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We speculate that the mechanism of one-dimensional quantum electrodynamics for prohibit-
ing quark production can be generalized to. three-dimensional space. The important feature
of one-dimensional gauge theories which trap quarks is that electric flux lines cannot spread
out and can only end on a charge. The generalization to three dimensions involves dynamical
nonlinearities which trap electric flux lines into tubelike configurations. It is suggested that
the required nonlinearities arise in Yang-Mills theories of "colored" quarks. The large-
scale properties of hadrons would be described by a stringlike model similar to the conven-
tional dual model.

I. INTRODUCTION

It has been suggested that vector gauge theories
containing fundamental quark fields may prohibit
the existence of free quarks. " The crucial idea
underlying this suggestion is the possibility of the
Schwinger phenomenon' occurring in gauge theo-
ries of "colored" quarks. Previously, we have
not addressed in much detail the important ques-
tion of whether the Schwinger phenomenon is pos-
sible outside of one-dimensional field theories.
Unfortunately, very little physical insight into
this problem exists. Here, however, we shall
try to create some semiclassical intuitions which
we hope will inspire a more complete answer to
this important question.

We will say (by definition) that the Schwinger
phenomenon' occurs when a gauge theory under-
goes a transition to a new, "third" phase. This
phase is different from the conventional and Higgs-
Englert-Brout (HEB) phases. 4 In the conventional
phase free charges can exist accompanied by their
long-range Coulomb fields. The spectrum of
states includes massless gauge bosons whose
source is the generator of the gauge transforma-
tion (of the first kind).

In the HEB phase4 gauge invariance of the first
kind is spontaneously broken and the vacuum is
not a group singlet. In this case the vector gauge
particle gains a mass and the long-range Coulomb
force is converted to a short-range force. The
particles generally form nondegenerate multiplets
under the symmetry group as if the symmetry
were broken.

In the Schwinger phase the massless gauge
boson is eliminated either by disappearing alto-
gether or becoming massive. Accordingly, the

long-range Coulomb force is also eliminated.
However, in contrast with the HEB case, the
vacuum remains a singlet. The gauge symmetry
is not spontaneously broken, and instead, all
states with nonvanishing charge (nonsinglets in
the non-Abelian theories) have infinite energy.

Consider the possibility that the massless gauge
bosons disappear. Then it follows by well-known
arguments" that the long-range r ' component
of the Coulomb field must also be absent. How-

ever, it is a special feature of gauge theories
that the strength of the long-range field is con-
nected to the total value of the charge through
Gauss's theorem. It follows that the total charge
of any isolated system must vanish. If the rele-
vant charge for strong interactions is color, then
all colored states are forbidden and free quarks
will not exist.

It is interesting to see why this logic can fail
in the HEB phase. Consider an Abelian gauge
field A. „coupled to two fermion fields g and y,

,F"'F„„+giy-"-s„/+Xi& "y„X+mgg

+mxx e(4y" 0 ——x y" x)&„.

By construction the fermions g and g have oppos-
ite charges. Now suppose that the symmetry op-
eration

x-~ '"
x

is spontaneously broken by a vacuum expectation
value of gy+X g. In this event the photon becomes
massive and the previous argument would indicate
that all states must have zero charge. But all
zero-charge states must be constructed from an
even number of fermion operators which would
lead to the (erroneous) conclusion that this model
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has no fermions.
The trouble with the argument is that the vac-

uum expectation value ( g y+ y g&0 causes transi-
tions from positively charged to negatively
chaxged fermions. The physical fermions are
more like superpositions,

If+&=lg& +Ix& .
The two states [ f, &are split in mass and have
zero average charge. However, neither is an
eigenvector of the charge with 0 eigenvalue.

In order to conclude that there are no fermions
in models we require not only that. the average
charge of any state vanish, but also that the states
be eigenvectors of the charge. In othex words,
we require that the symmetry not be spontaneous-
ly broken.

