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J d3x Cj"2Q = dsn
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(a)

see S. Fubini and G. Veneziano, Nuovo Cimento 64A,
811 (1969); K. Huang and S. Weinberg, Phys. Rev.
Lett. 25, 895 (1970).
See Sec. III, especially (3.14) for the definition of
these boundary conditions which may be used in place
of (1.2) for a bag containing scalar fields. Identical
virial theorems are obtained with Neumann boundary
conditions [see (11.1)] and in the case of Dirac particles.
Time may be placed by x+ in light-cone variables, or
indeed by any other time or lightlike coordinate.
The normals are chosen with opposite orientation on
Rg and R2.
The Dirichlet boundary conditions have been discovered
independently by T. T. Wu, B. M. McCoy, and
H. Cheng, following paper, Phys. Rev. D 9, 3495 (1974).

~40ur quantization procedure is modeled after that dis-
cussed in P. Goddard, J. Goldstone, C. Rebbi, and
C. B. Thorn, Nucl. Phys. B56, 109 (1973).

~5This is not trivial since there is no momentum con-
jugate to the surface variable R.
The generator of translations in x is P = -P+=—-P.

~TThis is the reason that we study the complex scalar
field. For the real scalar field g must be a periodic
step function which takes on the values 0, m, so the
only solutions with a fixed radius are rather formal.
We can see that this is a characteristic of static solu-
tions of the real field problem regardless of shape as
follows. Consider the integral

2B ds = — d3x— (c)

However, because the energy is bounded and depends
upon the integral of P, $ is bounded in the bag. Hence,
if we average (c) over the time we find Area = 0,
which is clearly not possible. Hence, there can only
be solutions with static walls of the bag if TP is dis-
continuous on the surface, as a function of time (or
position) .
P. Hayes (unpublished).

SWe have been rather sketchy in this analysis. Details
will be published elsewhere.
Putting a very large mass outside is equivalent to
confining particles by a scalar potential. The fact
that such a scalar potential confines both particles
and antiparticles has been mentioned by N. N. Bogoliu-
bov et al. , Dubna Report Nos. D-1968, 1965 (unpub-
lished) and D-2569, 1966 (unpublished); H. J. Lipkin
and A. Tavkhelidze, Phys. Lett. 17, 331 (1965).
Hadronic interactions were introduced into the string
model by just such a fissioning mechanism. See
S. Mandelstam, Nucl. Phys. B64, 205 (1973).

where we assume the surface is static. The boundary
conditions (3.14) require V@= + (2B) ~n on the surface.
If we demand smoothness, i.e;, only one sign of the
square root then (a) reduces to

a'
(2B) ds = (2B)' Area= d x —Q

s Bt2

Since R is static,
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We derive the boundary conditions satisfied by a boson field in the theory of hadron "bags."
The scattering problem, the fission problem, and the fusion problem in this theory of one
spatial dimension are discussed.

I ~ INTRODUCTION

In the preceding paper, Chodos, Jaffe, Johnson,
Thorn, and Weisskopf' (CJJ TW) proposed a very in-
teresting model for the structure of hadrons. They
assume that hadron fields are contained inside a
"bag" which has a constant, positive potential en-
ergy density B. By requiring that the action of
this Lagrangian be an extremum, they obtain the
field equations inside the bag and the conditions
satisfied by the wave functions at the boundary.

These equations also determine the location of the
boundary.

Their boundary conditions do not require the
field to vanish at the boundary. This seems to
lead to difficulties when two hadron bags scatter
from each other. In CJJTW troubles with boundary
conditions are already encountered in the fermion
case, and are solved by introducing an outside
field with large mass. In this paper we propose
to apply the same treatment to the boson case.

It is found that this procedure leads to a different
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set of boundary conditions from those given by
CJJTW. In particular, the boson field is indeed
required to be zero at the boundary. In Sec. II we
derive these boundary conditions, and in the re-
maining sections we discuss solutions of these
equations in two dimensions, with special em-
phasis on the scattering of two bags.

(8,4)'= -2&

III. CLASSICAL SOLUTIONS IN TWO DIMENSIONS

II. BOUNDARY CONDITIONS

Following CJJTW, we consider the action

W= d~x g &p 2-B + de —' 8 4 2- ACMIC
2

We shall next discuss the solutions of the field
equation (2) with the boundary conditions (12) and

(13) in the simple case of one spatial dimension.
Following CJJTW, we denote

(f+z),1

where V is the space-time region occupied by the
hadron bag, and V is the region outside the bag.
We are interested in the limit M- ~. For any M,
the variation of W by changing Q and C and keeping

V fixed leads to

8~8~/=0

where ~ is the spatial variable. Then the solution
of (2) is

4(x, &) =f (&)+g'(x).

