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We present a unified gauge model of weak and electromagnetic interactions, which has the
following features: (a) Chiral U(2)I & U(2)~ is an exact "natural" symmetry of strong inter-
actions in zeroth order and therefore its violations (which arise in order g4) are computable,
and adjusting parameters suitably we can get +2eo+es)/(v 2ep 2 se) c.; (b) violations of iso-
spin symmetry as observed in, for example, 4I & 0 mass differences are, then, computable
and of order n; (c) this model can be extended to include leptons in such a way that m, /m& is
computable and is of order g4. We also speculate on the possibQity of spontaneous CP viola-
tion arising as a higher-order effect.

I. INTRQDUCTIQN

It has recently been suggested' that gauge the-
ories' may provide an elegant framework for un-
derstanding the approximate symmetries of nature.
This comes about because of the intexplay between
the constraints of gauge invariance and renormal-
izability in the Lagrangian, which imposes re-
strictions on the nature of the fermion (and/or
Higgs boson) mass matrix to zeroth order in the
gauge couplings. The restrictions may arise
either due to the choice of representations' of the
gauge group to which the fermions and Higgs bo-
sons are assigned, or due to constraints on the
vacuum expectation values3 of Higgs fields aris-
ing under such circumstances. In either case,
since in general gauge couplings violate the sym-
metries of the zeroth-order mass matrix, the
radiative corrections will modify the zeroth-or-
der mass relations and their contributions will
have to be finite'*' in order to be consistent with
renormalizability. Attempts have been made to
make use of this feature of gauge theories to un-
derstand the p-n mass difference, 4'

p, -e mass
ratio, ' Cabibbo angle, ' etc. In this paper, we will
discuss the possibility of understanding the origin
of approximate chiral U(2)~ x U(2)„ invariance of
strong interactions and the p, -e mass ratio in
terms of a unified gauge model of leptons and had-
rons exploiting the principles mentioned above.

We will present a gauge model which realizes
the required zeroth-order symmetry (i.e., m„
=my=0 andm, =0, g and 6' stand for neutron
and proton quark) to yield calculable breaking of
chiral U(2)~ x U(2)„as well as electron mass in
higher orders in gauge coupling. The model out-
lined in Sec. II,requires only four SU(4) quarks
(O', JI, A,, (P') of Glashow, Iliopoulos, and Maiani'
and four observed leptons (v„e-, p, , and v„).
In zeroth order (and in order ga as well), only X

and 6" quarks as well as p, and v„are massive
and the remaining fermions are massless. How-
ever, to order g~ in gauge couplings, 6' quark,
X quark, and the electron and v, acquire mass.
The masses of the 6' and the X quarks (which are
now computable) break chiral U(2)~ x U(2)„sym-
metry of strong interactions and in conventional
notation we get (v 2 so+ s,)/(W2s, —2s,) -g~4,
where we arrange vacuum expectation values
so that the magnitude of this ratio is of order n.
In such a model, chiral U(2)~x U(2)s symmetry
of strong interactions must be spontaneously bro-
ken, with pions (and a light mass t)) being the cor-
responding Goldstone bosons. As is well known, '
pion mass, in such a philosophy, is proportional
to &2s, +s, and therefore, in our model, will
arise as a purely weak and electromagnetic effect.
This approach is in general agreement with the
philosophy of chiral-symmetry breaking advocated
by Gell-Mann, Oakes, and Renner. ' Note that all
our above statements are independent of how one
chooses to introduce strong interactions into the
gauge models, as long as renormalizability is not
destroyed in so doing.

The electron mass also arises in fourth order
in the gauge couplings and is proportional to the
muon mass. Since the masses of Mand e arise
in order g~, their apparent magnitude is smaller
than one would like; but in this model, one has a
large number of free parameters and one can ar-
range their magnitudes to get a larger magnitude
for their values.

