
CONSTRUCTION OF DUAL AMPLITUDES

~%'ork supported in part by Scientific and Technical
Research Council of Turkey.

D. D. Goon, Phys. Lett. 29B, 669 (1969);M. Baker and
D. D. Coon, Phys. Rev. D 2, 2349 (1970).

2M. Baker and D. D. Coon (unpublished).
3G. Veneziano, Nuovo Cimento 57A, 190 (1968).
4D. D. Coon, U. Sukhatme, and J, Tran Thanh Van„Phys.

Lett. 45B, 287 (1973).
M. Arik and D. D. Coon, Phys. Lett. 48B, 141 (1974).

8J. F. Gunion, S. J. Brodsky, and R. Blankenbecler,
Phys. Lett. 39B, 649 (1972); P. V. Landshoff and J. C.
Polklnghorne, iMd. 44B, 293 (1973};S. J. Brodsky and
G. R. Farrar, Phys. Rev. Lett. 31, 1153 (1973).

7R. Blankenbec1er, S. J. Brodsky, J. F. Gunion, and
R. Savit, Phys. Rev. D 8, 4117 (1973).

SE. Cremmer and J. Nuyts, Nucl. Phys. B26, 151 (1971).
J. D. Bjorken and J. Kogut;, Phys. Rev. D 8, 1341 (1973).

PHYSICAL REVIEW D VOLUME 9, NUMBER 12

New extended model of hadrons*

1 5 JUNE 1974

A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. %'eisskopf
Laboratory for Nuclear Science and Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 25 March 1974)

We propose that a strongly interacting particle is a finite region of space to which fields are
confined. The confinement is accomplished in a Lorentz-invariant way by endowing the finite
region with a constant energy per unit volume, B. We call this finite region a "bag." The
contained fields may be either fermions or bosons and may have any spin; they may or may
not be coupled to one another. Equations of motion and boundary conditions are obtained
from a variational principle. The confining region has no dynamical freedom but constrains
the fields inside: There are no excitations of the coordinates determining the confining
region. The model possesses many desirable features of hadron dynamics: (i) a parton
interpretation and presumably Bjorken scaling; the confined fields are free or weakly inter-
acting except close to the boundary; (ii) infinitely rising Begge trajectories as a consequence
of the bag's finite extent; (iii) the Hagedorn degeneracy or limiting temperature; (iv) all
physical hadrons are singlets under hadronic gauge s~~etries. For example, in a theory
of fractionally charged, "colored" quarks interacting with colored, massless gauge vector
gluons, if both quark and gluon fields are confined to the bag, only color-singlet solutions
exist. In addition to establishing these general properties, we present complete classical
and quantum solutions for free scalars and also for free fermions inside a bag of one space
and one time dimension. Both systems have linear mass-squared spectra. We demonstrate
Poincare invariance at the classical level in any dimension and at the quantum level for the
above-mentioned explicit solutions in two dimensions. We discuss the behavior of specific
solutions in one and three space dimensions. We also discuss in detail the problem of fermlon
boundary conditions, which follow only indirectly from the variational principle.

I. INTRODUCTION

In this paper we shall propose a new model for
the structure of hadrons. It is a model which will
be formulated in exact, quantitative language.
However, it is conceptually simple and, conse-
quently, we shall see immediately that it possess-
es many features which are in accord with the
present understanding of hadron structure.

%'e assume that a region of space which is capa-
ble of containing hadronic fields has a constant,
positive potential energy, B, per unit volume. B
will be the only parameter of the theory, at least
at the start. B will be of the order 1 GeV/(fm)',
and the chaxacteristic linear dimension of a had-
ron will be scaled by (I/B)'~'. For short, we will

call a region of space which contains hadron fields
a "bag."

Because the action associated with B is propor-
tional to the volume of the space-time hypertube
swept out by it, the model is relativistically in-
variant. As an example, the simplest such sys-
tem is described classically by the action

R

where the spatial region of integration extends
over a closed, finite part of space (the bag). In
(1.1), p is the prototype of a hadromc fieM, that
is, the field for partons or hadron constituents.
To obtain the equations of motion and associated
boundary conditions, we require 5' to be stationary
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with respect to variations 5p of p which are arbi-
trary inside of and on the surface of the bag.

We also require 5' to be stationary with respect
to independent variations of the position of the
surface of the bag [6R(n, f)]. R will depend on two
parameters a„a2, which vary over the surface,
and time. This feature is, of course, also es-
sential for relativistic invariance. Since there are
no kinetic terms in (1.1) which involve the bag
surface, the equations which result from this re-
quirement will be equations of constraint which
(implicitly) define the geometrical variables
[R(n, t)] to be functions of the field degrees of
freedom in the bag. Thus, this model of an ex-
tended relativistic object is distinct from earlier
ones" in that in those models the geometrical
variables were also, in part, dynamical. The
field equations and boundary conditions which re-
sult from the variational principle are

p =0 inside the bag,

BR
n p+n van=0 on the surface

8 f

&p' —&(Vp)'=8 on the surface,

where ~ is the normal to the surface at any point.
In Sec. III we discuss these in detail.

We emphasize that (1.1) is just a prototype of
our model. The hadron constituent fields which
are confined in the bag can carry any spin or
quantum number. In this paper we generally shall
assume that the fields confined in a bag are "mass-
less, " that is, we shall take the free Lagrangian
for the fields to be the part which consists of the
derivative terms. Thus, the only dimensional
parameter will be B.

In this class of models the fields contained in a
bag need have no interaction terms in the Lagran-
gian. Therefore, our model is capable of realiz-
ing in a covariant context the free-parton sub-
structure for hadrons. Indeed, this feature was
instrumental in suggesting the model. It is intui-
tively clear that a short-distance probe (q' » MB)
when scattering from a constituent quantum in the
bag will scatter from a free pointlike particle far
from the walls, and hence Bjorken scaling of the
scattering amplitude should result.

Up to this point we have only a model of a single
hadron, albeit, in all of its possible states. In
order to have a theory of strong interactions we
must provide for a local coupling among hadrons.
We may visualize this interaction to be one which
allows a bag to fission or different bags to co-
alesce. This may be described classically in a
local, causal way, if we couple two bags to form

Q=I3+g Y+ 3C, (1.3)

where I, and I'belong to the ordinary SU(3) and C

belongs to the colored SU(3). The quarks have
ord1nary Fermi stat1stles. We construct the mod-
el so C =0 for all physical hadrons. In this way
all physical states will belong to zero-triality
ordinary SU(3) representations. To achieve this
we allow the current qy" Cq to be coupled to a
massless Abelian gauge field (gluon) with a small
coupling constant. This will weakly break color
symmetry and give small radiative corrections to
the parton structure. W'e assume that the gluon
field is hadronic, that is, it is confined in the bag
with the colored quark fields. This will prevent
the appearance of hadron states with C a 0. In
Sec. VI we show that solutions of the dynamical
equations exist only if C =—0. This is consistent
with our fission interaction, for if a bag with C=0

a single bag (or allow a single bag to become two)
at points on their respective surfaces. We then
integrate over the point. To obtain the quantum
amplitude we would then (for example) further
"sum over histories. " Clearly, the constant B
must be universal among bags for this interaction
to make sense. It is needless to say that the cal-
culation of this amplitude would be a formidable
task. %'e make no apologies for this. The test of
our mode1 will result from the class of predic-
tions of quantitative results which can be obtained
from it. In particular, asymptotic calculations of
many sorts can be made in a fairly simple way as
we shall show in detail in this paper.

Because the bag model describes an extended
hadron, it shares with other extended models such
as the string a leading Regge trajectory which is
infinitely rising. Furthermore, the bag yields an
asymptotic density of states of the form p-e ~~0

(see Sec. II) in common with the string model (and
other extended models with different internal di-
mensions).

Although we have suggested that the fields in a
bag should be free in first approximation, at the
next level we shall propose that they be coupled
weakly. %e shall argue that such a weak coupling
can account for the observed quantum numbers of
the hadrons. The coupling should be weak enough
so that the parton currents will show only small
deviation from sealing by means of radiative cor-
rections. We propose that the hadronie fieMs con-
tained in the bag are "colored" quarks and gluons. '

The simplest model, which will have the correct
quantum numbers for physical hadrons and approx-
imately conserved color symmetry, is the Han-
Nambu model with the integer-charge rule for the
colored quarks,
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begins to fission (Fig. 1) by means of our assumed
hadronic interaction into two bags, mith C and
-C, the bags will be connected with total flux
lines C since the flux is confined in the bag. If me

imagine, classically, that the tmo bags are con-
nected by a neck of area A and length R, the gluon
field energy in the neck will be proportional to
(C/A)'AR = (C'R/A). This neck energy diverges if
the bags try to recede from each other (R -~) or
if the bags fission (A-O), that iS, the flux lines
cannot be broken by the strong interaction. The
gluon coupling constant need not be large to achieve
this. Thus, the massless gluon field confined in
the bag alloms for an intuitively simple, classiea1
may of understanding mhy C = 0 for all physical
hadrons. '

An alternative scheme with color an exact sym-
metry (and, therefore, with many fewer states
than in the Han-Nambu model) can be based on a
massless non-Abelian colored- gluon field confined
in the bag. Here, the masslessness is also nec-
essary to ensure renormalizability. ' In this mod-
el color symmetry mould be exact, and a trivial
generalization of the above argument to the non-
Abelian case shows that it is hidden. However,
in order that the non-Abelian gauge theory be con-
sistent mith electromagnetic interactions, it would
be necessary to replace (1.3) by

Q=I, +-,'F.

That is, in the theory with exact color symmetry
the quarks mould have fractional charge.

The remainder of the paper is organized as fol-
lows. In Sec. II me examine the highly excited
states of the bag from a semiclassical point of
view. We are able to calculate very simply horn

energy is shared between the bag and the fields in-
side. %'e derive the level density, and discuss
the large-quantum-number behavior of the Regge
trajectories. In Sec. III me treat in detail both the
classical and the quantum meehanies of a one-
syace, one-time dimensional bag containing scalar
fields. In Sec. IV we offer some illustrative solu-
tions of the equations of motion, in both one and
three space dimensions. %e turn in See. V to a
discussion of the proper boundary conditions for
Fermi fields, and we solve the quantum-mechani-
cal fermion bag in two dimensions, analogous to
the scalar solution of Sec. ID.

