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A pole approximation to the Dyson-Schwinger equations for the fermion self-energy parts is
proposed to investigate the consequences of dynamical symmetry breaking on the pattern of
lepton mass generation in gauge theories. This approach finesses known difficulties, en-
countered by Georgi and Glashow, in attempts to calculate perturbatively the electron-muon
mass ratio in theories with elementary Higgs fields. Its self-consistency would imply, via
an eigenvalue equation, the existence. of ultraheavy gauge bosons.

Among the long-standing unresolved puzzles of
particle physics, the role of the muon has proved
as frustrating as it is, presumably, of central
importance. Intimately connected to this question
is the relationship between the muon and electron
masses. Recently, Georgi and Glashow' empha-
sized the possibility? that a solution to both of
these problems may be found within the context of
a perturbative approach to renormalizable gauge
theories of the weak interactions® and illustrated
their ideas with “rational if implausible” models.
The 7raison d’etre for the muon in these models is
that it is part of the multiplet that provides the
representation space for the gauge group. The
electron mass is made calculable in terms of the
muon mass by forcing the electron to be massless
in zeroth order of the gauge coupling and by then
letting it acquire a mass as a result of finite ra-
diative corrections of order « involving a virtual
muon., The suggestion that the electron mass
comes entirely from its being a “part-time muon”
due to an interaction of electromagnetic strength
is aesthetically appealing and also supported by
the numerological observation that the electron
mass (m,) is roughly « times the muon mass (m,).

A consistent and satisfactory implementation of
these ideas turns out to be difficult to achieve be-
cause of the multiple conditions that need to be
imposed on the choice of the gauge group, the lep-
ton representation, and the zeroth-order lepton
mass spectrum [ generated through the Yukawa
coupling by the vacuum expectation value (VEV) of
the elementary canonical scalar (Higgs) fields
present in the Lagrangian]. For instance, the
zeroth-order spectrum, which differentiates be-
tween electron and muon by giving the muon a
mass while keeping the electron massless, must
obviously correspond to a configuration of VEV
which represents a minimum of the potential,
stable under small variations of any of the pa-
rameters in the Lagrangian. Such a condition is
hard to meet in simple models because its specific

9

symmetry-breaking character® tends to conflict
with the symmetrical structure of the theory as
embodied in the gauge interaction.

This conflict is clearly exemplified by consider-
ing Weinberg’s chiral SU(3) X SU(3) model. The
observed leptons are arranged in a Konopinski-
Mahmoud triplet (u*, v, e~) with left-handed and
right-handed components transforming under the
gauge group as a (1, 3) and (3, 1), respectively.
The only meson representation which couples to
the leptons by the gauge-invariant Yukawa coupling
(fProy, +H.c.) is a complex 3-by-3 elementary
spinless matrix field ¢ transforming as a (3, 3).
Since the VEV of the latter is responsible for the
zeroth-order lepton masses, to obtain the de-
sired zeroth-order spectrum we must insist that
the meson field in the array which is coupled to
the electron (¢,) have identically vanishing VEV
at the physical minimum of the action. A neces-
sary condition for such a minimum to exist is
that there be no (destabilizing) terms in the La-
grangian linear in ¢,, which may arise from the
coupling of ¢ to other meson representations (x)
also acquiring a nonvanishing VEV. The presence
of such coupling terms as counterterms in the
Lagrangian is sometimes forced by the require-
ment that the theory be renormalizable, i.e., by
the need to absorb divergences which appear in
amplitudes involving both ¢ and x. If no direct
coupling between ¢ and x was introduced in the
original Lagrangian, the amplitudes in question
could obviously still be nonvanishing and actually
formally divergent as a result of loop contribu-
tions present in some order of the gauge interac-
tion. Unfortunately, this is precisely what happens
in the case (under discussion) of Weinberg’s
model. If the electron in this model is to acquire
its mass via radiative corrections involving the
muon, it is necessary that there be a certain
direct mass mixing between left-handed (W) and
right-handed (Wy) gauge fields induced by some
scalar-meson representation. But then there
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exist superficially divergent two-loop diagrams
considered by Georgi and Glashow' (see Fig. 1),
with four external elementary meson legs includ-
ing one ¢, whose renormalization indeed requires
the introduction of those unwanted (destabilizing)
Lagrangian terms we referred to above. Thus,
the original choice of zeroth-order lepton mass
spectrum appears to be inconsistent with simple
stability criteria and ¢, acquires an incalculable
VEV.?