To construct the above model, we use the gauge
group SU(2)~ x SU(2)s x SU(2)„xU(l), with electric
charge given by Q = I» + & I', where Y'. is the U(l)
quantum number. There is a basic asymmetry
between the left- and right-handed gauge groups.
The role of the gauge group SU(2)„ is merely to
ensure the computability conditions. Not surpris-
ingly, a number of Higgs multiplets are required
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in this model. In an appendix, we present a slight
generalization of this model involving six quarks
and six leptons, where U(3)L x U(3)„ is a "natural"
zeroth-order symmetry of strong interactions,
and therefore chiral-symmetry breaking arising
in higher orders is computable. In a second ap-
pendix, we speculate on a possible spontaneous
generation of CP violtaion in higher orders in
such models.
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II. CONSTRUCTION OF THE MODEL

Quarks

~,.=(; ).
-=(;:).
2B

Representation
content

(2, 0, 0, 1}

(0, 2, 0, 0}

(0, 2, 0, 2)

Lepton s Representation
content

(2, 0, 0, -1)

We work with the gauge group SU(2)L x SU(2)R
x SU(2)„xU(1). We denote its representations by
(x, y, z, Y) and as mentioned earlier, the electric
charge is given by @=I»+-,Y, where I» is one
of the SU(2)L generators and Y is the U(1) gener-
ator. We have four quarks and four leptons in
our model. We denote them by ((P„XO, A. „(P,'} and
(v„e,, l1, , v,'). The subscript zero is used to denote
the fact that the mass matrix is not diagonal in
these fields. The physical quarks and leptons
which are eigenstates of the mass matrix are lin-
ear combinations of the above fields and will be
denoted by ((P, X, k, (P ') and (v, , e, p, v„). The
fermions and Higgs bosons are assigned to the
following representation of the gauge group.

(0, 2, 0, 0)

(,)- ', (;),
(9)= ~i ( i i)and( )=~ ( )

(4)

To obtain thb most general allowed gauge-in-
variant Yukawa coupling Z~ of fermions and Higgs
bosons, we note the following transformation pro-
perties of (luarks and the Higgs bosons [omitting
the U(1) transformations]:

4 «W2 4 (L i 4 (R
-U2 4 iR

o -W, ov~, e-U, eV~„m- W, mV~„

y -U2 X, & = 7 2
O* 7 2 W2 O' U 2,

where W„, U„, and V„denote the unitary represen-
tations of SU(2)L, SU(2)„, and SU(2)„with dimen-
sion n. This gives

h( @IL +IR+ Q hE+IL o @2R
& =1,2 5 =1.2

The following pattern of vacuum expectation
values of the Higgs fields can be chosen consistent
with an extremum of the potential (which can pre-
sumably be shown to be a minimum also):

( ~ =i (.".)

(0, -', , 0, -2} (2)

(0, 2, 0, 0)

+ g hi@«oC»+ hf @,La %4R.
& =S,4 k =,4

The quark and lepton mass matrices obtained
from E(l. (6) are

(6)

i2 ' (i D)(X ) M2 ' ' (i' 0)(i' )
for quarks, and

(6)
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It is clear that the mass matrices I ean be dia-
gonalized by simple rotation of the left-handed
parts and each M has only one nonzero eigenvalue.
We will identify the eigenstates with zero eigen-
values with Qt, 6' and e, v„respectively. The

g 's can be expressed in terms of the physical
fieMs as

which was zero to lowest order, does become non-
zero due to the diagrams shown in Figs. 1 and 2
and, incidentally, this is finite and computable.
Since there is the coupling in 2r, i.e., %so,'(h, Xz,
+h, A~)+H.c., a nonvanishing (o,') induces new

terms into the mass matrix in the X-A. sector,
which nom becomes

($'~cos8+ 6'~sm
4xx, =

/

(9t~cos8'+X~sin8' j

( -6 gsln8+(Pgcos8 )
4u. =

(—'Xgsin8 + A.l, cos8 j

However, this does not help in giving mass to the
X quark since detM' =0, because (o,') is a func-
tion of k z A 2 and does not depend on h z and h, separ-
ately, and therefore, since m„tO, m~remains
zero to this order. Now we go to fourth order in
the coupling constants. In this case, the diagram
shown in Fig. 3 contributes to the quark mass ma-
trix. The new X-A. mass matrix now becomes

pseos + vpsln
4 Sl

(e cosP+y, sing )~

p cocos
—p~ slIl

(p cosQ-e-sing jl,

where A is finite and represents the magnitude of
the contribution of Fig. 3 and, more importantly,
is independent of hz and h, . Therefore, it is clear
that

detM"=A(h2 -h, )40, ifh2=h, - (12)

where tan8=h2/h, ', tan8'~h, /h, , tang=&4/h, ,
tang' =h~/h~.