The problem of interactions within the bag is briefly
treated in Sec. VI, where we derive the boundary
conditions for a system of colored quarks interact-
ing with non-Abelian gauge fields, and we prove
from these boundary conditions that colored had-
rons cannot exist. In Sec. VII we outline the prob-
lems and challenges which lie ahead.

IMAM)mijs =

~

FIG. 1. A color-singlet bag attempting to fission into
two bags which are not color singlets. The flux lines
of the colored gluon field are shown explicitly.

II. SEMICLASSICAL DESCRIPTION OF A HADRON
AT HIGH EXCITATION

Because of 'the slmpllclty of Gill' model 1't 18 pos-
sible to draw a number of general, semiquantitative
conclusions regarding the properties of the hadron.
Some of these will be in the form of "virial theo-
rems, "which relate the time averages of dynami-
cal quantities. These are rigorous on the classi-
cal level and probably remain so in the quantum
theory, at least in the semiclassical limit when
interpreted as relations between expectation val-
ues.

Many of our results are based upon a statistical
treatment of the model at high excitation. In this
"thermodynamic" limit we approximate the bag by
a gas of free, massless particles —the quanta of
the p field which we shall call "partons" —enclosed
in a region 8 and subject to an external pressure
B. The extent to which this approximation is valid
will be discussed below. For the moment me note
that relations derived as time averages from virial
theorems are reproduced as ensemble averages in
our thermodynamics.

Our conclusions may be summarized as follows
(the derivations will follow):

(a) The fieid in the bag behaves on the average
like a perfect relativistic gas; that is, the trace
of the energy-momentum tensor associated with the
field, when averaged over space and time, is zero:
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(b) The time-averaged volume of a bag is pro-
portional to its energy:

E =4B(V) .
(c) The ground state and lowest excited states

of the bag contain a few partons of average mo-
mentum of order B'/ enclosed inavolume of order
B ' ' [B.hast he di mensi on(le ngt h) 'with 5 =c =1,
andenergiesare expressed as reciprocal lengths. ]

(d) In the thermodynamic limit the bag has a
fixed temperature, To, independent of its energy.
T, is of order B ' '. This is equivalent to the fol-
lowing statements:

(d,) The average kinetic energy of the partons is
of order To independent of the bag's energy E pro-
vided the latter is larger than T,: E»T,.

(d,) The asymptotic level density g(E) of the sys-
tem is an exponential function of E:

g-e '"
(d, ) The number, N, of partons plus antipartons

present in the hadron is proportional to its energy:

N~E/T().

(e) If the classical dynamics is such that there
is a maximum angular momentum of the hadron at
a given total energy E, that maximum must be

=km-'"E'",

where k is a dimensionless constant determined
by the detailed dynamics. If the classical limit
(5 -0) exists, quantum corrections to this formula
would be down by powers of E. If there is no clas-
sical leading trajectory, a plausibility argument
suggests that the leading trajectory might be (for
large E)

Z.„=I 'B -'"E' (e =I) .
(f) The most likely angular momentum for large

E is given by

g ~ (B-1/4E)5/6

Several of these results are familiar phenomeno-
logieal attributes of hadrons. In particular if B'/'
is of the order of 3 GeV, (c) is familar from quark
models and (d) is characteristic of statistical
models. As we shall see, points (d) summarize
the thermodynamics of a radiation fieM confined
under constant pressure.

Point (b) is as yet untested since no experimen-
tal indication of the size of highly excited hadrons
is available. According to (e) the highest Regge
trajectory rises proportional to (M')"/' for large
M, which, for n=2 is the usually assumed linear

trajectory and for g =+, it is still compatible with
present experimental evidence. (f) indicates that
the angular momentum of the most frequent states
increases with a smaller power of M, namely,
3f'/'. The 7'eneziano model comes to a similar
result with J ~M.'

To begin deriving these results we turn to sim-
ple thermodynamic and statistical arguments.
Points (a) and (b) which are virial theorems wiII
be discussed subsequently. According to our mod-
el the hadron is described by a field (or fields)
and confined to a volume V. The boundary condi-
tions on the fields ensure that they vanish outside
V. Since we assume the fields confined in the bag
to be quasifree and massless, it is natural to ap-
proximate their properties by those of a confined
relativistic gas of massless particles. The quan-
tum excitations of the fields, the "partons, "cor-
respond to the particles of the gas. As the basis
of (1.1) the total energy of the gas is given by

where E, is the internal energy of the gas ("radia-
tion energy") and B is the constant defined in (1.1).
The gas interacts at the boundary. Because the
boundary conditions are nonlinear, this interac-
tion allows an exchange of energy between the
radiation (E„) and the bag (BV), and also allows
for the transformation of parton energy into new
partons (if bosons) or parton pairs (if fermions).
This is demonstrated explicitly. in Sec. III for
classical solutions in two dimensions. Thus the
bag's surface serves as a means of establishing
a thermal equilibrium in the gas. Since the field
interacts at the boundary, we would expect the re-
lativistic gas approximation to be valid only when
the wavelength of the partons is much shorter than
Vl/3

For the lowest excitation states we do not apply
thermodynamics. For these the number of partons
is lowland their wavelengths will be of the order
V' '. Hence, E„=NV ' ' where N is a small in-
teger. Minimization of (2.1) gives immediately
V='B 3/ and, as a consequence, the estimates
quoted in point (c). These results follow from di-
mensional analysis (8 = c = 1) provided B is the
only important dimensional parameter. In particu-
lar, the zero-point energy of the fields in the bag
has been left out. In Sec. III we show that (at least
for the case of one spatial dimension) this zero-
point energy is not fixed by the theory and decou-
plea from the dynamics.

Returning to the relativistic-gas approximation
(and of necessity to states of relatively high ex-
citation), we note that the term BV in (2.1) may
be interpreted as the energy associated with an ex-
ternal pressure I3. The system corresponds there-
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fore to a bubble of ideal, ' relativistic gas within
an ideal liquid under constant pressure, B. Equi-
librium will obtain only when the radiation pres-
sure of the gas balances the pressure exerted by
the liquid. In a gas of particles of negligible rest
mass the pressure is p = &E„/V where E„ is the
energy of the gas. Equilibrium then requires

where

= E/Te+ Se,

4 1/4
S(E)=—— E +S

3 3B

(2.5)

(2.6)

p= eiE„/V =B, (2.2}

E =E„+BV=4BV. (2.3}

The assumptions made here are compatible with
the virial theorems discussed at the end of this
section, which state that

and

d xa —0
time average

B&V&time evevele ~

Since the trace of the energy-momentum tensor
associated with the field is proportional to (ep)'
the first is equivalent to p = eE,/V and the second
is just the time-average analog of our equilibrium
(ensemble average) result (2.3).

Continuing our approximation we estimate the
entroyy of the bag by calculating that of a free
massless gas enclosed in a container of volume V
and with total energy E„=3BV. There are no de-
grees of freedom associated with the walls of the
bag (the bag coordinates are determined from the
motion of the field), so there will be no added con-
tribution from the walls. It is true that the bound-
ary conditions place constraints on the fields, but
these should have negligible effect at high excita-
tions (i.e., many short-wavelength partons). Also
if the confined field theory were interacting our
approximations would be valid only for small val-
ues of the coupling constants. We compute the
entropy of a free massless gas in thermal equi-
librium using the second law of thermodynamics

dS= " +—dVT 'T
and the familiar black-body law

E„=AT V, (2.4)

dS
dE„3B (l+ e)

where n =(gv'/30) for bosons and g(7w'/240)
for fermions, and g is the number of internal de-
grees of freedom of the particles. [Note that (2.3}
and (2.4) combine to give T=(3B/n) ~']. Eliminat-
ing p, T, and Vwe obtain

An alternative derivation of these results (not
assuming p = B) would be to first compute the en-
tropy of a free massless gas occupying a fixed
volume and having a fixed energy:

S(E„,V) =+E„' '(aV)' '
=+~(E —BV) (n V)' + So . (2.7)

One then assumes that the walls have the effect of
allowing interchange of energy between the gas
(E„) and the volume (BV). The equilibrium state
of the bag at a given energy E is that which max-
imizes the entropy. Maximizing (2.7) with respect
to V keeping E fixed we immediately obtain (2.3),
(2.5), and (2.6).

The bag is characterized by a total energy pro-
portional to its volume and by a fixed temperature
T = Tp. It must be remembered that these results
are valid only at high excitation; clearly the tem-
perature will be less in low-lying states. Thus Tp
must be considered as the maximum temperature
of the gas in the bag.

To pursue our thermodynamic analogy to its
limit: Our system is a liquid which is boiling un-
der constant pressure B. A bubble corresponds
to a bag and is filled with a gas which is ideal and
relativistic. As energy is delivered to this two-
phase system it does not heat up the gas or the
liquid; rather it is used to convert liquid to gas,
creating new partons and increasing the size of
the bag. As in the classical, nonrelativistic analog
(boiling water) the temperature is fixed during the
phase transition and the volume of the gas phase
increases linearly with the heat delivered to the
system.

The temperature T, is equivalent to the average
kinetic energy of the partons. We therefore can
introduce an average number K of partons (par-
ticles plus antiparticles in the Fermi case):

N= =3—V= V/Vo, —E„B (2.6)
0 0

with

Ve = (3B) n

as the volume containing one quantum or particle.
The level density g(E) of the system can be de-

duced directly from the entropy: & =&pe, where
g, is a constant. From (2.5) we get (for high en-
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ergies, at which the statistical method is applic-
able)

g ~(s/Tp)

bei..g an exponential function of E which, of
course, is directly connected with the fact that the
temperature reaches a constant value Tp The ex-
act two-dimensional statistical calculation for the
scalar bag leads to the result'

(g+ 1) /24 E (1-Ã) /4

'(E}=n 24 (wB)' ' (4mB)' '

xexp ~ E

where g is the number of components of the scalar
field. Notice that the thermodynamical calculation
fails to obtain the power of E multiplying the ex-
ponent. This corresponds to a logarithmic term
in the entropy which has been ignored at high ex-
citations.

