M. Introducing a complete set of states
ln&, we can perform the x integration' in Etl. (2):

Tpv
Ws (q„', tl) W s(q,', -tl)

2z qp qp qp+qp

(3)

The denominators (q, +q,') '=q, '(1 wq,'/q, ) ' are
expanded in a binomial series and it is easy to
show that for large values of q, , keeping q, p„
fixed, one can write

x (2tt)'d"'(p +q -p„),
where q is the four-momentum of the virtual pho-
ton, p is that of the target, and j„is the electro-
magnetic current operator. This tensor is also
the absorptive part of the forward virtual Comp-
ton amplitude,

Johnson. and Low' were first to indicate the non-
uniqueness of the expansion by perturbation meth-
ods. Commenting on the work of Bjorken' and
Callan and Gross, ' Jackiw and Preparata' and in-
dependently Adler and Tung' have shown that the
term n = 2 of the expansion (4) is not correct and
the coefficient of C'„'„' behaves like (a+& lnq, )/q, '.
Adler and Tung' considered a renormalizable
theory of an SU(3) triplet of spin--,' particles inter-
acting strongly with an SU(3)-singlet massive
vector gluon. By direct computation they have
demonstrated the existence of the lnq, term.
Therefore all results following from the expan-
sion (4), n ~ 2, are suspect. Examining the de-
duction of this expansion, one realizes that this
discrepancy could arise if the expansion is not
convergent to the desired extent. As a function of
q, , the amplitude has certain assumed analytic
properties. No single term of the Bjorken expan-
sion has the desired analyticity, whereas a per-
turbative series obtained from model field-the-
oretic calculations exhibits correct analyticity in
the desired order starting mostly from the box
diagrams. It is from such diagrams that devia-
tions from the Bjorken expansion have been de-
duced by Adler and Tung. The present work aims
at providing a possible convergent expansion which
is manifestly analytic in the complex q, plane.

T„„~ Q (."P(1/q, )", (4)
II. CONVERGENT EXPANSION

where

'2p ' n i

C'q,'= d'xe ' '"
P jq x, 0, p" 'j, o P) .

This expansion is being widely used for the study
of fundamental problems of particle physics like
radiative corrections to P decay, ' asymptotic
sum rules, ' asymptotic cross-section relations
for high-energy inelastic electron-neutrino scat-
tering, electromagnetic mass differences, ' and a
large variety of problems of strongly interacting
particles.

The convergence properties of an analytic func-
tion depend on the cut structure in the complex
plane of the variable for expansion. Consider a
sequence p„(z) approximating a function f (z) which
is singular at points z, . For each n, one wishes
to minimize the error in approximation for a do-
main D of the z plane. It has been shown by
Walsh' that the convergence properties are re-
lated to the electrostatic problem in which D forms
an earthed conductor (V =0) with a negative
charge. A family of equipotential curves V(z)
=constant is obtained and if V is any finite poten-
tial smaller than each of the potentials V(z, ) at
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the singular points, then p„(z}converges uniform-
ly to f (z} inside the closed region that is bounded

by the equipotential V(z }= V. Furthermore, the
error in the nth approximation is bounded by
exp(-nV). These ideas have been used to obtain
optimally convergent expansion of scattering
amplitudes, off-shell extrapolations, and model-
independent analyses of experimental data. ""

In the present problem the tensorial components
of T„„are to be approximated by a series involv-
ing q„which is experimentally determinable
from i to -i~. So the region D is the imaginary

qp axis. Besides qp, T„„is also a function of q

and p„. The analytic properties of T„,as a func-
tion of q, , q' are quite complicated. " For fixed q
and p„, we assume that all the components of T„„
are analytic in the complex q, plane except for the
cuts extending from -~ to -q, and q, to + on the
real axis as shown in Fig. 1(a).

The equipotentials of a line charge are cylin-
ders. So in the q, plane, they run parallel to the
imaginary axis, and the region of convergence of

the Bjorken expansion (4) is limited to the strip
bounded by qp=+q„whereas the region of analy-
ticity is the entire qp plane minus the cuts.

Following Qutkosky and Deo" and Qiulli, "a
very good convergent expansion for the given
problem can be obtained by conformally mapping
the entire plane of analyticity into a strip.