The differences between the Schwinger and HEB
phenomena have not been sufficiently appreciated
in the literature. The crucial. mechanisms which
cancel the long-range effects in the photon propa-
gator are in fact completely different. In the HEB
case the effect is due to a massless scalar bound
state in the proper vacuum-polarization tensor,
while in the Schwinger case a vector positronium-
like state shifts the photon pole. '

A question which is closely related to quark con-
finement by the Schwinger mechanism is the in-
frared behavior in non-Abelian gauge theories. '
It is known that the infrared divergences of these
theories do not add up as innocently as in quantum
electrodynamics. More likely the infrared singu-
larities mount up and produce a dramatic change
in the structux'e of the vacuum. One way for the
infrared pxoblem to resolve itself is through a
spontaneous breakdown in the manner of Higgs,
Englert, and Brout. Another way, which occurs
in one-dimensional quantum electrodynamics
(which also is violently infrared-divergent), is
through the Schwinger mechanism.

II. WHY VECTOR FIELDS?

Consider a quark pair produced at the space-
time origin with high relative energy. The guarks
begin to recede from one another with almost
the speed of light (define c = 1}. Assuming that
the quarks are coupled to some gluon field, this
field will become excited in the region between
the outgoing quarks. Three possibilities exist:

(1) The field energy never becomes too large
and the quarks escape.

(2) The field energy grows indefinitely between
the two quarks, giving rise to a force which event-
ually prevents the escape.

(3) Possibility (2} is modified by the field finding
a way to lower its energy by pair creation. The

produced pairs combine with the outgoing quarks
to produce hadrons.

In cases (2) and (3) it is essential that non-neg-
ligible fields be produced in the region between
the outgoing quarks and that these fields not fall
to zero as the energy of the process increases.

We shall represent the outgoing quarks as c-
number sources of the gluon field. When the en-
ergy tends to infinity the sources become points
on the light cone. First, consider the case of
scalar gluons satisfying

(cl+ m ') P = p,
where p describes a scalar source composed of a
pair of points separating with velocity v=1. Lo-
rentz contraction of the source requires

pdz =constx(1 -e2) . (5

Thus'

(O+ m') y =(1 —v')[O(z -vt)+ ~(z+~f)] 5(z) &(y)

for t & 0. As e-1 in the high-energy limit, the
resulting field between the quarks tends to zero
as (1 —v'). For this reason the field energy in
the scalar case does not inhibit quark production. '

In the vector-gluon case the source is a vector
current. As the source approaches the light cone
its dimensions again become Lorentz-contracted.
However, this time the Lorentz-contraction factor
is precisely offset (for the z and t components)
by the transformation properties of vector cur-
rents. Thus, in the region between the quark pair
the vector potential satisfies an equation similar
to

&0=[5(z —t) —5(z+ f)] 5(z) &(p),

CIA, = [ 5(z -f) + 5(z + t)] 5(x) 5 (y) .
Thus the fieM does not fall to zero as v-1.

Another way to see this in a gauge theory is to
observe that each charge is a source or sink of
g lines of electric flux. These lines must begin
on one quark and end on the other. Furthermore,
causality requires the lines to be contained with-
in a sphere of radius t (see Fig. 1). Since the

FIG. 1. Electric field of a high-energy pafir a short
time after their production.
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electric field is the number of flux lines per unit
area, the field midway between the quarks is at
least

E g/-t'. (8) (b)

The important point is that this field does not
fall to zero with increasing energy.

However, in three dimensions, if the field de-
velops according to the standard linear Maxwell
equations, the field energy (after ultraviolet self-
energy effects are removed) will remain finite
even as the quarks recede to infinity. It is this
fact which distinguishes three-dimensional quan-
tum electrodynamics from its one-dimensional
counterpart: In one dimension the Coulomb energy
is proportional to the distance between receding
particles.

If quarks are not to be produced in three dimen-
sions, it is essential that nonlinearities come into
play and distort the field lines. In particular, we
shall try to make plausible the idea that nonlinear-
ities prevent the flux lines from radiating away
from a charge and forming the customary Coulomb
field. Instead, the lines of flux are squeezed into
one-dimensional tubelike configurations as in Fig.
2. In this case the field configuration associated
with a receding pair would consist of a tube of
.flux stretched between the quarks as in Fig. 3.
When the flux tube is very long, we may calculate
its energy by assuming an energy per unit length
for the uniform portion of the tube far from its
ends. The energy would then be proportional to
the distance between the quarks as in one-dimen-
sional gauge theories.