We now turn to the angular momentum of the
hadron states. The momentum resides only in the
gas, since the bag's surface is not a dynamical
variable. If averaged over many nearby states
with energy E, the angular momentum J certainly
is zero. However, the average J' does not vanish
and can roughly be estimated as follows. The av-
erage momentum p of each parton is of the order
Tp the most probable shape of the bag will be
spherical, so that the contribution j of each parton
to the angular momentum will be of the order j

Tp V . The directions of these individual mo-
menta are at random. Since there are N partons,
the resulting average total angular momentum J
will be

tell us that formula (2.10) should be valid for large
angular momentum and energy. It is conceivable
that there is no upper limit for J at given E in the
classical theory. If this is so, the following
plausibility consideration can be made, which is
based upon the quantum theory of black-body radia-
tion. The largest total angular momentum J
at a given energy E will occur when the bag con-
taining the radiation assumes a form in which one
linear dimension is maximized. This is the case
when it assumes a "cigar"-shaped spindle form.
The thickness of that shape is limited by the con-
dition that it must be larger than the wave length
associated with T,. Hence V- L/T, ', where L is
of the order of the length of the spindle. The max-
imum angular momentum is obtained if the spindle
rotates about an axis perpendicular to its longest
extension, such that the speed of the ends is of
order c. Then we obtain as a crude estimate

J' NTOL E 2 -(B ~ E)
V

0

which is a straight-line Regge trajectory.
Finally we derive the virial theorems to which

we have referred throughout this section. We shall
derive points (a) and (b) which are the time aver-
age analogs of results already found in the thermo-
dynamic analysis. The advantage of the virial ap-
proach is that the theorems emerge as exact,
though classical, results. We may consider first
the quantity

0= 4x x x
R

Then
J-N T V (B i E) (2.9)

We used (2.1), (2.6), and (2.8) in this relation.
Here and in the following relations the sign-
means "order of magnitude. " We will not attempt
here to determine these quantities more exactly.

To estimate the largest possible angular mo-
mentum for a fixed energy E requires a detailed
dynamical calculation. However, if the corre-
sponding classical theory has a maximum angular
momentum J,„(E)for a given energy, its func-
tional form can be determined 'from pure dimen-
sional analysis to be (c = 1}

E4/3
~ -(E) .ys (2.10)

where we have used the fact that J „(E) must be
independent of initial conditions and must there-
fore depend only on B. If this situation is true,
i.e., the leading Regge trajectory exists classical-
ly, we can use the correspondence principle to

dQ ~R ~

dsn ~ Qf+ d'x(Q f+ Q'} .
dt S ~t R

If we apply the Dirichlet boundary" condition the
first term vanishes and by means of the equation
of motion

d'~(y'+ @v'y)
cft

d'x[y'+v. (yves) (v4)']. —
R

A second application of the boundary condition
yields

3X Q2 ~p ~

Then for all motions where Q remains bounded,
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E- d X2 +2V +B.

(2.11)

where ( ) stands for a time average. (S())))' is pro-
portional to the trace of the energy-momentum
tensor of the fieM [see (3.9)]. We next consider

Combining this with (2.11) and (2.12) we obtain

—.'E=B(V).
The viri. als will be bounded only when the particle
is at rest (i.e., when p =0); hence E refers
to the rest mass.

fl = d'x (t)(x)r Vp. (x) .
R

Again,

8R ~ ~ ~ ~ ~ ~

den ~ —(t)r ~ V(t) + dBx((ir' V(t)+r V(t) ) .
8t

With the Diriehlet boundary condition and the equa-
tion of motion,

d'x[r v( ,'y')+-yr vv'y] .

The integrand of the second term may be rewritten
in the form

v, (pr vv, y) —r v [,'(vy)'] —-v (yves)+(vy)',

so on integration and use of the boundary condition,

r+2 —2g +Q

d'g V' ~ r —,
'

The first term ean be integrated to the surface
where by use of the second boundary condition,
—,'Q'- —,'(V(t))' may be replaced by (-B), where we
again may replace the surface integral by the vol-
ume integral so,

d'x[-Bv r ——,'y'+ —,'(v(t))'] .

We finally get

III. SCALAR FIELDS

In this section we begin the quantitative study of
the properties of field theories confined to a bag
with the ease of a single scalar field. We treat
this model in some detail since many of the tech-
niques we shall develop can be carried over to
subsequent discussions of fermion, vector, and
interacting fields. The charged scalar field is a
trivial generalization and will not be discussed
here.

We shall formulate the classical problem (bound-
ary conditions and equations of motion) covariantly
in an arbitrary number of dimensions of space-
time, The Poincare invariance of these equations
will be demonstrated explicitly. We have not at-
tempted a complete solution of the classical or
quantum mechanics in arbitrary dimension (some
features of the classical and quantum solutions in
three spatial dimensions are discussed in Secs.
II and IV). In two dimensions (one space, one
time) both the classical and quantum problems
are soluble. We shall present the solutions, verify
the Poincare covariance of the classical and quan-
tum theory, .and discuss some properties of the
quantum theory.

A. Formulation of the classical problem

We begin with the Lagrangian which was dis-
cussed in the Introduction (generalized to n- 1
spatial dimensions):

L= d" X -28~ 8" - J3

0

ds~ 3jp 3/2+ 5 g 2

(3.1)

Thus, if Q is bounded then, on the average,

3=—3B(V) :(fd *3) (-f-d 3(VQ) ) . —

If we combine this with the other time average
(2.11), we get

3B(V) (f 'd( 3V)'d)= (2.12)

The total energy of the bag is given by [see (3.13a)
though this can be read off from (1.1)]

(our metric is -g00 g" = 1), where B is the bag
constant, that is, the energy density associated
with the volume g to which the fields are confined.
The boundary of the region A sweeps out a surface
8 in space-time. The coordinates X"of 8 are
labeled by n- I parameters n, ,

(3.2)

The unit normal (n„) to this surface is defined to
be the unit vector orthogonal to the n —1 tangent
vectors 7,". :
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T u Xv({a
dn,

(3.3)

(3 4)

TP-
~

~ ~0, x'((a), t)), j= t, . . . ,
d&g

It is useful to express n„ in terms of the normal
(m„) to the surface at constant time (t= x')—." To
do this we choose the parameter no= t and rewrite
(3.2) and (3.3):

B. Poincarb invariance of the classical problem

The equations of motion (3.6)-(3.8) are mani-
festly Poincare-invariant. Corresponding to this
invariance we have a set of momenta P„and
Lorentz-rotation generators M„„which should be
time-independent. These may be constructed via
Noether's theorem from the Lagrangian (3.1).
Since the derivatives of R do not appear in L, R
has no conjugate momentum and will not appear in
P„or M„, except to delimit the spatial integrals.
The locally conserved currents are identical to
those of the free Klein-Gordon field except for
terms involving the energy density B:

m„ is then the purely spatial [m„=(O,m, )] unit
vector orthogonal to the n- 2 tangent vectors
T&(j =1, . . . , n —2):

m& T~& = 0, j= 1, . . . , n —2

z'„„-=g„@+a„lap

Mieux.

+p Tvx +vTpx t

with

(3.9)

(3.10)

Then define

-(m„x')g„+ m„
[1—(m X~)']'" '

where g& is the unit timelike vector:

(3.5)

To show the constancy of the corresponding
charges consider the integral of the divergence of
a conserved current over the "world hypertube"
of the bag:

0= d"~s„g" (where s„g =0) . (3.11)

and X" =- T 0. It is easy to verify that n„T~& =0
(j= ,O. . . , n —2) and n„n" =1. To establish a con-
vention we choose m„ to be the interior normal to
the spatial surface.

With this geometric preliminary in mind we de-
rive the equations of motion of the system by re-
quiring the action W = f,,'dtL to be stationary under
variations of the field p and of the boundary S
which vanish at t o and t, . Stability under variation
in the boundary requires that the Lagrange density
vanish on S:

V is the space-time volume swept out by the bag
and is bounded by two spacelike or lightlike hyper-
surfaces R, and R, which may be taken as surfaces
of constant time or may be kept more general, and
also by the section of the boundary surface S con-
tained between R, and R,. Let n„be the normal to
the boundary of V. Figure 2 illustrates the geom-
etry Integratin. g (3.11) we obtain"

n

e„ys"y=-2B on S. (3.6)

Variation of the field generates the Klein-Gordon
equation inside the bag:

a„a~y=0 in R

and another boundary condition:

n&8" (II) = 0 on S.

(3.7)

(3.8)

This final condition arises from surface terms in
the partial integrations which are performed to
free the variation 6(t) from the derivative 8„. The
resulting terms may be combined, using (3.5) to
give the quoted result. According to the two bound-
ary conditions, the vector field B„p is a tangent
field of constant magnitude over the entire surface
S.

FIG. 2. The volume Vand surfaces R&, R2, and S for
a bag with two space dimensions. Note the normals to
R& and R2 are oppositely oriented.
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(3.13a}

M„.-=d" 'x(x„T'„-x„T'„) .
R

(3.13b)

Since the primary function of the boundary con-
ditions is to guarantee the conservation of the
Poincare generators, we may ask whether there
exists an alternative set of boundary conditions,
other than (3.6) and (3.8), which will achieve this
goal. We observe that since M„„„is constructed
out of T„„, it suffices to find a set of boundary
conditions for which

nuTu~ 0 on S.
We have, from (3.9),

There are only two ways for this to vanish. Either
the coefficients of n" and s "

p must separately van-
ish, which is precisely the content of (3.6) and
(3.8), or else we must have

ds n& 8" = ds n&4" — ds n& g",
(3.12}

where ds is the surface element on the (n —1)-di-
mensional surfaces R„R„and S. For the con-
served currents of (3.9) and (3.10) it is easily
shown that n„4" = 0 on S with the aid of the bound-
ary condition (3.8). Therefore the integral of
n&J" over a spacelike slice through the world hy-
pertube of the bag is independent of the slice
chosen. In less covariant language, this is simply
the time independence of the conventional charges.
For completeness, we quote the expressions for
P„and M„„defined on surfaces of constant time:

ary conditions. "
We note that the covariant definition of the

charge (3.12}together with its independence of the
spacelike slice chosen establishes the Lorentz
transformation properties of Q. In particular it
guarantees that P„ is a four-vector and M&„ is a
second-rank Lorentz tensor.

C. Classical mechanics in two dimensions

In one space and one time dimension the equa-
tions of motion of the scalar field confined to a
bag simplify considerably. In this section we will
solve the classical equations, discuss some char-
acteristics of the simplest solutions and set up
the Poisson bracket (PB) formalism which will
allow us to quantize the theory. Although we must
sacrifice the generality of the previous sections,
we expect to be amply compensated by being able
to exhibit explicit solutions which realize many of
the properties discussed in the Introduction.