III. STRIP MAPPING

This mapping is given by the simple relation'4
q, = q, sin(z/z, ) and is shown in Fig. 1(b). In the
z plane, the imaginary q, axis has been mapped
onto the imaginary z axis and the cuts have been
mapped to form the boundaries z =+z, of the strip
of convergence enclosing the whole of qp plane.
z, is a parameter whose value can be fixed by the
following consideration: If the position of the cut
q, is made to go to infinity, q, could be the best
variable for expansion, for then the q, plane will
not have any cut structure. In this limit q,-z.
This can be achieved if z, =q, . The correct map-
ping is then

qp = sinz, (6)

0
P- Q+

A- A A+

(a)

Ay where q, and z are measured in units of q, (q').
Any expansion of the functions T» in terms of

the variable

z =sin

will be analytic in the prescribed region. We can
now try to expand

f(z) =(1+q,'/q, ) '

= (1+qo/sinz) ' (8)

8 B ~+

L&

(b)

A+

for large and purely imaginary values of z. One
notices that sinhz has an essential singularity and,
for a formal Taylor expansion in 1/z, is not un-
ambiguous. Assuming q', to be small and using a
formula of the type

f(z)=Z —.— z —f„ p
z" n1 bz

one can isolate a set of terms:

f (z) - g (fzq.'/q. )"/s,
n=p

(10)

which gives an asymptotic expansion of the type

(c)

FIG. 1. (a) The cut plane of analyticity of the virtual
Compton amplitude in q(}, (b) the strip mapping z = sin qo,.

and (c) the semi-infinite strip mapping the point
i~ to the origin. The mapping of the lines A O~, AOB,
and A O~ in the conformally mapped planes is shown.

T&„(qo, . . .) P C'„"'„(I/qo}[(inq,)/q, j" '. (ll)
n= j.

However, the differentiation of f at the limit
z-i may not be permissible and the above re-
sult is nonrigorous and ambiguous.

There are certain advantages in using the strip-
mapping variable. The convergence for a larger
region is ensured. From all perturbative methods
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where

gfgfls g ehols (14)

1.6
N)

14
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which is shown in Fig. 1(c). This factor 8 in the
exponent for the expression of q is taken such that
in the limit q, -i~, w-1/q, . The "physical" re-
gion is again the qo-imaginary axis AOI3 with the
strips at m =+4m forming the boundaries. The ori-
gin of the q, plane is at , = -i2.58. With the help
of this variable, one can now expand [q,(w)+qo] '
in powers of . Thus our expansion for the Comp-
ton amplitude is

ph

p4
Tpv 2 w" Cpv ~

n=g
(15}
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FIG. 2. The solid curve gives the values of &el for
different qpr . Note the change of scale at qpr = 1. The
straight line qpr matches the exact curve ~ &qpl 0'l. 2
and (sin qpr) matches for 0 &qpl &5, An assumed
approximate formula w„[see text Eq. (16)] is shown as
the dot-dashed curve.

IV. MAPPING INTO A SEMI-INFINITE STRIP

A Taylor series expansion about z -i~ will be
possible if A of Fig. 1(b) representing this point,
is conformally mapped to form the origin. So,
for our purpose, the infinite strip should be
mapped into a semi-infinite one. This is achieved
by the mapping

z =-ilng (12)

or

using field-theoretic models and Feynman dia-
grams, one obtains terms containing z =sin qp

and its integral powers for the amplitude. The
presence of this term ensures that the required
cut structure of the amplitude is present in the ex-
pression. Such terms will occur in the expansion
of (sinz+ q', ) ' in powers of z.

1 -1+b sinh 'q»
w —+zox 1 + c+q~ (18)

The factors b and c are chosen to coincide with
at q, =0, ~, and 1, and they are 6=0.93 and
c = 1.65. The fit with the exact formula (12} is
very good indeed. For large q~, ~, - q» '
+ (inqo)/q» '. This suggests that perturbation re-
sults containing sin 'q, terms are probably valid
for q~ & 1 and cannot be extrapolated to large
values of q~. We recommend the use of the ~
variable wherever a Bjorken type of expansion is
used.
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This agrees with the Bjorken expansion for large
q, and analytic properties are explicit in each
term.

On the imaginary axis, the variation of ~ = -Ml
with qr

' is shown in Fig. 2. One notices that for
small w, it is proportional to 1/q, for q, & 1.2 and
for q, & 0.8, w is nearly proportional to (sin 'q, ) '.

These features suggest that "~"can be written
in terms of qo and sin 'q, . In keeping with the re-
sults of perturbation calculations of Ref. 8, we
tried a simple formula:
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