Note that we have ensured the vanishing of g
quark, 6' quark, and the electron and v, mass in
zeroth order in a "natural" manner, and there-
fore their values arising in higher orders are com-
putable. Also my= m~=0 ensures that chiral U(2}z,
x U(2)„ is an exact zeroth-order symmetry of the
mass matrix and, therefore, of stxong interac-
tions [since gauge invariance and renormalizabil-
ity of the weak interactions alone force the strong
interactions in four-quark models to be chiral-
U(4)~ && U(4)„-invariant']. In higher orders con-
tributions to the mass matrix will arise which
violate U(2)~ x U(2)s symmetry and the magnitude
of this violation mill be finite and computable.
Nom, we would like to demonstrate how the g
quark acquires mass in order g4 in the gauge cou-
plings. (Similar arguments will hold for the 6'

quark and the electron and v, .} Notice for this
purpose, that the X quark remained massless in
zeroth order because the X„was completely de-
coupled from X~ and X~ in this order (and there-
fore the determinant of the mass matrix detM was
zero; this meant that at least one of its eigenvalues
must vanish). Let us first see what happens in
second order. First of all, we see that (o~),

This therefore gives mass to the X quark, which
is finite and computable and is expressible in
terms of w y.

Since the masses of X, 6' quark, and the elec-
tron, in this model, arise in fourth order in the
gauge couplings, one may legitimately ask: Are
they too small to be physically relevant'P In this
paragraph, we will argue that this need not be
the case. Our point is simply the following: We
can choose g~ and g~ to be much larger than e,
whereas g' (the Abelian gauge coupling) will be
chosen to be of order e [since e = g~'/
( g~'+ g"}'~'] so that the fourth-order contribution

4 X ~ O'~

FIG. 1. The diagram that makes nonzero and finite
contribution to (020); 8', U, and V represent the gauge
bosons corresponding to SU(2)z, , SU(2)z, and SU(2)~
gauge groups.
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oR

W, 9

a suitable choice of the angle P makes them con-
sistent with the present experimental limits. Al-
so, in our model, v, and v„must be massive;
however, since the magnitude of m„„ is arbitrary,
this can be adjusted to stay within experimental
limits.

(c} The model is free of Adler-type anomalies
due to mutual cancellation between lepton and
quark contributions in the triangle graph.

(d) We would like to conclude with a few brief
remarks about the relevance of this way of chiral-
symmetry breaking. The general strong-interac-
tion Hamiltonians in such models can be written
RS

FIG. 2. Second-order diagram linking 5,0& to & 0z and
and thereby making a finite contribution to &(T2&.

is really of order n (we, of course, arrange the
value of (e) and (m) to be large enough, thus mak-
ing this diagram numerically large). In other
words, we believe, it is possible to make m„/m ~

n(a-nd also m, /m„- a and mp/mg, -a}by suit-
able choice of coupling constants and other param-
eters without running afoul of any known sacred
principles or observations.

III. DISCUSSION OF THE MODEL AND CONCLUSION

Whether or not one believes in this model re-
producing reality of the lepton-hadron interac-
tlonsy lt Rppears to provide R very economic wRy
to understand important questions such as the
origin of chiral U(2)~x U(2)„breaking, the ap-
proximate nature of isospin symmetry, and the
muon-electron mass ratio within a gauge theory
framework; moreover, we would like to stress
that this model does respect all the observed
weak-interaction selection rules and is certainly
not in conflict with any experimental information
known Rt present. This section will be devoted to
a discussion of this and other related questions
regarding the model.

(a) This model does not have any 88=2, bQ=O
coupling to lowest order in the left-handed sector,
as is clearly seen by looking at Eq. (9). Although
such a coupling will be introduced in fourth order,
usual arguments will suppress it from being
alarmingly large. ' In the right-handed sector,
there exists such a coupling, i.e., g„X&y„A,&U, „
and this wiD predict a strength g„*/m~2 for the
decay K~- p, 'e, whose strength has an experi-
ynenta1 upper bound of 6~0.2, therefore, if gz'

e/4w, m„m-ust be of order 104 to 105 GeV and
this can be achieved by making (y) very large.

(b) In the lepton sector, this model has p-e
universality. However, there is also a p, -e transi-
tion as well as v, - p. and v„-e transitions; but

&260+ 6g - e and, of course, c3 Q.
&TED -26 (14)

Therefore, the smallness of U(2)~x U(2)„break-
ing and of the pion mass (when pion is treated as
a Goldstone boson) seem to have a natural explan-
ation in the context of gauge theories as a higher-
order effect." In this scheme, " the paradox of
q 3n decay would no longer exist, as has been
discussed in Ref. 9, since a resolution of the
g-3n puzzle in gauge theories requires that in
lowest order one has 0 2 E0+68 =0.