We choose to work with the Dirichlet boundary
conditions for two reasons: They are slightly
simpler, and the Neumann conditions allow the
fields to acquire zero modes which can have the
effect of making the mass spectrum of the bag con-
tinuous.

Since the field inside the bag is massless, it is
convenient to work with light-cone variables:

1 (t+z),

1
x -=x-=~(t-z) .

Using light-cone variables, the metric tensor is
off-diagonal g' =g '=-1, g" =g =0. We shall
denote derivatives with respect to T by dots:

Inserting this and using the explicit form of g,
and the condition n„n" = 1, we find n„T""=0 if
and only if P' = 2B.

Thus

s, y(», 7) =—p(x, 7) = p (x, 7)

and derivatives with respect to & by primes:

s'+„p =2B on S (3.14a}

[note the difference in sign from (3.6)]. Further-
more, since the gradient of P is normal to S, we

deduce that p is constant on S; for convenience,
. we choose this constant to be zero:

/=0 on S. (3.14b)

In Sec. V we shall discuss an alternative deriva-
tion of these boundary conditions, in which the
choice ft) =0 will emerge naturally.

Because of the similarity with electrodynamics,
we shall refer to the set (3.6)-(3.8) as Neumann
boundary conditions, and (3.14) as Dirichlet bound-

82
p(», 7) =0, in R

8X T
(3.15a)

Q(xg(&), T)Q'(x, (v), v)=-B, t =0, 1 (3.15b)

(3.15c)

where», (r) (i = 0, 1) are the two points which bound
the bag. (3.15a) is satisfied by any function of r

1. Solution to the classical Problem

In two dimensions and in light-cone coordinates
the equation of motion and boundary conditions
(3.7) and (3.14) reduce to
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or x, corresponding to left- or right-moving waves
in the bag:

y(x, 7) =f(7)+g(x) . (3.16)

S - -=a= B(x,(~) —x,(~)),
xg( «)

dx [g'(x)]',
"or «)

(3.18a)

(3.i8b)

xj(«}M'- =- ~=a~ - dxx[g (x}]'.
xo( 7'}

The time independence of H, 5', and M may be
verified with the help of the boundary conditions
(3.17). For example, a suitable combination of
Eqs. (3.17a) and (3.17b) yields

„(,) [f ~l'

(3.18c)

so x,{r) is i. ndependent of i and II =0. The extent
of the bag in x (which is not conventional length,
but rather length along the light cone} measures
its energy.

To proceed we will find it convenient to linearize
the boundary conditions. This may be done by de-
fining a new space parameter cr =c(x) according to
the differential equation

The boundary conditions may be rewritten in terms
of f(7) and g(x):

f(v)g'(x, (r)) =-B, f =0, 1 (3.i7a)

f(~)+x, (~)g'(xg(~)) =o, (3.17b)

where we have differentiated (3.15c) to obtain
(3.17b). The constants of the motion are given by
(3.i3):

so o,{r). =B/p. Using the initial condition c(xo{0)}
=co(0) =0, c()(~) =Br/p, o,(7) =(B~/p)+ o„where
o, is a constant of integration. To specify o, and

p consider the momentum (3.18b) in conjunction
with (3.19):

p ~p(c,(7)-c,(7))=per, .
Consequently, if we choose for convenience p to
be the constant P, then c,=1 and

c,(7) =—+1,B7'
(3.23a)

c.(~)=~ .B7 (3.23b)

The solution is now immediate. From (3.22a) it
is apparent that g(c) is periodic in the interval
[oa, o,], so a general expression for g(o) is

g(g) Q ~e RwllNQ +g(4v)"' „,rr

a„=ar„ensures that g(o) is real. lf we write
(3.15c) for either end we conclude that

(3.24)

so that

f(7) g ~ e-Itin(BLIP)
(4v)' ' „~, n

(3.26)

Notice that g, cancels in the field @ so we may
set it equal to zero. Finally (3.21) may be inte-
grated to obtain

0

x(cr) =X,+ —' Q ~e-"'" +—"f,,(&r--,') . (3 26)
P ~„o n P

—=- [g'(x)]'do

dh p
(3.19) The constants L„( hiwhcare the generators of the

conformal group in two dimensions) are defined by

g(c) -=g(x{c)). (3.20)

x(c) will be determined from the inverse of (3.19)

and initial condition c(x,(0))=0, where p is a con-
stant to be specified later.

We define a new field g(a) in terms of g(x) by
this change of independent variables,

1
f'm=2 Q spun-p .

p woo
(3.27)

In this and in similar expressions below, go=0.
The reason we take the constant of integration to
be xo- (rrLJP) in (3.26) is to give X, the interpreta-
tion of the average of x(c) over the bag at 7 =0:

—=- [g'(c)l',
do' p

(3.21)
1+(a«/s) Hx(r) = dgx(c) =Xa+—7'.

a«/s
0 p

where g'(c) =— (d/do)g(o). The boundaries of the
bag are o,(7) —= c(x,(v)). When described in terms
of 0, the boundary motion ~ll be quite simple.
When we transform to c as independent variable
(3.17a) .and (3.17b) become

The constants of motion are related to the ex-
plicit solution (3.24)-(3 26).

2mBII= Io,

f(~) =-—g'(c, (~)),
p i

f(~) + c&(7)g'(~&(~)) =o,
I

(3.22a)

(3.22b)

I = ra I+7), -
+(a«/ I )

M =7H-P 4T x(c) =-xoP
B«/P

(3.28b)
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2. Poisson brac-ket formahsm

To prepare the ground for quantizing the scalar
bag we shall formulate the classical solution in

terms of Poisson brackets. ' Rather than return
to the Lagrangian in order to determine the dy-,
namical variables, "we shall simply guess what

they are and verify that they satisfy Hamilton's

equations in PB form. Vfe shall then show that H,
M, and P satisfy the correct Poincare algebra in

terms of PB and finally verify that they transform
the fields f(r), g(o), and x(&r) according to naive
expectations. It will then be trivial to quantize our

system by the correspondence-principle substitu-
tion PB-I/i commutator.

As coordinates we choose

(&) (a e-mwin(si /P) a em@in(sr/P)} n &0
N

(3.30)

and as momenta we have

p„(T}= ~w(a„e 2~(n(sr/~)+a „canis(s~/J'))

In terms of the q„(7) and p„(r),

(3.31)

where P is the momentum. (3.28a) determines the
(mass)' of the classical bag to be

m'=2HZ=4waL„.

~8 - 8

The parameter 8 is clearly the appropriate one to
keep fixed during transformations involving 7

since the range of o is 7-dependent, whereas 0
always ranges between 0 and l. Ne therefore de-
fine a third set of fields

A A A 87
x(Q T) -=x a+—~

(3.37a)

(3.3Vb)

The PB of g and x with H are then simply time
derivatives at fixed 0.

Up to this point we have said nothing about PB
involving 7,. The Poincare algebra requires

{M,Bj„=-a,
{M,Pj =+P,

{B,Pj =0.

(3.38a)

(3.38b)

(3.38c)

x+(a~/ J )
x(r) = x(o) =x, +—r,

Br/P
0 (3.38)

which we have already introduced and which is a
dynamical variable:

From the definition M =-X+, it is clear that the
algebra requires {xo,aj» =+B/P. Since x, is con-
stant, it is not a dynamical variable. In fact, x,
is the initial value of the variable

B=—g —
)( „'(r) + 2wn'q„'(7)

p +go 2F

From the definition of the Poisson bracket

(3.32)

(3.33)

{x(r),Hj„=—„dg

From (3.38b) we expect x(r) to be canonically con-
jugate to I"

{q., q.j ={)w., u.j„=0,
it is easy to verify Hamilton's equations,

P„(r) ={p„(r),Bj„,
q„(r) = {q„(7),Ifj» .

(3.34)

(3.38)

4

The fields g(a) and x(o} depend explicitly on 7 as
well as on the dynamical variables q„(r) and p„(r).
For example,

1 ~ 1P„(r) . Br
g(a) =—

Z
— " sin2wn o ——

2 p 0 ~K g p

{x(r},Pj„=-I,
{x(r),q„(r}j = {x(T),p„(T)j =0,

{P,q„(r)j„={P,p„(r)j„=o .

(3.40)

(3.39) and (3.40) ensure the validity of the Poincare
algebra (3.38a)-(3.38c).

%e finally consider how the fields transform un-
der translations and boosts. For an infinitesimal
translation we have"

BT
+q (r)cos2wn a-—I I (3.38)

for any dynamical variable u. Direct calculation
yields

The Poisson bracket of g(a) with H corresponds to
the time derivative of g keeping o =o —(Br/P} fixed.
In order to compute the time derivative keeping 0
fixed one must, of course, take account of the ex-
plicit time dependence:

o, r)=0,
af(r}=0,

Qx((T, T) =E~'
It is not difficult to verify that these changes
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imply that the original variables change as ex-
pected:

which guarantees that the quantum theory is Lo-
rentz- and translation- invariant.

The mass-squared operator has a simple form:
5p(x, T) =-e

5», (T) = e.
m'=2mB+a„a „. (3.44)

For an infinitesimal boost we have

5u= e{u,M)p~

from which are compute

5f(T) = 6{f(T) &
TH P»( T—) ip~

= e Tf (T),

5g(8l T) = f{g(cl T)l THjp~ = fT

5«(8l T) = f T + tx(8l T) ~

Again it is a straightforward exercise to show that
these transformations imply the expected trans-
formations of the original variables

y(», T) -p((1- e)x, (1+e)T),

«, (T) -(1+e)x,((1+e) T) .

a„iQ~) =0 for n &0 .
(3.45a)

(3.45b)

In general the empty bag can have mass as well as
momentum. When the m' operator of Eq. (3.44) is
normal-ordered an infinite constant will be gen-
erated, which we absorb into m, ', the mass of the
empty bag,

Actually all of these operators, except P, must be
normal-ordered to make them finite. To deter-
mine a normal-ordering prescription, we must de-
fine the vacuum or empty bag. Unlike the vacuum
in conventional field theory, the empty bag is a
particle state. Indeed since [P, a„]=0 the momen-
tum of any state created by operating with a„on
the empty bag is the same as the momentum of the
empty bag. We define the empty bag of momentum

P by the requirements

3. Quantum mechanics in taboo dimensions
m =4gM, +m (3.46}

We quantize the scalar bag via the correspon-
dence principle

i {A,Bj - [A, B],
which yields the commutation relations

Normal ordering is defined in the usual way, with
all a„, n &0 lying to the right of all a„, n (0. The
various vacua of different momenta are related by
the Lorentz boost:

[»(T),P] ~ i, -
[a (T), a„(T)]= m5

[»(T), a„(T)]=[P,a„(T)]=0,

where

(3.41a)

(3.41b)

(3.4lc}

(i),8,)-=e""ii),}.
The operators L„which occur in x(o} obey the

conformal algebra:

[L„,L j = (n m)L„+-+~»5„(n' —n), (3.47a)

a (T) —a e-&lrkll (BTIP)
n n (3.41d)

[L„,a j=-ma„+ (3.47b)

P=—P,
nBH= — ana „,

M=—-~[x(T)P+P»(T)]+HT .