Georgi and Glashow, in their work, suggest, as
a way to circumvent the above-mentioned obstacle,
enlarging the gauge group to SU(3)x SU(3)x SU(3);
it is then possible to avoid a direct mass mixing
between W, and W;. This prescription cures the
specific difficulty addressed by Georgi and Gla-
show associated with the particular perturbation-
theory diagrams they consider. However, even if
we assume that the introduction of the unwanted
(destabilizing) Lagrangian terms is not forced up-
on this model in any other way, sothat there does
not appear to be any obvious inconsistencies with
the choice made of VEV, such a solution may be
regarded as too adhoc to constitute anything more
than a technical victory. The latter criticism
may also apply to the SU(3)x U(1) model proposed
by the same authors. In summary, the require-
ment that the electron mass be calculable as a
result of the perturbative technique of electron
mass generation mentioned above leads to con-
straints which are selective enough to make it
apparently very hard to implement those ideas
and still obtain acceptable models.

While the role of very discriminatory criteria
may be regarded as quite useful in limiting the
proliferation of models, we must clearly entertain
the possibility that our presumption that the lep-
ton mass spectrum is a perturbation-theory effect
off a perturbative spontaneously broken zeroth-
order condition does not happen to be true in the
real world. This would not necessarily imply that
the electron and the muon masses are independent
parameters since a relationship between the two
could well exist as-an entirely nonperturbative ef-
fect, i.e., completely outside of the realm of per-

FIG. 1. Superficially divergent Feynman diagram lead-
ing to the loss of the zeroth-order masslessness of the
electron in Weinberg’s SU(3) XSU(3) model with elemen-
tary Higgs fields.
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turbation theory. This note is aimed at discussing
some of the salient features of such a possibility
in the general framework of gauge theories.®

The idea that the solution to the electron-muon
puzzle could be of nonperturbative character is
relatively old. "It was originally formulated in the
framework of the ordinary electrodynamic inter-
action of muons and electrons by Baker and Gla-
show.” The starting point for these authors (as
well as for many others interested in nonpertur-
bative phenomena of spontaneous symmetry break-
ing) is the consideration of the Dyson-Schwinger
equations. They observe that, owing to the non-
linear nature of these equations, nonperturbative
solutions to the theory will not in general possess
the symmetries of the equations themselves and
adopt the philosophy that the electron-muon split-
ting is a reflection of this property.

More precisely, Baker and Glashow consider
electrodynamics without bare-mass terms

£=iT 059, + Py oy,
+eoA)\($e7’x¢e+.‘pu7’x¢p) ’ (1)

where 3., y,, and A, are the electron, muon,

and photon fields, respectively, and e, is the bare
electric charge. They seek solutions to the re-
normalized Dyson-Schwinger equations such that
the renormalized electron Green’s function G, has
a pole at the physical electron mass m,, and the
renormalized muon Green’s function G, has a
pole at the physical muon mass m, (to be deter-
mined):

Ge: (7'? +m, )-1
and
Gu=yp +my)™t,

Of course, since available techniques do not allow
them to find solutions to the full system of coupled
nonlinear Dyson-Schwinger equations, they are
forced to consider approximations to these equa-
tions. An approximation which is undoubtedly too
crude consists of neglecting in the integral equa-
tions for the self-energy parts, Z,(y-p) and
Z,ly+p), all spectral-function parts. Thus they
replace the exact vertex operator I';, by the bare
vertex y,, the exact photon propagator D(g?) by
1/q? and ignore the y-p dependences of Z(y*p)
[Fig. 2(a)]. This pole approximation reduces what
is an integral-equation problem to an algebraic
one. Since divergent integrals appear, a cutoff
parameter A must also be introduced. In the limit
A>m,and A>m, one then finds

m,=(3a/4m)m, In(A%/m ?),

@)
my = (3a/4mm, In(A%/m,?) .
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FIG. 2. (a) Pole approximation to the Dyson-Schwinger
equation for the self-energy of a fermion in conventional
QED. (b) Inclusion of spectral-function corrections to
the photon propagator.

These equations are clearly symmetric in m, and
m, and do yield the perturbative solution m ,=m,
=0. But they possess nonsymmetric solutions as
well, for example,

m,=0, m,=Ae 273 | @)

There is however a very obvious and substantial
objection to Egs. (3): the lack of mutual coupling
between m, and m,. In the present context of
quantum electrodynamics (QED) one could hope to
find a remedy to this by including spectral-function
terms in the photon propagator such as the ones
coming from p*u - and e*e" intermediate states
[Fig. 2(b)]. This would lead to

me=Ba/4m)m, 1n(A%/m ?)
+aoPm,F(A/m,, A/mp)\,

my = (Ba/4m)m, In(A?/m ,?)
+a&@myF(Amy, A/m,),

and to solutions perhaps more interesting than Eq.
(4). There will however always remain a major
objection to the implementation of the Baker-
Glashow program in the context of pure QED: the
lack of any obvious compelling reason for the in-
troduction of a muon in the first place. It is very
tempting at this time to associate this disturbing
conceptual difficulty with the Abelian nature of
pure QED.