As in one-dimensional quantum electrodynamics
(QED), we expect pair production in the field be-
tween the quarks. ' The new pair provides new
end points and allows the flux tube to break as in
Fig. 4. This process screens the long-range
force between the quarks, and, if it works as in
the one-dimensional theory, only a short-range
force remains.

(c)

FIG. 3. Time development of the electric field of a
high-energy pair in the flux-tube model. (a) -(c) repre-
sent successive stages of evolution of the tube.

in one-dimensional gauge models. ' Consider a
pair of oppositely charged quarks separated by
distance ~z in one-dimensional quantum electro-
dynamics. The charge of each quark is +g. In
the interval between the quarks there is a constant
electric field of magnitude g. We will picture this
situation by saying that each charge is a source or
sink of a single flux line which must not end ex-
cept on a charge. The energy stored in the flux
line is proportional to its length. This follows
either from the one-dimensional Coulomb law,

V(a, —a, ) -g')a, —a,),
or from the fact that the energy density of the
field is the square of the electric field. If we con-
sider the flux tube (Fig. 5) to be a material sys-
tem, then it is characterized by having a tension

III. FLUX TUBES AND STRINGS
IN ONE-DIMENSIONAL QED

In this section we will give a qualitative de-
scription of the "quark-elimination" mechanism

(c)

(~) (b)
FIG. 2. (a) Flux lines associated with the spherically

symmetric Coulomb field. (b) Distortion of the Coulomb
field into a flux tube.

FIG. 4. The breaking of a flux tube and the associated
production of a pair. (a)-(d) represent successive stages
of evolution.
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(14)& D=4mp
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(15)

For our applications, e may pde 'end on spatial
position. Similarly,

P = E-XE

the dielectric susceptibility.where y is known as e
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The polarization charge p~ is then D =4', =4wg 5(x},
V xE=0.

(21)

Finally, recall that the energy contained in the
field is

1
W= — E Dd x.

4m
(18)

The dielectric permeability e can be proved to
be greater than unity. " The idea behind the proof
is that when an electric field is introduced into a
dielectric the positive charges move in the direc-
tion of the field. This effect always reduces E,
the electric field in the medium. As a consequ-
ence the energy of a free charge is always less
than its energy in the vacuum.

We will think of quarks as free charges embed-
ded in a dielectric medium. However, in contrast
with the conventional dielectric, we shall allow

the susceptibility to be negative and will suppose
that regions of space can exist in which e may
approach zero. Although this behavior is impos-
sible in a conventional electrodynamical system,
there are reasons to believe that similar effects
occur in non-Abelian Yang-Mills theories. For
simplicity allow e to take on only the values zero
or unity. In addition to the field energy, the di-
electric medium has internal energy which depends
on e. We will take the internal energy density to
be lowest when e =0. Then the energy of the sys-
tem can be written as

qE2

4
d'x+ const' (x) d'x

D2
d'x+constx e x d'x. 19

4m~

In a region of vanishing c it is prohibitively ener-
getically unfavorable for D to be nonvanishing,
while a finite E field costs nothing.

Consider the possibility of a free charge of mag-
nitude g at the origin. Suppose that the electro-
magnetic field and e(x) are radially symmetric.
The D field is then

D =g r"/r ' . (20)

If e(x) vanishes in any finite region, then the term
in the energy f [D /(4we}] d'x diverges. On the
other hand, if e is everywhere 1, then the field
energy is finite, but the internal energy of the di-
electric is infinite and proportional to the volume
of space. Now consider a configuration of the di-

' electric in which a narrow tube of radius a eman-
ates from the charge. Within the tube e =1 and
outside it is 0. The electrostatic equations govern-
ing this system read

These equations may be solved as follows (let the
tube lie along the z axis). The electric field E is
constant over all of space including the tube and

points in the z direction. It contributes nothing

to the energy density at points lying outside the

tube. Inside the tube e =1. Therefore, D=E and

it is easy to see that & D =0 everywhere except
at the origin. The magnitude of the E field can be

. adjusted until & D=4mp, . This is done by set-
ting the total D flux, mcPD =ma'E, equal to the
charge 4'. The true charge (p~+p,,) is the
source of the electric field and vanishes since the
electric field is a constant. Thus, the dielectric
has provided a polarization charge which exactly
compensates the free charge.