The boundary conditions (12) and (13) give
in Vand

(8~8~+M2)4 =0

in V, together with the boundary condition
and

f(&(x))+g (x) = o

f '(r(x))g'(x) = -B,

(15)

(16)
n„8„$=n„8&4, (4)

where n& is the unit vector in the direction of the
normal to the boundary. Equation (4), . together
with the continuity condition on the boundary

where r(x) describes an end point of the bag. From
(15) and (16) we get

implies that, ' on the boundary,

s„y=8„e.
We next vary Vand obtain

g(sqf)2 —B= g(8q@) —g M 4)

From (6) and (f) we get

y =4 =(2a)'"/M

(6)

(8}

Thus, if r, (x) and r, ( )xare the two end points of
the bag, then

7,(x) =r, (x)+a,

where a is independent of x. Substituting (18) into
(15), we find that f (r) is a periodic function of
period a. Similarly, if we denote the end points
of the bag as x,(r) and x,(&), we find that

x,(r) =x,(r)+b,
on the boundary.

When M is large, (3) may be solved' by the WKB
method in the form

4 =e"~,

where j satisfies approximately

(s„j)'+1 0.
Thus

(8 4)2--M2(f)2.

The boundary conditions in the limit M-~ are
obtained by substituting (6) and (8) into (ll). The
results are

where 5 is independent of r, and that g(x} is a
periodic function of period b.

We observe that we may restrict ourselves to
the solutions in which a and 5 are equal, as the
other solutions may be obtained from these solu-
tions by I orentz transformations. Indeed, the
latter solutions are the stationary ones which may
oscillate in position but have no mean velocity
over a long period of time. For such solutions,
we have by (17) and (15) that

(20)
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l a

[g'(x)]'dx = aB,
0

where r, (0) is chosen to be zero

(21)

IV. SOLUTIONS OF A SINGLE BAG

We have found that the solution of a stationary
bag is completely specified if the periodic func-
tion g(x) satisfying the normalization (21), is
given. A periodic function must have extrema. At
an extremum of g (x), there are two possibilities:
(i) g'(x) is equal to zero; (ii) g'(x) is discontinu-
ous.

If g'(x) is equal to zero at an extremum, then
by (16)f'(r(x)) is infinite. Indeed, let

g(x) =-x'
near x=0; then (20) shows that

f(~)=( 4 )

(22)

(23)

near T = 0. Thus f '(r) blows up like
~

7 j
'~' at the

extremum v =0.
There also exist solutions for which g'(x) is dis-

continuous at an extremum. To see that such solu-
tions also satisfy the variational principle, we

apply the Weierstrass-Erdmann conditions' for
solutions with discontinuous derivatives. Let g(x)
have discontinuous derivatives at &0; then these
conditions are that f'(T) and [f'(T)g'(x) -&]are
both continuous. The second condition is trivially
satisfied as [f'(r) g'(x) —L] is equal to the constant
B, while the first condition is implied by the con-

tinuity of Q(x, r) at x,. Thus g (x) is allowed to
have discontinuous derivatives.

Two explicit solutions of a single bag are illus-
trated in Figs. 1 and 2. The first example is a
bag with fixed shape traveling with a uniform ve-
locity, while the second example is a bag at rest
with pulsating shape. Both of these solutions have
discontinuities. These discontinuities travel with
the velocity of light, reversing direction after
they hit the boundary. 4

and

f (T —a') +g (x) (24)

F(r)+G(x —b), (25)

where a and h [a' and 5'] are the periods of ~f (T)
and g(x) [E(v) and G(x)], respectively. Further-
more, the boundaries of the scattered bags are
respectively given by

r, (x) +a', i = 1, 2 (26)

V. SCATTERING, FUSION, AND FISSION

We shall next consider the scattering of two
bags. Let the incident bags be described by f (7')

+ g(x) and E(T)+G(x), respectively. We shall
show that there exists a solution to (2), (12), and
(13) such that the two bags emerge elastically with
the wave functions acquiring only phase shifts.
Specifically, if bag 1 is behind bag 2 at the distant
past and catches up with bag 2 at some finite time,
then the scattered bags are respectively described
by

x

V

V

~)cu 5b
I

2b
Cl

b
x)(v) = —v

—x-bb
0

80b

—JBobI

2

20 30

Bbf(~) = —.

0
0 0C ~
2 2

FIG. 1. An explicit solution for a bag with a fixed size ab/(a + b ) . Both of the end points of the bag travel with
the uniform velocity (b -a)/(b + a). The dashed lines are the surfaces of discontinuous derivatives.
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FIG. 2. An explicit solution for a stationary bag with a pulsating size. The dashed lines are the surfaces of discon-
tinuous derivatives.