(3.42a)

(3.42b)

(3.42c)

From (3.41) it is trivial to verify the Poincare
algebra:

[M, H] = iH, -
[M, P]=iP,
[H, P]=0,

(3.43a)

(3.43b)

(3.43c)

The generators of translatio'ns and Lorentz trans-
formations are- carried over from the classical
theory —the ordering ambiguity (which occurs only
for M) is resolved by the requirement that M be
Her mitian:

P=P,

2gB m, 'H Io+
2

M = ,'[»(T)P+Px(T)]+-H-T .

(3.48a)

(3.48b)

(3.48c)

The algebra of (3.43} is unaffected by normal or-
dering since the normal-ordered operators differ
from the original ones only by c numbers.

The Hamiltonian correctly generates the time
dependence of dynamical fields,

where

1
n 2 ~ ' ~-nt+nt +n ~ y

so that L, in (3.26) is replaced by Lo+ (ma'/4mB).
When normal-ordered, the symmetry generators

of Eq. (3.42) become



(3.49a)

(S.49b) which can be integrated to yield

Hso+ — =——xc+— (3.49c)
[4(7'&so|}~ 4(~a, cm)l=- e(&b-&4)+e

4

[M,f(r)] =-f7—„df (S.50a)

Myg g+ =-zv'—g g+ (3.50b)

Ms@ g+ ~$1 Q 0+ ~ (3.50c}

In addition to these symmetries, a generator of
translations in g may be defined. From the com-
mutators of Eq. (3.41) the following may be shown:

m2

ZB,g(c) =-,. d, (o), (3.51a)

& d H
, x(e) =-. —x(o) ——,i do B'

where m' is the mass-squared operator of (3.45).
Finally we may construct the commutators of

the following fields:

(3.51b)

[f(v,),f(7,)]=-g 5(o, —o, +sP/8) —,'i 8/P, —

(3.52a)

[g(o,),g'(o, )]=—+5(&r, —c, +s) —,'i, — (3.52b)

(3.52c)

Note that all of these are periodic in the intervals
which define the bag. In other words, the quantum
mechanics we have generated is appropriate to a
series of linked bags rather than a single bag.
Generally we shall truncate the theory to consider
a single bag.

Observe that the nonlocality in the commutators
(3.52), which arises because of the absence of
zero modes in the expansion of f and g separately,
disappears if we compute the quantity of physical
interest:

The Hamiltonian does not commute with g(o) nor
should it despite the fact that (d/dr)g(o) =0. The
reason was explained in the Poisson-bracket for-
malism: When expressed in terms of dynamical
variables g(cr} has explicit time dependence which
must be included in a calculation of (d/dr)g(o).

One may also determine the Lorentz transforma-
tion properties of the dynamical fields

IY. SB4PLE CLASSICAL MOTION

Since the bag is not a familiar classical system,
it is worthwhile to pause and see what sort of mo-
tion occurs in some simple cases. We begin with
some examples of motion in one space dimension.
Later we will find approximate solutions to the
spherically symmetric three-dimensional bag in
the limit of large energy and small oscillations.
From (3.18a) it is clear that the interval bx(7)
-=x,(v) —x,(r) is fixed and equal to H/B. It is equal-
ly easy to show from (3.18b) that n7(x) -=r,( )x—&,(x}
is fixed and equal to P/8. These requirements
fix the motion of the end points to be almost p.ri-
odic (i.e., periodic plus a linear function) with
period H/8 in x and P/8 in r. We may give a sim-
ple geometric interpretation to the boundary mo-
tion. Any monotonically increasing curve x(r) is a
suitable boundary for a bag provided

(4.1)

From (3.24)-(3.26) we find

x(8) =8+sin8, (4.2a)

g(8) =~ sincr/2, (4.2b)

f(r) =~ sins/2, (4.2c)

for some (positive) numbers P and H. In the x, r
plane we draw a horizontal vector of length P/8
and a vertical vector of length H/8 originating at
the same point A and terminating at x(7}. (4.1}re-
quires that the vectors remain, respectively, hori-
zontal and vertical as the point A is moved. The
point A then traces out the bag's other boundary.
An example is shown in Fig. 3. It should be noted
that the boundary motion just described is a nec-
essary but not always sufficient condition for solu-
tion to the equation of motion. For example, the
neutral scalar field subject to Dirichlet boundary
conditions must not have any linear term (ao}. This
is not ensured by our geometrical construction.

To make the discussion more concrete consider
the motion with the longest period,
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FIG. 3. Construction of the boundary motion of a one-
space-dimensional bag by parallel transport of lightlike
momentum and energy vectors.

where we have defined scaled variables

FIG. 4. Explicit solution for one-space dimensional
rattling bag.

(4.3)

The mass of this excitation is determined by
(3.28a) to be

ppg2 = 4g+g &

The trajectories of the end points are x(o,(r))
=x(B7'/P), x(o,(7')) =x(B7/P+ 1), or corresponding-
ly,

x,(f) = 7+sins,

x,(T) = 7 + sins+ 4v .
(4.4a)

(4.4b)

To display the physical field p(x, 7) we require
g(x}. This may be constructed graphically from
(4.2a) and (4.2b). The resulting solution f(7.), g(x)
and the trajectories x,(7}are shown in Fig. 4. The
boundary conditions (3.17a) and (3.17b) may be
verified by inspection. Several features of this
solution should be noted:

(a) ax/at=0 whenever f(r) =. 0, i.e., when T=2xn.
This is required by(3. 17a}and (3.17b). Bx/&i=0
corresponds to lightlike motion of the end points.

(b) g'(x) =~ when f(r) =0, also required by
(3.17a). g'(x) = ~ corresponds to an infinite mo-
mentum density at the particular x. The total mo-
mentum of course remains finite and conserved.

(c) In the bag's rest frame (H =P), its conven

tional length M is fixed. The conventional coor-
dinates of the rest frame [scaled as in (4.2)j are
inclined at 45' to the x and T axes. As noted above
the lengths dx and b, r, labeled by the line seg-
ments AB and AC in Fig. 4, are constant. Since
x(f') has twice the frequency of f(7), the midpoint
(D) of BC is also on the traject;ory x,(7) and the
line seqment AD is also constant. However, AD
is the (scaled} length of the bag in conventional
coordinates.

(d) In a moving frame ~ is not constant (8, the
angle between light cone and conventional coordi-
nates, is no longer 45') as required by Lorentz
invar iance.

(e) In the rest frame potential energy Bdu is
separately conserved.

(f) g(x) has high-frequency components. Even
rather simple excitations of the bag have consider-
able structure.

In short, we have constructed an excitation which
rattles. A wave, carrying momentum, is confined
to the bag. The ends of the bag oscillate as mo-
mentum is transferred from right- to left-moving
waves as dictated by the boundary conditions.

Not all of the excitations of the bag rattle (have
constant length in the bag's rest frame) (see, for
example, Fig. 2). This is rather important since
the thermodynamics developed in Sec. II assumes
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a mechanism for the exchange of energy between
the trapped field and the potential energy (rest-
system size) of the bag. Clearly, any solution in
which the midpoint of the line BC is on the trajec-
tory x,(r) will rattle. This happens in general if
the frequencies occurring in g(8) are even integer
multiples of the fundamental frequency which, in
our scaled units, is —,'. In terms of the a„, the bag
will rattle if a„0 only for odd or only for even
values of n. When both odd and even modes are
excited the rest length of the bag rhz changes with
time.

So far we have studied only the simple, one-di-
mensional theory which is exactly soluble. In or-
der to get some insight into the real problem in
three-dimensional space, we shall discuss the sit-
uation closest to the one-dimensional case, name-
ly, the S waves in three dimensions. W'e have no
exact solution of the classical equations in this
case, but we can solve them approximately when
the energy is large enough so that the radius of
tl1e bag ls large in comparison with its time-de-
pendent Quctuations. We do this by finding solu-
tions with fixed boundaries ("static solutions" ).
W'e may then study small oscillations about these
by expanding the boundary conditions to first order
about the static solution. As our example we will
study the charged scalar field subject to Dirichlet
boundary conditions.

For the charged scalar bag with spherical sym-
metry (in conventional coordinates) the field equa-
tion and boundary conditions become

y(u+ 2R,) = y(N)+ 2~x (4.10a)

280
e'~'"'du=0 . (4.10b)

As one simple example of such a solution take

P(u) =ku, where %=AN/Ro .

(BRO') ' sinks
Q(r, f) =

mN y'

Note that all static solutions hav'e energy

E(R(&) =4B{V)= 3'sR,'B,

(4.11)

y(r, &) = y,(r, &) + y, (r, &)

which depends only upon the radius and not on g in
virtue of the virial theorem of Sec. II. In particu-
lar the energy is independent of k for solutions of
the form of (4.11). The spherical static bag is in-
deed a curious classical system with energy inde-
pendent of the motion of its contents.

We will now solve for small-amplitude spherical-
ly symmetric (breathing) oscillations about some
static bag characterized by g(u). We will show
that only real frequencies independent of $(M) oc-
cur in these solutions and therefore that the solu-
tions given above are stable with respect to small
spherical perturbations. We put R(t) =R, +R,(t),
and assume R, «8,. In this case we let

q=o (j.zP =0), (4.5a)

(4.5b)

The general solution of (4.5c) may be written

(4.5c)

(4.6)
1

p(r„ t) =- [g(&+r) —g(t- r)],
where we have chosen the solution regular at the
origin.

We shall solve these first for the case of static
walls (R =0).