The energy density in this solution is zero out-
side the flux tube, while inside the flux tube it is
g'/(8w'a~)+const. Therefore, the total energy is
proportional to the length of the flux tube (infinite}.
This means that the energy of a free charge di-
verges linearly with the characteristic linear di-
mension of space. Therefore, this configuration
is energetically preferable to the radial solution
whose energy was proportional to the volume of
space. Thus we see an example of the formation
of a flux tube associated with the field D in a class-
ical nonrelativistic model. "

The physical picture described here is very sim-
ilar to the "bag" model of hadrons developed by
Chodos, Jaffe, Johnson, Thorn, and Weisskopf. "

V. A RELATIVISTIC MODEL WITH FLUX TUBES

It has been conjectured that the nonlinearities
of quantized Yang-Mills theory cause a long-range
force to develop between quarks" which may not

fall off at spatial infinity. In this section we will

construct a phenomenological field theory which

exhibits this effect. We show that the long-range
force is due to the formation of flux tubes. '

Our approach to the problem of quark trapping
is to study the problem in two stages. In the first
stage we consider a pair of quarks and imagine
computing their interaction by completely sum-
ming the effects of the pure Yang-Mills gauge
field. It is at this stage that we hope to find a
long-range force mediated by flux tubes. We also
expect to find that the energy needed to remove
a quark from a color-neutral system is proportion-
al to the separation distance.

The next stage introduces the effects of pair pro-
duction by the gauge field. It allows the flux tube
to break and form hadrons and at the same time
purges all long-range forces from the theory by
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screening.
In the next section we will discuss the calcula-

tions which support the possibility of a strong long-
range force in Yang-Mills theory.

For now we just mention that renormalization
effects typically require dimensionless interaction
constants to depend on the'distance scales being
studied. For example, in @ED the interaction be-
tween electrons is much more intense at close dis-
tances than at large distances. " This effect is
above and beyond the fact that the Coulomb force
varies as e'/r'. Roughly speaking, the interac-
tions between charges should be written

F(~) ="(~)l~',

where e(r) is a dimensionless electric charge
which depends on the distance between electrons.
The physical origin of the r dependence of e(r} is
vacuum polarization which partially screens the
charge of an electron. When a second electron
is far away, it sees only a portion of the bare
electronic charge. However, when the second
electron is brought up close so as to penetrate
the screening cloud it sees a more intense inter-
action. The result is that in QED the effective
charge e(r) is always a decreasing function of r.
(This is equivalent to the fact that y&0.)

In pure Yang-Mills theory, however, the effects
which renormalize the coupling constant go in the
opposite direction. " If the force between charges
is characterized by a dimensionless coupling g(r),
then it is found that g{r}increases with r. This
raises the important possibility that g(~}-~ and
thereby produces a long-range force which pre-
vents quark production,

In order to mimic these conditions in an Abelian
gauge field, we will have to introduce an element
which reverses the direction of renormalization
effects. A simple possibility is to make the elec-
tric charge imaginary. Then, like charges attract
and opposites repel. The effect causes an anti-
screening which builds up the force law at large
distances. However, the theory with imaginary
charges probably has no ground state since the
energy is.not bounded from below. " In the model
we construct here, the positivity constraints are
violated as if the charges were imaginary, but the
Hamiltonian is manifestly positive.

Our model incorporates three fields: the Abe-
lian gauge fieM A„which may be used to construct
a gauge-invariant Maxwell field,

Ep„=~qAp-~ pAq,

a charged fermion field g to be identified as the
quark, and a local dielectric susceptibility g(x)."
The dielectric susceptibility will be expressed as

+&pa&&„~, (25)

where V is a function of P.
The current j consists of two parts. The first

is the standard fermion current

(26)

which will be thought of as free" charge. The sec-
ond term is analogous to polarization charge' and
is given by an expression analogous to Eq. (1V):

i ~=S„lX(x)F""(~}l.
The Lagrangian may be conveniently rewritten

2 = -4 (1+g)E„,F""+j A~~„Z+q 2+~ . (28)

The equation of motion for the gauge field is

s"Hl. x) F„.I=~'. . (29)

Define the electromagnetic induction tensor"
D p„by

D„„=(1+ }t)F„„.
The fermion current is then the source of D„„,

DPI/ ) P
P g 0 {31)

The term (1+y) F„„F""in g can be written in
terms of D.