(e} Finally, we would like to remark that if
gr, '/16v'-a, then the second-order electromag-
netic contribution, as well as the contribution of
chiral-U(2)~ x U(2)„-violating quark mass terms

x
oL

I
oL oR +oL oL

FIG. 3. The fourth-order diagram that makes a non-
zero contribution to R-quark mass. A similar diagram
contributes to e and 5'-quark masses. The lines denote
the unrotated fields.

X=Xo+&OUo+ E'SU'8+ 630'3 .
In the present model, to zeroth order, we should

have c, = 0 and W2e, + e, = 0, the first implying that
isospin is a natural symmetry and the second that
chiral U(2)~ x U(2}„is a natural symmetry of
strong interactions. As a result of higher-order
effeCts we find
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(i.e., mz%3I+ mal@6') to the pion mass (arising
in order g~' as shown in text), are of the same
order of magnitude, and therefore the entire
chiral U(2)~ x U(2)„symmetry breaking in this
model is of order n.

Representation

(-.', 1, o, 1)
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APPENDIX A

In this section, we would like to present a sim-
ple extension of the model considered in the text,
such that U(4)~ x U(4)„ is an exact zeroth-order
symmetry of strong interactions. The model is
based on six guarks (d', 3I, %,, 6",s, d'") and six
leptons (v„e, V, , v„,E,E'). The gauge group
is the same as before. Denoting unrotated fields
(the fields which are not eigenstates of the-mass
matrix) by the above symbols, we make the follow-
ing assignment for the fermions:

Representation

g
(el 1 e12

( ear ea2 f
(0, 2, k, o),

The other Higgs boson fields are

(A3)

Representation

( s„
Ill? ~s

(g, 0, 0, 1)

(—', 0, 0, 1)

(g, o, o, 1)

(0, 1, 0, 0)

(0, 1, 0, 2)

(Al)

and n and X as in the main text. It is clear that
through the allowed Yukawa couplings one gener-
ates zeroth-order mass matrices, which have
only one nonzero eigenvalue in each sector to be
identified with s, O'", E, and Eo masses, re-
spectively. As in the text, the next eigenvalue
becomes nonzero in order g4 and the following
are in order g'. Since m y, =m y =m~ =m „=0to
zeroth order, one has exact U(4), x U(4)„sym-
metry to zeroth order and its violations arising
in higher orders are computable. In the neutral-
lepton sector (v„v&, E'), there are two possibili-
ties consistent with renormalizability: One is to
assign (v, , v„,E')„ to triplet under SU(2)„; in that
ease one would predict a massive neutral lepton
with a mass of a few MeV and this might contra-
dict experiment. The other possibility is that
v,R, v», and E'„are all singlets under the gauge
group. Then, to make Eo massive, one will have
to put in a %'einberg-type doublet

Lepton assignment is also done exactly similar-
ly. The Higgs boson field which has Yukawa cou-
pling and is therefore responsible for giving the
zeroth-order mass matrix is [which behaves like (2, 0, 0, I)], with ( T)= (').
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APPENDIX 8

In this appendix, we would like to speculate on
the possibility of spontaneous generation of CP
violation as a higher-order effect in the model
under consideration. The way it comes about is
the following: When we examine all the allowed
gauge-invariant couplings among the Higgs bosons,
we find that in zeroth order, all the vacuum ex-
pectation values of Higgs fields consistent with an
extremum of the Higgs potential can be made real
by a gauge transformation. This is essentially
because the potential at its minimum is indepen-
dent of the phase of the vacuum expectation val-
ues. However, in higher orders one induces terms
terms like po,'oo +2H.c. (see Fig. l) and q(o, &,)
&& (o ', o,') + H.c. (see Fig. 4). Owing to the presence
of these terms, a minimum of the potential seems
to develop for a nonvanishing phase of (o,'), and
this in turn generates CP-violating terms in the
Lagrangian. " The important thing to note is that

/$0
I

I
y~o

i/
/

FIG. 4. The diagram that generates terms of the type
q(o&o2)(ufo&) Th.is is responsible for spontaneous gener-
ation of CP violation in higher orde'rs.

since p and q arise in higher orders, their mag-
nitudes are computable in terms of the basic pa-
rameters of the theory. In such a model, the
magnitude of CP violation can in principle be pre-
dicted.
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