With R = 0, R =R, (4.5) and (4.6) reduce to

and assume

(4.12a)

(1-R') =B . (4.12b)

0

To first order 8' is negligible. Hence, the linear-
ized equations are

a
R,(f)—y,(r, f)+ y, (r, f) =0 at r =R, , (4.13a)

where P, is a solution of (4.9) and (4.10). We then
linearize the equations in P, and R,. We first write
(4.5) in the form

g(t —R,) =g(t+R,),
~g (t-R,) ~'=BR,'y4.

The general solution to (4.7) and (4.8) is

~~ 2 X/2
g(g) 0 eiy(u)

where y(u) satisfies"

(4.7)

(4.8)

(4.9)

8 82 8 I

ae —, yg(r, f) R,(f), , y.(r, f)+ , y, (r, f}—
=0 at r =R . (4.13b)

Using the properties of P, [(4.9) and (4.10)] we
find
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R (t)= Q (R t)e lP(i+Rp) (4.14a)
The energies of small oscillations are easily

found from the virial theorem:

p He y (p, t) e ($(t +Bp)R 8

2va ar ' '
0

(4.14b)

E = ([R,+R,(t)]'}

=E,+ 16wBR,(R,(t)'), (4.22)

where R,(t) must be real. Here (t),(r, t) satisfies
the wave equation

1
p, (r, t) = [f(t+r—) —f(t-r)]. (4.15)

The constraints on f, imposed by (4.14}, are most
easily formulated in terms of

F(u) -=e 'P "f(u)—= G(u)+H(u),

which is required to satisfy

H(u) =H(u+2Rp),

(4.16)

(4.17a)

G '(u) + G '(u + 2Rp) ——[G (u) —G (u+ 2Rp) ]
0

= g'(u)M(u) . (4.17b)

where Ep= 16wBRp'/3 is the energy of the static
sphere. From (4.20)-(4.22) we obtain

wE=E0+ a&a &x&—
J 0

(4.23)

H= ' a&a &

ix, iw

f 0

and commutators

(4.24a)

(4.24b)

The small oscillations may be quantized in the
same manner that the two-dimensional theory was
quantized in Sec. III. The resulting quantum
mechanics is specified by the Hamiltonian

The most general solution of (4.17b) is

(i x i)1/2
~k flX (,u/&0)' sinwx, . 8&mB

0

8

+ —,
' y'(u')H(u') du'

2B0
y'(u')H(u') du'+ a, .

0 0
(4.18)

The reader may verify that (4.24) generate the cor-
rect time dependence for R,(t) in the language of
Poisson brackets.

This analysis has been extended to nonspherical-
ly symmetric small oscillations about a zeroth-
order solution g(u) =wctu/Rp [see (4.10a)]." The
resulting eigenvalue condition

The frequencies of small oscillation are wx~/R„
where

tansy@~
= -ma~,' (4.19)

R (t)= 1
4(wB)iiPR ita {(wax ()' ')e"*~" "o'

Rp
g'(u')H(u')du' .

4R0
(4.20)

The eigenvalue condition (4.19) has only real solu-
tions which means that the small spherical oscilla-
tions are stable. The second term in (4.20} cor-
responds to an over-all dilation of the sphere and

may be reabsorbed into the definition of Rp.
Henceforth we choose H(u) so that

r
Rp

f(u')H(u')du' = 0 .
-Rp

(4.21)

we note that (4.19) has the same form for all P. In

(4.18), aP =a
&

[where a j label the ax& solutions
of(4.19)], in order to make G(u) real. The nor-
malization of a,. is chosen for later convenience.
The motion of the bag's surface may be constructed
from (4.14):

again admits only real frequencies, so the spheri-
cal solutions are stable with respect to arbitrary
small amplitude deformations. These oscillations
have nonzero angular momentum. They may be
quantized in direct analogy to the above. " Finally
we note that the static fermion bag may be treated
in exactly the same manner as we have treated the
scalar bag.

We can then ask, what quantum conditions char-
acterized the static solutions? That is, how is
Rp quantized? A classical formalism may be set
up which describes the general time development
of the field in a bag of radius Rp that is the motion
associated with the phase p. If we pass to the
quantum description through the Poisson-bracket
formalism this gives quantum conditions which
govern R„or equivalently E, since

Ep 4& Rp
4m

for these solutions. Here E is the generator of
the time development of the field in the interior of
a bag of radius R,. We than may write (4.23) in
the form



or

and then fix the constant E, by quantization of the
motion of the phase g. Thus we obtain

(4.26)

where fA„) are the quantum variables associated
with the field p„and la, ) are the variables as-
sociated with qb, and 8,. In (4.26), M, is an unde-
termined over-all constant associated with the
ground state, that is, the empty bag. In (4.26) we
see that the motion of the field inside a bag of a
given radius, and the motion associated with fluc-
tuations in the radius, decouple in this approxima-
tion. "

though the motion of the surface would be com-
pletely determined by the boson fields, the surface
must always move with the speed of light, which
would clearly not be true of all solutions.

These problems are associated with the fact that
only terms linear in the derivatives of g appear in
the Lagrangian, and are well known in the context
of the problem of a Dirac particle confined to a
static box. Our method of handling these difficul. -
ties will be similar to the way in which one can
handle the Dirac field confined between static
walls. We shall obtain boundary conditions by a3,-
lowing the Dirac field to permeate all of space-
time and then proceed to a limit in which the field
is confined inside the bag. This approach will be
exhibited in detail below. First, however, let us
state the boundary conditions which we get by this
limiting method, and verify that they imply that
all the required conservation laws are obtained.

To replace (5.2b) and (5.2c) we postulate the
boundary conditions

(5.3a)

V. FERMION FIELDS

A. Statement of the boundary conditions

An advantage of the bag over other extended
models of hadrons is the conceptual ease with

which a wide variety of systems may be studied.
Since confinement to a bag does not alter the short-
distance behavior of a fieM theory, it is reason-
able to restrict our attention to renormalizable
theories, i.e., to spins O, —,', and 1, where the
vector fields should be gauge fields apart from
masses. Only the Dirac field requires the devel-
opment of formalism beyond the previous section.
We turn now to a study of this problem and leave
to the following section the relatively straight-
forward treatment of gauge fields and other inter-
acting theories.

Suppose we consider a single Dirac field in the
bag described by the action

(5.3b)

will yield a constant of the motion

Q = d'x&'(x, i), (5.5)

with the correct transformation properties, pro-
vided the current also satisfies

(5.6)

Here n„ is the inward-directed four-normal de-
fined in Sec. III. Note that the eigenvalue equation
(5.3a) implies the normalization condition n„n" = I,
as well as the requirement that g p =0 on the bound-
ary of the bag.

Recall from Sec. III that a locally conserved cur-
rent density

(5.4)

' and

i if' =m p inside the bag, 8 (5.2a)

Varying this action in the usual way we obtain
on the surface of the bag. The Dirac equation al-
lows for a number of locally conserved quantities:
The electromagnetic current

(5.7}

—,'i(g gg) —m pp —B= 0,
,'in„y "g =0—onthe boundary, S,

(5.2b)

(5.2c)

where n„ is the normal to S. Unfortunately (5.2a)
and (5.2b) are incompatible unless B=O Further-.
more, if B were maintained WO by the introduction
of extra boson fields, (5.2c) would require that even

g — 8 a
+PIIx .

2 8+ Bg

and the angular momentum tensor

(5.8}
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MPvk PTPx vTPx.

-(4-y o""0+0&"'y'4)

where o""=-,'i[y", y"]. We have immediately

(5.9)
W = d'~(-,'i ygy-mg g- B)

+ d'x( ,'i -&gal-Mgg),

on the surface. Also,

1 8
n T"' =— (Pg) —Bn"

2 8g„

from (5.3a). Since g g =—0 on the surface, its gra-
dient defines a normal. Using (5.3b) we have

with V the region of space-time swept out by the
interior of the bag R, and V the region swept out

by its complement, R. In addition to (5.13), we

have

(5.14a)

8 —
p 8

(gg) =n" n~ $$=2Bn" . M%'O' =B+mg P (5.14b)

Therefore

n T""=0 (5.10)

Finally, it is immediate from (5.10) and (5.3a) that

MPux 0X

on the surface as well.
Note that in the massless case, the axial-vector

current gy "y,g is locally conserved. However,
we have n„gy "y,p=ipy, g on the surface which does
not necessarily vanish. The symmetry generated
by the axial charge will be broken by the boundary
conditions. This is related to the fact that in
stating the boundary conditions (5.3a) and (5.3b) we

have established a convention regarding the in-
trinsic parity of the fermion field. The field g'
= y, P, which has opposite intrinsic parity to g,
would satisfy the boundary conditions with the op-
posite sign:

in„y "y'=-y', (5.11)

8
"8x 2B ~- (5.12)

We shall see below that in deriving the boundary
conditions the sign of a mass parameter M outside
the bag will be responsible for the conventional
choice of parity implied by (5.3).

B. Derivation of the boundary conditions

i y "8„g=mg inside the bag,

iy "8&4 =M+ outside the bag,

(5.13a)

(5.13b)

where we have denoted the outside field by capital
C. The action for this system is then

To derive the boundary conditions, we begin with
a field g defined over all space-time, but with dif-
ferent masses inside and outside the bag":

on the surface. What we require, and what will be
the major objective of the calculation which follows
is the term of order 1/M on the left-hand side of
(5.14b). This term will provide us with a nontriv-
ial boundary condition involving B to replace the
naive result (5.2).

We begin with the following ansatz for the ex-
terior solution:

+a=4'ne '~ (5.15)

Here n labels the Dirac components. The specifi-
cation of 4 in terms of C and j is made precise
by the further requirement that j be independent
of M. The form of (5.15) is motivated by the ob-
servation that each component of 0 satisfies the
Klein-Gordon equation:

O4 =+M'0,

so that an exponential behavior such as (5.15) is
suggested. Only after this exponential is explicitly
taken into account do we expect the remaining fac-
tor 4 to possess an orderly expansion in increas-
ing powers of (1/M). The real part of j~ must, of
course, be negative outside the bag in order that

on the surface of the bag. The strategy for con-
fining the field to the bag is now to let M ~, in

which limit we expect 4 to vanish outside the bag,
leaving only the P field nonzero within and on the
surface of the bag

A few remarks are in order before we begin to
implement this idea. First, observe that before
taking M to ~, we must limit ourselves to solutions
with energies which are small compared with M.
Otherwise the particle will not be confined to the

bag as the limit is taken. Second, note that it is
not necessary to require 4 =0 on the surface, even
as M -~. We shall see in fact, that 4 is normal-
ized in an M-independent manner on the surface,
and falls exponentially in M outside the surface.
Third, (5.14b) clearly requires that

lim V4 =0



4 vanish as M-~.
%e first observe that j„must be independent of

a. To see this, use (5.13b):

gi(~)'}.» +M4, j'„e»=M4.e"i .