(1+~)Fq~ FP Fq~DPv D D~u(1+y) i (32)

This shows that a nonzero D„„field is very costly
in action wherever (1+y}is close to zero. On
the other hand a nonzero finite E„„makes very
little action.

The first stage of the quark-trapping problem
treats the fermions as unquantized c-number
sources. We demonstrate that the fields A. „and
P create a long-range force mediated by flux
tubes. The second stage shows how the long-range
force is screened by production of fermion pairs.

We begin stage one by considering the classical
physics of the fields A and p in the presence of
classical free charges. The classical model will
be studied for the special case in which

1+x =((0 40)&4.]'— (33)

and V(P)-g(P-p, )' for (p-P, ) small. As in the
previous section, we allow X to be negative. As
we shall see later this causes the charge-renor-
malization effects to be opposite to conventional

a function of a canonical scalar field P. For illus-
trative purposes y(x) will be a fourth-order poly-
nomial in P,

g(x}= a/+ PP'+ y $3+ 5/4.
The Lagrangian is

Z=--'F„, F ""+—.'s„y»y -V(y) -q ~~„
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The Hamiltonian for our model is positive and
is given by

W=2 E'D+B H d~x+p ~Q +p +V d x,
(34}

This constraint is included by means of a La-
grange multiplier A.. Hence

0=5 W+A, pdpD p

Variation with respect to D gives

(41)

(42)
where

E Di Dfo y

(36)
Bt = & aglt F;a, &; = & &~a D,~ .

Now consider the energy of an isolated charge
g. Then for a static field

H = 0, & D =g dv(x) . (36)

The energy W is given by

W= 2 dy gy ~+By~+( y~+ (39)

This integral diverges at large y as y' ' when

P = -&. For any other value of P the divergence
is worse.

Qn the other hand, if a flux-tube solution is
possible, the flux tube will have an energy pro-
portional to its length. For a single isolated
charge this means an energy which diverges only
linearly with r and is therefore energetically fav-
ored.

Let us consider a section of a possible flux-tube
solution far from any free charge. The flux tube
and D are oriented along the z axis. Define p to
be the distance from the axis of the tube (circular
symmetry of the tube is assumed}. Both D, and

P are functions of p which tend to zero and Q,
respectively as p -~.

The energy per unit length is

where for small ((P (P,) w-e assume V(4() = p. ((P (P,}'-
Let us suppose that the D field is spherically

symmetric. From Eq. (36) it follows that

D=gr/4wr'. (38}

Assume now that ((P-(P,)'-r ~, where P is a con-
stant. Using Eq. (O'I) gives

Thus from Eq. (42) it is evident that A. is twice the
electric field strength. Furthermore, the electric
field is constant as in the simplified model of the
previous section.

Variation with respect to (t( gives

2p —2p. -Q —A.
' — '

Q
4 =0

(43}

The differential equation must be- supplemented
with boundary conditions stating

=0, lim Q(p)=p, .dd)

dp p

(44)

These boundary conditions uniquely determine
(P, which behaves like

(Q-(p, ) - exp(-const x p) (46}

i ~. = & D(1+x) ' - &x D(1+x) '. (47)

Therefore, if P = (t(, outside the tube then the two
terms in Eq. (47) cancel. Thus, as in the previ-
ous section the true charge is exactly neutralized
by a polarization charge.

Point charges are expected to produce fields
similar to those shown in Fig. 9. Very close to

for large p. This ensures that the flux tube is
spatially well defined. Since D(p) is given by Eq.
(42), we see that it, as well as the energy density,
also falls exponentially to zero.