This is then the first objection that a reformula-
tion of the Baker-Glashow program in the context
of non-Abelian gauge theories could clearly solve.
The solution is in fact the same as the one already
mentioned in discussing the perturbative approach,
i.e., that the a p7iori existence of a dynamical
group implies the a priori existence of a minimal
number of independent “elementary” fields to
make up the fundamental representation of the
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group.

Besides this conceptual reason, there also ap-
pear to be other reasons of more practical nature
that suggests pursuing the idea of Baker and Gla-
show within gauge theories rather than pure QED.
One of these reasons is the dependence of Egs. (3)
or (5) on the cutoff A. If we are to compute the
electron-muon mass ratio unambiguously, in
terms of the fundamental parameters of the theory
(@) alone, the cutoff dependence of the approxi-
mate equations under study must clearly not leak
into a cutoff dependence of the approximate solu-
tion for that ratio. It is by no means clear whether
this can be achieved for nontrivial solutions in
QED. On the other hand, within the context of
gauge theories one can obtain an approximate
self-consistent set of equations for the electron
and muon masses which is unambiguous, i.e., in-
dependent of external cutoffs (the role of cutoff
being assumed by physical gauge-boson masses)
provided a careful choice is made of the gauge
group and of the lepton representation.

Finally, let us notice a further advantage of very
practical nature which, in the nonperturbative ap-
proach to the electron-muon problem, definitely
favors the non-Abelian gauge theory framework
over pure QED: In the former case, when electron
and muon are representation partners, there exists
a direct coupling between the equations for the
masses of these particles in the simplest approxi-
mation to the Dyson-Schwinger equations, which
does not retain any spectral function correction to
the gauge-boson propagators. This allows one the
freedom of tentatively assuming that the effect of
these corrections may be consistently ignored if
one is only interested in approximate relations,
thus leading to considerable technical simplifica-
tions.

Having made these remarks, let us now con-
sider the class of gauge theories based on chiral
SU(n) xSU(n) groups with the left-handed and right-
handed components of the known and (possibly) un-
known leptons assigned to the (1, %) and (n, 1)
fundamental vector representations, respectively.
We shall set the coupling constants of the left-
handed (W) and right-handed (W3) gauge fields to
the fermions equal (g, =g;=g) so that the Lagran-
gian is parity-invariant and we have one-coupling-
constant theories. We chose to restrict ourselves
to this class of theories in the following discussion
to have definite models in mind, in spite of the
fact that our considerations have a wider range
of applicability. In particular, besides Weinberg’s
SU(3) x SU(3) model and models based on SU(4)

X SU(4) gauge symmetry, we® have examined in
detail the possible implementation of the idea of
nonperturbative lepton mass generation in an in-
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teresting class of models® in which the left-handed
components of leptons and antileptons

(e, e+; [T p.+,' v, U;...) share the same represent-
ation of an SU(n) group.

The exact proper self-energy parts of our lep-
tons satisfy a nonlinear coupled system of integral
equations whose kernels are expressible in terms
of the exact vertex functions and gauge-boson
propagators [Fig. 3(a)]. Suppose, now, that these
quantities (and, therefore, the kernels) were
known in some approximation corresponding to a
spontaneously broken solution of the theory. Then,
assuming that the approximation of the kernels
does not alter completely the nature of the solu-
tions to the integral equations, we could use these
to infer the implications of the spontaneous sym-
metry breaking, as manifested in the gauge-boson
sector, on the lepton mass spectrum. Since the
most striking manifestation of the occurrence of
spontaneous symmetry breaking in the gauge-boson
sector is the acquisition of masses and the ap-
pearance of mass splittings between these par-
ticles, taking an optimistic attitude, one should
hope that knowledge of the pole approximation to
the gauge-boson propagators would be enough to
obtain the rough pattern in the generation of the
lepton masses.!® This is the approach we tenta-
tively wish to pursue. The approximation we are
proposing amounts to substituting the system of
integral equations corresponding to Fig. 3(a) with
an algebraic system corresponding to the set of
diagrams of Fig. 3(b). The latter is similar to the
set of diagrams one encounters in lowest-order
perturbation theory for the fermion self-energies
except that the gauge-boson and fermion propa-
gators now have poles corresponding to the phys-
ical masses rather than at zero mass. Notice that
such an approximation is not generally gauge-in-
variant and must therefore be accompanied by the

Wij
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FIG. 3. ‘(a) Dyson-Schwinger equations for the fermion
self-energies in gauge theories. (b) Pole approximation
to the equations of (a).

specification of a restricted set of (renormalizable)
gauges. This will include, in particular, the
Feynman gauge in which the gauge-boson propa-
gators take the purely diagonal form g, (g% - M?)™*
and in which our considerations are most easily
carried out.