U

Y'

x = xi (z)+b

x= x((z)

FIG. 3. An explicit wimple of the elastic scattering of two bags.
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x = x) (r)+b

x= x) (r)

x = X((z)
x =X) (~) -b

FIG. 4. An explicit example of a fusion process.

and

X,(T)+5, i =1, 2,
where r, (x) and X,.(v) denote the boundary of the
incident bags.

It suffices to demonstrate the above by a simple
example, as the extension to general cases is
evident. Let us consider the scattering problem
illustrated in Fig. 3, where the two bags first
touch at x=&=0. Thus the solution is equal to the
superposition of the wave functions of the incident
bags everywhere except in the first quadrant. To
find the solution in the first quadrant, we note that
it is also in the form of a function of & plus a func-
tion of &. In order to determine these functions of
& and 7, we observe that the function of & at any
two points connected by a vertical line must have
the same value, if this vertical line crosses no
boundaries of the bags. Thus the function of r in
the region QPQRS of Fig. 3 is simply F(r). Sim-
ilarly, the function of x in the region OPRTS is
simply g(x). Thus by (1V), the T coordinate for
the boundary curve ST obeys the same equation
as that satisfied by r, (~). Therefore, the curve ST
must be r = [T,(x) + a' . Furthermore, the function

of T in the region SRT must be f (r —a') so that the
solution vanishes at the boundary curve ST. Sim-
ilarly, the solution in the region PQR is E(r)
+ G(x —5), and the boundary curve PQ is given by
x= [X,(r)+f ].

We have thus seen that the solution to the left of
the curve SOP completely determines the solution
to the left of the curve TRQ. We may therefore
expect to be able to determine the solution farther
to the right in a step-by-step way. It is somewhat
surprising that there exist not one, but two solu-
tions in the farther region. ' One of the solutions
is illustrated in Fig. 3, and is given by (24)-(2V).
This is the solution describing the elastic scatter-
ing of two bags. The other solution is illustrated
in Fig. 4, and describes a fusion process. If we
make a reflection about the origin, the solution in
Fig. 4 becomes a fission process. Thus we have
seen that there are scattering solutions, fusion
solutions, and fission solutions for the wave equa-
tion (2) with the boundary conditions (12) and (13).
Furthermore, the solution is not unique even if all
initial conditions are specified. '

This nonuniqueness is related to the existence
of points like R and O. At such a point, we have



3500 TAI TSUN WU, BARRY M. Mc COY, AND HUNG CHENG

the following: (i} the wave function vanishes;
(ii) two surfaces of discontinuity (in the partial
derivatives} intersect; (tii) Eg. (13) is satisfied for
both sets of (8$/&f, 8$/Bx).
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A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and
V. F. %'eisskopf, preceding paper, Phys. Rev. D 9,
3471 {1974). This paper wilI be referied to as CJJT%'.

Strictly speaking, this is true only if the boundary does
not move with the volocity of light. To see this, let
us consider for simplicity the case of taro dimensions.
In this case, {4) is nt(P, —4&) -n»g» -4») =0, while
(5) gives n. g, -C,) -n, g„-C„}=0. These two equa-
tions imply (6) only if n, 2& n»2.

3See, for example, O. Bolza, Culellus of Vmiutions
(Chelsea, New York, 1960), p. 36. This book only gives
these conditions for one-dimensional integrals. How-
ever, generalization to two-dimensional integrals is
immediate. Let x and y be the two independent variables
and n=n„e„+ nyey be the normal to the surface of dis-
continuity; then the Weierstrass-Erdmann conditions are
that

(S~f~+ Sygy)8~ + Sy '-LdL BI
X y

are both continuous.
Generally speaking, a discontinuity in the wave function
gives dominant contributions to scattering processes
with large momentum transfer. It is therefore inter-
esting to speculate about the relation between the dis-
continuities discussed here and the pointlike structure
inside a hadron as seen in ep scattering. Note that
these discontinuities are also present in three-dimen-
sional bags.

5Nonuniqueness of solutions also occurs in the string
model, where a string may or may not break up at a
point traveling with the velocity of light. See, for
example, S. Mandelstam, Nucl. Phys. 364, 205 (19V3).
%'e thank Professor J. Mandula for informing us of this
paper.

Qn classical mechanics, this type of nonuniqueness is
not unusual, such as a particle falling off a sphere,
or an inclined ladder sliding off a frictionless waQ.
In these cases, the nonuniqueness can be resolved by
the requirement that, for sufficiently small time in-
tervals, the action is a minimum, not merely an ex-
tremal. So far as the authors are aware, such resolu-
tion is unavailable for problems of classical' field theory.