We would like to study the field near the end of
the flux tube assuming it terminates on a point
charge. First consider a disk of charge given by

(46)

If F(p) is chosen equal to D,(p) for the infinite
tube, then the equations of motion for D are sat-
isfied by merely terminating the tube at z =0 (see
Fig. 8). The true charge (free plus polarization)
is defined to be & E. Using E =D/(1+X) we get

(40)

To find a static solution of the equations of mo-
tion we must minimize W subject to the constraint
that a given total flux passes through the tube.

FIG. 8. A truncated flux tube capped by a disk of free
charge. The free charge is neutralized by a similar
disk of polarization charge.
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Point
Free
Chorg

Polorization Charge

k k 1

k2

FIG. 9. A flux tube ending on a point free charge. A
cloud of polarization charge neutralizes the free charge.

1
y p + m

p + m

the charge, the field would be radial. The free
charge is again compensated by polarization
charge. However, the polarization charge does
not form a point charge which sits right on top of
the free charge. Instead, it is distributed over a
volume near the end of the tube (Fig. 9).

Now consider a pair of charges at positions z,
and z, . The charges are connected by a long flux
tube with an energy proportional to its length.
This may be translated into a covariant statement
concerning the action of a closed current loop in
space-time. According to the same argument
used in Sec. IV, the action of such a loop is pro-
portional to its space-time area.

We now return to the quantum-mechanical treat-
ment of the fields P and A in the presence of class-
ical free currents. We will temporarily allow II(p}
to be a general fourth-order polynomial in Q, as
in Eq. (24). V(P) will continue to have a minimum
at P,. Thus, the vacuum expectation value of P
satisfies

vk

2 2 -1
q +u

(x g krak' - k'k
pV ]J 'V

8 g k ~ k' - k'k
u~ V

g k ~ k' - k'k
pV V

g k ~ k' - k'k
pv V

lac) eel

av

(Q), = P, +quantum corrections . (48) 3$ (I, = 0

= (g„,k —k„k,) y(Po) . (49}

The model defined by Eq. (28) is severely nonre-
normalizable, but will be regarded as a phenom-
enological effective Lagrangian to be used only
in the tree-graph approximation. In fact, if the
phenomenological dielectric field y has any mean-
ing it is as an approximate substitute for all the
higher-order loop diagrams which renormalize
the Yang-Mills theory. The Feynman rules and
diagrams are enumerated in Fig. 10.

First we shall compute the gauge field propaga-
tor in the approximation of neglecting fermions.
The relevant diagrams are shown in Fig. 11 for
the vacuum polarization tensor II „,. There are
four tree diagrams, which give

II„„(trees)=(g„„k'-k„k,)
x (& to+ P4o + &Co + ~'4 }

~ ~

3 V

ay"

q +p

FIG. 10. Feynman rules for the model of Sec. V.

The gauge field propagator in the first stage is

(g„„—k„k„/k') k '[1+le(P,)j '. (50)

If our model satisfies conventional positivity
constraints, then y&0. However, if we relax
these constraints and allow 1+y(P, ) =0 as in the
classical discussion, the effective propagator is
infinite.

To understand the meaning of this result we

FIG. 11. Tree graphs contributing to II».
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should recall that the theory constructed here is
intended to describe only long-wavelength behav-
ior. For example, if the effective vertices in the
Lagrangian were smeared in coordinate space
over a cutoff distance p. -', we would expect little
or no change in long wavelengths. As an example,
we can introduce momentum-dependent cutoffs
p'(k'+ p. ') ' for each external line of a vertex.
The contribution to II „,would now be modified to
read

11„=(g „,—k „k„/k ) g' (0)p, '(k + p )

and the propagator becomes

(51)

(gpv kpku/k ) k [I+X(Ao) 9 (k +p ) ]

For k«p, , this may be written"

(g„„-k„k„/k')g'k 4,

(52}

(53)

F= 0 Texp ig A" dx„0 (54)

Wilson' suggests that if the effective force is
short-range, then the amplitude is proportional
to e ~, where P is the perimeter of the loop. A
long-range quark-confining force would result if
the amplitude were proportional to e ', where a
is the area of the loop."

To compute the amplitude in the tree approxima-

where we have used g(P,}=-1. We could also ob-
taiA the same effect from loop corrections to II„„
evaluated with cutoffs. Therefore, for very large
distances the propagator indeed diverges. One
may conclude that at large distances the theory
becomes superstrongly coupled.