In the Feynman gauge, each of the nonvanishing
diagrams in Fig. 3(b) is logarithmically divergent.
However, owing to the chiral nature of the gauge
theories under consideration, there is a minimum
of two gauge bosons, i.e., a mixture of left-handed
(W) and right-handed (W) fields, contributing to
the self-mass of lepton i for any fixed virtual lep-
ton j. Hence, mutual cancellation of divergences
between diagrams with the same intermediate lep-
ton j may then arise when these contributions are
summed. The resulting finite self-masses depend
on the angle of mixing between W, and W, in ab-
sence of which they clearly vanish. Let us as-
sume, for the simplicity of the discussion, maxi-
mal mixing, so that the eigenstates of the gauge-
boson mass matrix (gauge bosons of definite
mass) are purely vector and axial-vector fields,
W, and W,, respectively. In the limit in which
their masses are large compared to the physical
mass of the virtual lepton j, their contribution to
any lepton self-mass is proportional to the loga-
rithm of their mass ratio, In(M,/M,). We also
recall that if W, =y is the photon, then the contri-
bution of W, =y and W, =Z is proportional to the
logarithm of the ratio of the Z mass to the mass
of the lepton j =i, In(M,/m,).

We, therefore, finally write down the system of
equations corresponding to Fig. 3(b) in the form

m; =Z ci;my,
¢;; aln({/M?)
+ad;; In(Mz/m;) , (6)

where we have ignored numerical factors generally
of order 1 depending on quantities of the type of
Weinberg’s angle which are related to the geome-
try of the gauge group, and we have assumed that,
except for the photon, all of the gauge bosons have
masses far larger than any of the leptons. The
photon-Z contribution is then the only contribution
which communicates the notion of the mass scale
existing in the gauge-boson sector to the world of
leptons. In fact, if we ignore this contribution,
the system of Eqs. (6) reduces to a linear homo-
geneous system whose solutions are determined
only up to over-all constant factors.

In general, the system of Egs. (6) will possess
nontrivial solutions only if the obvious eigenvalue
equation

detlc;; - 6,1 =0 (7
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is satisfied. We are clearly interested in solutions
that fulfill the following requirements: (a) The elec-
tron-muon mass ratio has the correct value, of
order a; (b) presently unobserved leptons, if they
are required by the choice of gauge group and of
lepton representation, have masses large enough

to justify their having escaped observation; (c)
neutrinos are massless as a manifestation of a
residual unbroken (discrete) symmetry.

We seem to be able to satisfy all of these re-
quirements [including Eq. (7)] in a variety of mod-
els® if we postulate the existence of at least one
gauge boson of ultralarge mass (this is, in fact, so
large that it is difficult to conceive how such par-
ticles could ever play a role if not as highly vir-
tual states), since this is the only obvious way we
can make one of the c;; of order 1 and solve Eq.
(7). In the natural basis defined by the physical
leptons, an ultraheavy gauge boson should corre-
spond to a diagonal generator which couples only
to the most massive lepton and to the neutrinos,
but not to the electron. The electron, if the muon
is the most massive lepton, would then acquire its
mass mostly through an ordinary matrix element
¢;; (of order @) which couples it to the muon. K,
on the other hand, some other lepton L rather
than the muon is the most massive lepton and the
muon itself acquires its mass of order o mostly
through its coupling to L, to obtain the right pat-
tern of masses we must make sure that in the sys-
tem of Egs. (6) there be no direct coupling (of or-
der larger than o?) between the mass of the elec-
tron and the mass of L. This coupling could actual-
ly be identically vanishing if, e.g., the correspond-
ing left-handed and right-handed gauge bosons
were prevented from mixing.
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To summarize, we have argued in favor of a
nonperturbative approach to the mass spectrum of
leptons. Its use enables us to bypass obstacles,
mainly connected with the stability of certain
choices of zeroth order VEV, encountered in at-
tempts to solve the problem of the electron-muon
mass ratio perturbatively in theories with ele-
mentary Higgs fields. In its crudest form, the
nonperturbative approach proposed here was based
on a simple approximation to the Dyson-Schwinger
equations for the fermion self-energy parts of a
chiral gauge theory. We thus have reformulated
the Baker-Glashow program for computing the
electron-muon mass ratio in conventional QED.
This reformulation solves various difficulties, both
conceptual and practical, of the original program;
e.g., a priori understanding of the existence of the
muon, dependence on external cutoffs, and lack of
direct functional coupling between the muon and
electron masses. To be sure, the approach pro-
posed here is not without difficulties of its own, as
many of us will believe that the condition for the
existence of ultraheavy gauge bosons is an unac-
ceptably high price to pay for the computability of
the electron-muon mass ratio. However, such a
condition could well be a feature of the approxima-
tion, which can be remedied by a more sophisti-
cated approximation without spoiling other de-
sirable features of the general scheme.
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