(5.16)

Having assumed that j is independent of M and not
positive and that 4 is expandable in powers of 1/
M,

to S. Since j is less than zero outside of S, 8&j
is in fact the inward-directed normal on S as de-
fined in Sec. III and required by (5.3):

~~j=g~ on S.

Had we chosen M& 0, Eqs. (5.11) and (5.12) would
have been obtained. As M -~, (5.22) becomes

myt/i+B= ,i[4 —"y4 —4 ' $4 ' j . (5.23)

Gn S we can write

~ ~ ~

M (5.17)
g@(o) 8@,(o) -ge, (0) g@,(0)-

V V

ax" " &x"- ex" ~" ex' .
we can isolate the leading M dependence in (5.16)
as hI

(5.18)

(iy'j- 1)4'"=0. (5.19)

i( ") 4'"e"'8 =4"e"'"&'Y e88 p 8 e = n
8

This is a matrix eigenvalue equation for 4( )e ~~,
in which the matrix is independent of M. There-
fore the eigenveetor must likewise be independent
of M except for a possible over-all normalization
factor. Hence j =- j is independent of the Dirac
index a.

We can now rewrite (5.18) as

(5.24)

The second term on the right:-hand side of (5.24)
is orthogonal to n„. Thus it contains only deriva-
tives of 4(o) which lie wholly on the surface. From
the continuity equation (5.4b), which now reads

y=4(" onS, (5.25}

we see that [84(0)/Bx") may be replaced by
(8$/Bx") in this term. The first term on the right-
hand side of (5.23) is now easily evaluated:

8C, (0)
,'i@~"P—'4'= 4'"—(i/ 1)n"-

4 ax"

We observe that (5.19}requires 8&jB"j=l. For
later use, we compute the results of applying
(8' 8/Bx~) to (5.19):

+ i p l((ji
—+ —'g n ~ 8 $

where the eigenvalue conditions

i4 (0)g C, (0).

(5.26)

(i'-&](s„, )e'"=-&[a"qe s q]y"e'"

(5.20)

The last equality follows from differentiating
8&jB"j= l. We rewrite (5.14b) using (5.13b):

myy+B= ,'i(%II4 C-jiC}- (5.21)

and insert (5.15):

my((+ B = ,'i[4(fi4-+Mgj 4) —(4 p'+M4gj '}4]e"""'

(5.22)

where

Two important points emerge from (5.22). First,
we see that the terms of order M will cancel only
if &„j is real. This is a restatement of the nec-
essity of eliminating energies comparable to M
from the solution: By choosing j, and hence 8&j
real we forbid oscillatory behavior in the exponen-
tial e"'. The second condition we deduce from
(5.22) is that, in order for the limit ss M - ~ to
exist on the right-hand side, j must vanish on the
surface S. The gradient of j is therefore normal

(n 8)(T((j) =2B. (5.3b)

Notice that the mass term, mfa, has canceled out
of the boundary condition.

Together with (5.3a), which follows from (5.19)
and (5.25), these are the boundary conditions with
which we replace (5.2b) and (5.2c).

The Dirichlet boundary conditions for the scalar
field, Eq. (3.14), can be derived in a similar man-
ner. Denoting the fields inside and outside the bag
by P and 4, respectively, we have

0&]&=0 inside It,

4 =&~4 outside R,
—,'M'O'=B on S,

Note that we demand continuity of the first deriva-
tive as weO, since the equation of motion is sec-

have been used. However, the first term on the
right-hand side of (5.26) vanishes by (5.20), so that
we need only add (5.26) to its Hermitian conjugate
to obtain
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ond order. By writing @ = Xe"~, X
= X(0~+ (1/M) y('~

+ ~ ~ ~ and performing manipulations analogous to
the spinor case, we arrive at the boundary condi-
tions (3.14), with Q specified to be zero on S.

C. Quantization in two dimensions

Having formulated the classical fermion problem
in arbitrary dimension, we turn to a detailed study
of the quantization of a massless Dirac field in
two space-time dimensions. Just as in the case of
the scalar field, the quantization is particularly
simple on the light cone. We therefore paramet-
rize the motion by 7 and g introduced in Sec. III
We choose as our Dirac matrices

from which follows

f(~) =-~g(«((7))~s, (x((~), ~)
8

together with

g(f4g graf)= afl(
8" 8 8' 8
By. Bg 8~ 87

Im *g' ~+ *g~ =B .8 ~ 8
Bx —,(~)

(5.3a)

(5.33a)

(5.33b)

0 I)

/I 0)

(0 -li

(s.as)

lmf*(r)f(y) = (5.33c)

For convenience, we also cast this formula in two
alternate forms by using the relation between f
and g and between dx, /d7 and ((j /s 7 on the boundary
and dropping all purely real terms inside the
imaginary part (recall that j is real):

Writing the Dirac spinor (I) =((~), the Dirac equa-
tion inside the bag becomes

y+ +y O (s.as) Img' "(x((v))g(x(.(r)) =~8 (5.33d)

which implies that g depends only on x, while f de-
pends only on v, hence

The components of the energy-momentum tensor
and electromagnetic current are summarized by
the followi. ng:

((g(x))

kf(&) i
(s.a9)

is the most general solution inside.
If we denote the ends of the bag by x,(r) and

x,(7), we easily obtain the following equations for
the components of s„j(-=n„):

~~=-—,for x=x,(7).8' 8' 1
BT Bx 2'

T"= W Img' *(x)g(x),

T '=By

7 = vY Im f*(a)f(r),

M' '= rB xvY Img'*(x)g—(x),
M' = ~W Imf*(~)f(~) «a . —

(5.34a)

(5.34b)

(S.34c}

{5.34d)

(5.34e)

(5.34f)

(5.34g)
8 'g Bg 8'g~+—~=0 for x=x (r)87 By Bg So we have for the boost generator, energy-mo-

mentum, and charge
the latter equation being obtained by differentiating
the condition j(x,(7), 7) =0 with respect to 7 Then, .
if we choose the solution for which B„jis the in-
ward-directed normal, we obtain

I = a(x,(7) x,(~)) = a, —

~(r )I ' = vY dxlmg'*(x)g(x) ~I',

(5.35)

(5.36)

= (-)'
sx ..(,) (ax,)'" '

x=x;(~)

The boundary conditions on g reduce to

(5.30a)

(5.30b}

Xj(~)
q = Wf sx))'(x)g(x),

xo(v )
(5.3V)

j(r)
M = M'- = irf'- vY d«xlmg'*(x)g(x),

xo(r)
(5.38)

(s.31)

and one can check directly that they are all con-
served, though this has been proved in general in
the first part of this section.
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1m g*' (x)g(x),
do vY
dx P

o(x,(0))=0,

so that

(5.39)

In order to quantize the fermion system we re-
sort to a redefinition of the x coordinate similar
to the scalar case. We define a function o(x) by
the equation

so that

M =-Pip . (5.43a)

B
f(~) = (-)' — g(o,(~)), (5.45)

from which the odd periodic condition

From (5.30), the connection between f and g is
just

o,(r)=, o,(r) = +o, .Bv BT
- BT - Bv (5.46)

j./2

g(o) =
&

g(x(o)) (5.40)

This is in contrast with the scalar theory where g
transformed as a conformal scalar. If we substi-
tute (5.40) in the equation for do/dx we find

Im(g (o)*g(o)) .
do P (5.41)

We may express P, H, M, and Q in terms of g(o):

Notice that Img*'(x)g(x) is not an intrinsically
positive-definite quantity. It is, in fact, propor-
tional to T", the P' density of the bag. This lack
of positive definiteness of T" is a familiar feature
of the classical Dirac theory. We expect that this
difficulty will be removed in the usual way by
quantizing with anticommutation relations. For
the purposes of setting up our canonical formalism
we shall assume that T"/P 2(-do/dx &0 throughout
the bag and so o(x) can be inverted. We will cease
to worry whether we have made an error after
verifying the self-consistency of the quantized the-
ory.

We shall take the field g(x) to be a conformal
spinor, i.e., we define a new g(o} by

follows. Thus we can expand g in half-integral
modes:

g(o)=(, )„4 g b e (5.4V)

H= Q mb*b (5.49)

We take b (T) -=b e "' ' to be dynamical vari-
ables and therefore impose the anticommutation
relations

{b.(~), b„(~))=0,

{4(~)Ib„(T)j ={b.'(~)I b. (~)j =4.,

which ensures Heisenberg's equations

b„(2)=-. [b (2.), H]

(5.50)

where the prime on +indicates that m is summed
over half-odd integers. From (5.45) and (5.47) we
have

/2

f(~) ~ b e -2)I(NI(BT/P)
(1)1/4 P ~ III

(5.48)

and from (5.42b)

fyg(v )
Q = W dog*(o)g(o),

op(7. )

2&( '"
H-

,(r)
P=P(o, (7) —o,(v))-o, =1,

do Im(g'*(o)g(o)),

so that

M = 7'H - Px( 7'),

where we have defined the average x(2) by

&~(~)
2( ) =f ck*(a),

~p(~)

from which

(5.42a)

(5.42b)

(5.42c)

(5.43)

(5.44)
2mB

P
m 2

mb b -mb b:+
m =g/2

and, as in the scalar case, the operators x(o),
g(o} will have explicit time dependence.

To achieve a positive-energy spectrum we must
interpret the b 's as follows (m&0}:

annihilates a fermion,

b —= d ~ creates an antifermion,

b ~ creates a fermion,

b ~ = d annihilates an antifermion.

Then we can write the Hamiltonian (5.48) as

dx B H—=—(x (7) —x,(7)}=—
Hx(7.) =x, +—7,

m''g' m(bt b +dt d„)+
m=Z/2

(5.51a)
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2mB mo
H —= Co+ (5.51b)

where we have introduced m„ the mass of the
empty bag, which is undetermined due to order-
ing ambiguities. We list the expressions for Q
and M which follow from (5.42a) and 5.43):

Q= Q (btb -dtd )+Q„
m=g/2

M = —p( XOP + P xo),

(5.52a)

(5.52b)

2' mox(o) =x + —2 + ' (o —2)P 4m'B

where Q, is the charge of the empty bag; we shall
assume Q, =P in our model. It is essentially triv-
ial to show thatP, H, andM obey the Lorentz alge-
bra if we make the usual requirement

[x (~),P]= —f,

[x (~), b„(~)]=[x(~), b„~(~)]=0.