Of course, the k-4 behavior of the propagator
is not consistent with positivity requirements and
would certainly lead to inconsistencies in the Abe-
lian theory. We can take two possible views with
regard to this situation. The first view is to allow
the propagator to be infinite at this stage and to
rely on fermion loops to render it finite. We shall
see how this works later in this section. The sec-
ond view is to say that in Yang-Mills theory the
gauge field propagator does not satisfy positivity
constraints and that there is nothing wrong with a

-P 4 behavior.
Although the propagator is infinite for all k in

the tree approximation, the force law between
charges is not. The single-photon exchange is
not a good guide to the long-distance force be-
cause, as we have seen, the theory is superstrong-
ly coupled in the infrared. To study the force law
resulting from tree graphs, consider calculating
the amplitude for a fermion loop with the loop
treated as a c-number current,

e'" ' 0 Tj ~~ x j' 0 0 xpr dx

= (g ""k —k" k') II(km), (56)

where the matrix element is computed in the one-
fermion-loop approximation.

II(k') may be expressed in terms of a positive
spectral function R (m'),

II(k') =(a —k') R(m')(k'+ m') '(a+m')-' dm',
0

(5V}

where a is a convenient but arbitrary Euclidean
renormalization point. ' For our present appli-
cation we may not use a =0 since we are expect-
ing infrared singularities at k' =0. Summing the
graphs in Fig. 12 gives

(g&„—k„k„/k ) k 2[1+y(Q )+II(k )] '.
Now we may allow y(P, ) = -1. Since R(m') is

positive we know II(0)e 0, and therefore the gauge
field propagator now has the form

(58)

FIG. 12. Fermion-loop corrections to the gauge-field
propagator. The double wavy line is the full propagator
in tree-graph approximation.

tion we make use of a theorem which states that
the sum of all connected tree graphs is exactly
equal to the classical least action. " Combining
this theorem with the observation that the full
loop is the exponential of connected graphs gives

(55)

It is clear from our discussion of the energetics
of the classical theory that the classical action is
finite and proportional to the area of the loop.
Moreover, the classical action is not sensitive to
a cutoff p, for large p, . Therefore, the actual
force law, unlike the gauge field propagator, is
also cutoff-insensitive in the tree approximation.

At this stage we should attempt to eliminate the
unphysical behavior of the gauge field propagator
and the long-range force by accounting for pair
production. As we have already remarked, pair
production would allow the flux tube to break, thus
eliminating the long-range force. We can also see
how pairs would cure the peculiar properties of
the gauge field propagator. Let us therefore con-
sider the corrections due to simple fermion loops.
The graphs in question 'are indicated in Fig. 12.
The double wavy line represents the complete pho-
ton propagator in the absence of fermions and be-
haves like k-'[1+y(g, )]-'. Define
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VI. YANG-MILLS THEORY AND INFRARED SLAVERY

In this section we will describe the reasons for
believing that Yang-Mills theory might generate
a long-range force between unscreened quarks.

The expression for a single quark loop propa-
gating around a closed curve 1" in coordinate space
space involves the expression

F =—tr 0 Texp ig7. Adx„0 (61)

where dx„ is a line element along the curve I', p,

is a space-time index, n is a color index, 7 are
the generators of the color group in the quark re-
presentation, and T denotes time ordering. The
vector ~0) is the vacuum of the pure Yang-Mills
theory. By definition, the action is A=lnF.

One important advantage of using F in character-
izing the range of the interquark force is that it
is gauge-invariant. A perturbation series in g
may be derived, and it is found that F is a sum
of all graphs of the type shown in Fig. 14. The
gauge field propagators and vertices are standard

This approximation is not consistent, however.
The very-low-k' behavior of the fermion loop is
controlled by very large fermion paths in space-
time. Therefore, we must not ignore the long-
range force which acts between the pair. This
force comes from diagrams like Fig. 13. That is
to say, the fermion pair is not free but is instead
bound by a flux tube.

In order to guess the results of such a modifica-
tion in the fermion loop we will recall a result
from the string model. Namely, in this model
there exists a massless-vector bound state. If
such a state actually occurs in the spectrum of
the flux tube, it will make II(k') behave as

(60)

Then the propagator is completely finite at k' =0.
The effect which eliminates the long-range force

and renders the propagator finite at k' =0 is the
classic Schwinger phenomenon. The relevant
bound state in this theory is a fermion pair held
together by a flux tube. The same role is played
in one-dimensional QED by a bound electron pair.

and may be calculated in any gauge. Each vertex
at which the fermion loop absorbs a gauge boson
involves a factor gz . The graphs may be corn-
puted in coordinate space and each external
gauge boson may be attached to a point on the cir-
cumference of the loop in an obvious fashion. To
each order in g the amplitude is found to be gauge-
invariant.

Let us consider a loop 1" of a given shape and
size. A scale factor A. will be used to vary the
size of the loop. For example, if the reference
loop is a unit circle, then A. is the radius of an
arbitrary similar contour. Our aim is to deter-
mine whether the action can grow as the area A.'.

Dimensional arguments assure us that in a giv-
en order of perturbation theory

d(n )
lnF - C „g ink. (62)

lim SU(n).
n~~

The function F should be invariant under
changes of the renormalization subtraction point
and therefore should satisfy the renormalization
equations

g
2

9

where, for given n, g is a finite sum. There-
fore, in order to build up the required A,

' behavior,
graphs of progressively higher order will have to
be important as the loop increases in size. In
view of the expected area rule, it is reasonable
to hope that the most important graphs will have
a two-dimensional or semiplanar structure as A.

A. -~. 't Hooft has made some interesting specula-
tions along these lines" based on the unusual lim-
it of Yang-Mills theory in which the internal-sym-
metry group is

FIG. 13. Fermion-loop correction allowing fermions
to interact.

n
9

FIG. 14. Graphs contributing to I in the Yang-Mills
theory.
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(63)

or

(64)

g(t) = p(g(t)) . (65)

Equivalently,

(66)

where t =ink, .
Equation (66) states that a change of scale can

be exactly compensated for by an appropriate
change of coupling constant. The change in cou-
pling constant needed to compensate a given scale
change is governed by the Gell-Mann-Low equa-
tion

tween the screening of physical forces and the
gauge field propagator. This is so because the
Yang-Mills field itself is colored and does not
correspond to the propagation of physical states
if the Schwinger phenomenon occurs. The behavior
of the Yang-Mills propagator would be similar to
that of the charged-particle propagator in one-
dimensional QED. Recall that for one-dimension-
al @ED this propagator is gauge-dependent, and
its infrared behavior is therefore not physically
significant. The behavior can in fact be made
arbitrary by gauge transformations.

The fact that P(g) & 0 in Abelian theories does
not necessarily preclude the occurrence of the
Schwinger mechanism. It is only that the two-
stage method of solving the theory would not be
sensible. In fact, Wilson' has given arguments
that strongly coupled QED does undergo the Sch-
winger phenomenon.
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d'. x t~=exp
( )

(6V)

Therefore, according to this last expression a
change of coupling constant from g, to g, is equiv-
alent to a rescaling of coordinates by a factor
A.,/a, . This means that if we knew p(g), we could
substitute the question: "How does A vary with
coupling constant'P" for the question: "How does
A vary with A. 7"

We will assume that for fixed A. a finite coupling
constant leads to a finite A. Thus, to make A. ap-
proach infinity for fixed A., it is necessary to al-
lowg-~. Accordingly, if the actions is to grow
to infinity with A. , then so must g(X). From Eq.
(69) it is seen that P(g) must be negative for this
to occur. It is well known that positivity require-
ments force P(g) to be positive in Abelian gauge
theories. However, recent calculations in pure
Yang-Mills theories have shown that P(g) is neg-
ative for g sufficiently small. "

Of course, in order to verify the flux-tube model
or the area rule, it will be necessary to know a
great deal more about P and sA/Sg for large g.

In Yang-Mills theories, as in one-dimensional
QED, we expect fermion-antifermion production
to screen long-range forces. However, in non-
Abelian theories there is no clear connection be-
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electric flux tube discussed in the present paper
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lished).
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