We shall not burden the reader with the evalua-
tion of the operator x(o). It is straightforward to
show that

treatment of interacting fields, we consider the
colored quark-gluon theory proposed in the In-
troduction as a realistic model for hadrons. Spec-
ifically, we will study a model consisting of three
triplets of massless quarks, interacting via an
SU(3) vector gauge group (which operates only on
the color indices of the quarks) with eight mass-
less self-coupled, gauge vector bosons. The
quarks could be chosen to be massive and be
treated identically to the massive fermions of
Sec. V. We leave them massless for simplicity,
although it may be desirable to add a mass term
to break the hadronic (as opposed to color) SU(3)
symmetry. As remarked in the Introduction, we
expect that the infrared divergences of the mass-
less Yang-Mills theory will be absent since the
bag cuts off long wavelengths.

We begin by formulating the massless Yang-
Mills theory. The quarks will be included later.
Define

F ""=8 "A;—8"At'+ gf;,» A". A" (6.1)

Fi~' transforms under the regular representation
of the gauge group when A,." undergoes the infini-
tesimal gauge transformation

+—2 n ~ -2 fi'in(y

P „~0 n
(5.52) A,~-A,&+gf„,A~a, ( x) +»n, (x), (6.2)

(m+ p n) bt b„~ (5.54)

where g„are the fermion conformal generators: where f;» are the structure constants of the group.
We then consider the gauge-invariant action for
A,." confined to the bag.

which obey the algebra W= d g -4E Evv-B .
V

(6.3)

[g„,g„]=(n )mg„-, + ~ 5„(n' -n), (5.55)

[Z„,b.J= -(m+ —.'n) b. ,„.
We observe the striking similarity in the forms
of x(o) for the scalar and fermion cases.

We summarize briefly the results of our quan-
tization procedure. There are only positive-ener-
gy fermions and antifermions with a (mass)~ spec-
trum of half-odd-integral multiples of 4mB, in
contrast with the boson and even fermion spec-
trum of integral multiples of 4mB. The possible
states of the bag are represented by polynomials
of bt and dt acting on the empty bag state, IQ~),
which is defined by

d IQ, )=b IQ, )=0,

PIQ, )=PIQ, ) .

VI. THE MIXED BAG

As remarked in Sec. V, the confinement of
gauge vector and other interacting fields to a bag
poses no new problems once the scalar and spinor
theories have been understood. To exemplify the

Stability of the action under variation of the fields
Ai" implies the equation of motion

D,"F,„„(x)=0.
and the boundary conditions

n Fuv-p
i

(6.4a}

( 6.4b)

4Fi~v Fi (6.4c}

on the surface of the bag. In (6.4}we have intro-
duced the gauge-covariant derivative

(6.5)

It is straightforward to show that the usual locally
conserved T""and M""" satisfy

n TPv n~ MPvx PIj

on the surface, so the Poincare generators are
conserved and Lorentz-covariant as they must
be.

The methods described in Sec. V can be easily
extended to massless quarks interacting with the
gauge boson through a conserved current. We de-
note the quark field by g,„where the first index



refers to the SU(3) of color and the second refers
to the hadronic SU(3). Terms without indices are
understood to be summed over omitted indices.
The naive action is

lian Han-Nambu model mentioned in the Introduc-
tion. Qf course, these considerations do not apply
to the electromagnetic charge since the photon is
not confined to the bag.

d x —~ E»pyE»" + a&g
F

+gffg' Gq B)-, (6 6)

D»g Ey pv
= -g ~c» r y@ i

i gq, +g(g g), , q~ =0

inside the bag, and

n Et"=0
p

Z P jf»a ~»n ~

j.—&E E&"+ ~n 8qq-B=O
»

(6.Va)

(6.'lb)

(6.Vc}

(6.Vd)

(6.Ve)

on the surface of the bag. Notice that these bound-
ary conditions are manifestly gauge-invariant. In
particular the coupling between the fermion and
boson fields drops out. Equations (6.V} ensure the
conservation of the Poincare generators in much
the same way as in Sec. V.

Using the boundary conditions of Eg. (6.V), we
can make explicit the argument in the Introduc-
tion that no bag with nonzero color can exist. The
color generators are

d'xj'» x, (6.8)

where the current j I'(x) is given by

j,". (~) =Z( qG; r"q+f *pa F;""&a.)

(6.9)

The bvo terms in j»" are the contributions to the
color current from the quarks and the gluons,
respectively. From (6.9) we have

~0 g Elo

where the sum runs over only spatial indices.
Therefore

Q» = dSng E»
S

where the integral is now over the surface of the
bag. However, n, E',00(-n„E,". 0=0 on the surface
by Eq. (6.Vc}. Hence, the bag necessarily trans-
forms as a singlet.

We have confined our detailed discussion to the
non-Abelian case where color symmetry is exact.
Similar considerations can be applied to the Abe-

where I is a suitable representation of the gauge
group. Following the limiting procedure described
in Sec. V, it is not difficult to obtain the follow-
ing set of equations for E and q:

VII. SPECULATIONS AND CONCLUSIONS

The foregoing sections have dealt entirely with
the properties of single hadron states. No inter-
actions either with an external system or with
other hadrons have been introduced. It is clearly
of primary importance to incorporate such inter-
actions into the theory. At the present stage of
our understanding of the theory, we have only
qualitative ideas about how they can be included.
For example, we expect the weak and electromag-
netic interactions of a single hadron to be gov-
erned by the appropriate currents. These cur-
rents are in turn coupled to the photon (or inter-
mediate vector bosons) to which the bag is, of
course, transparent. At the classical level we
know what these cux rents are; the electromag-
netic current, for example, has been written
down in previous sections for the various sorts
of fields confined to the bag. The quantum treat-
ment of the currents is complicated by the fact
that the classical current is zero outside the bag.
This can be expressed formally by multiplying the
locally conserved current by step functions: For
example, in the two-dimensional case,

j "(x}= k[~(x(v) -x)+c(x -x,(r))] j „"~(x).
Of course, in the quantum theory x, (v), x,(v) are
operator functions of the fields inside. They there-
fore do not commute with the fields which go into
the construction of the locally conserved current.
Consequently, there is an ambiguity in how to or-
der the quantum operators. This ambiguity is pre-
sumably to be resolved by the requirement that
the currents be conserved and local. The proper
treatment of locality will involve the creation of
bag-antibag pairs, as is evident from the need
for both positive and negative frequencies to con-
struct the step functions. In the context of our
single-bag theory locality could only be achieved
by introducing negative-energy states. We expect
the creation of pairs to be related to the form
factor by a kind of duality, as indicated in Fig. 5.

We have not yet gone beyond this qualitative
description. Clearly, a detailed understanding
of the relationship between this kind of duality
and locality is a prerequisite for understanding
how to resolve the ordering ambiguity. Only then
mill we be able to make rigorous statements
about the elastic form factors and deep-inelastic
structure functions of the low-lying quantum
states. Nonetheless, we feel that the quasifree
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parton structure of our model will lead to approx-
imate scaling of the deep-inelastic structure func-
tions, because a short-wavelength (A.«B '~4) vir-
tual photon will see the free-field short-distance
structure of the contained fields, but will not be
sensitive to the boundaries which are character-
ized by the length B '~'. We might even venture
to guess that the elastic form factors fall like
powers of the momentum transfer by virtue of
the sharp walls of the bag.

The qualitative picture for purely hadronic in-
teractions, as we have mentioned, is based on
the possibility of a bag fissioning into two bags
at a point. " This interaction is clearly consistent
with causality and Lorentz invariance at the class-
ical level. Hopefully this would also be true of
the quantum theory. This idea is most naturally
incorporated in the "sum over histories" forma-
lism. Again we have yet to go beyond this simple
qualitative description. The detailed understand-
ing of the hadronic interaction will involve the
problems associated with the final states in in-
elastic hadron-hadron scattering. Finally we
stress once again the dramatic qualitative differ-
ence between weak and electromagnetic interac-
tions, on the one hand, and purely hadronic inter-
actions, on the other.

We conclude our paper with a summary of the
principal features of our model for hadrons. It
is a relativistically invariant model which con-
fines free or nearly free parton constituents. The
confinement leads naturally to a hadron spectrum
with infinitely rising Regge trajectories and to a
density of states characterized by a maximum
temperature for the constituents. When the con-

2
g cO

g &Q

FIG. 5. Diagram for the form factor of a bag for
spacelike and timelike q (involving creation of a bag-
antibag pair) .

stituent fields are allowed to interact through a
massless gauge field which is also confined, we
find a natural understanding of why the physical
hadrons have only the observed quantum numbers
even though the constituents carry quark quantum
numbers.

We have shown that the classical field equations
can be quantized by explicitly accomplishing this
in one space dimension for both Bose and Fermi
fields. In the real case of three dimensions, in
this paper we have only developed a quantization
for large quantum numbers. Clearly, much work
will be required to get a detailed understanding
of the low-lying quantum states —the observed
particles.
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We derive the boundary conditions satisfied by a boson field in the theory of hadron "bags."
The scattering problem, the fission problem, and the fusion problem in this theory of one
spatial dimension are discussed.

I ~ INTRODUCTION

In the preceding paper, Chodos, Jaffe, Johnson,
Thorn, and Weisskopf' (CJJ TW) proposed a very in-
teresting model for the structure of hadrons. They
assume that hadron fields are contained inside a
"bag" which has a constant, positive potential en-
ergy density B. By requiring that the action of
this Lagrangian be an extremum, they obtain the
field equations inside the bag and the conditions
satisfied by the wave functions at the boundary.

These equations also determine the location of the
boundary.

Their boundary conditions do not require the
field to vanish at the boundary. This seems to
lead to difficulties when two hadron bags scatter
from each other. In CJJTW troubles with boundary
conditions are already encountered in the fermion
case, and are solved by introducing an outside
field with large mass. In this paper we propose
to apply the same treatment to the boson case.

It is found that this procedure leads to a different


