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%'ilson has suggested that electromagnetic ultraviolet radiative coreections can induce a
u 3 tadpole into the effective electromagnetic Lagrangian for g-Sx which would then eliminate
Sutherland's soft-pion theorem. We have investigated this proposal within the framework of
the o' model in perturbation theory and find no such effect. All induced tadpole counterterms
leave the neutral isovector-axial-vector current conserved. We speculate that the "true"
u3 needed for understanding g 3~ may have its origin in the infrared structure of the weak
interaction.

I. INTRODUCTION

It is now recognized that the singulax behavior of
of radiative corrections can radically alter some
of the apparent properties of unrenormalized La-
grangians. A familiar example is the breakdown
of the m -yy low-energy theorem and associated
Ward identities due to the triangle anomaly. ' An-
other process which could in principle fall into
this category is the q-3m decay, since it involves
a closed-photon-loop integration. This would be
very desirable because of Sutherland's well-known
theorem that the decay x ate should vanish in the
soft-pion limit. ' Indeed, Wilson' has speculated
that the operator-product expansion of Jt (x)J„' (0)
contains a singular u, tadpole-type term which is
induced as an electromagnetic renormalizatian
counterterm. Such a tadpole, being in the (3, 3)
63(3, 3) representation of SU(3)xSU(3), would then
break the Sutherland theorem. This approach has
been further investigated by Loodts, Mannheim,
and Brout, ~ who suggested that the tadpole was a

consequence of Bjorken scaling and could thus pro-
vide a link between the absence of the neutral-pion
Adler zero in q-3m and the problem of the finite-
ness of the electromagnetic mass differences.

In view of the somewhat speculative nature of
this proposal, we have decided to make a study of
electromagnetic perturbations of the c model,
which is the most convenient framework for treat-
ing chiral symmetry and spontaneous breakdown.
We find that though electromagnetism does induce
tadpoles, they be1ong to representations such as
(8, 1)$(l, 8) and hence do not affect the conserva-
tion of As„at all. This then makes it quite unlikely
that electromagnetism provides the chiral-invari-
ant strong interaction with a preferred direction,
and we may have to look elsewhere, for instance
to the weak interaction, in order to lift the de-
generacy of the vacuum and understand the q -3m
process. This opinion has also been expressed
recently by Weinberg, ' from a somewhat different
standpoint.

We start in Sec. II by working in a simplified
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four-state (cow„o,wo} o model. In this model there
is the possibility that in the Goldstone mode

((oo) c0) the o, field also can go to the vacuum
through a tadpole graph in the presence of electro-
magnetism. This would correspond to an over-all
shift of the 03 potential but not to a double-well
potential and degenerate vacuum. (That radiative
corrections can cause spontaneous breakdown has
been pointed out recently by Coleman and Wein-
berg. ' However, this is a consequence of summing
a particular infinite class of infrared-divergent
graphs, and cannot arise in the case we are con-
sidering here of a few low-order ultraviolet-
divergent graphs. ) Should the o, field acquire a
vacuum expectation value we would then have to
induce a vs counterterm in order to maintain the
stability of the model, since we must continually
perturb order by order about the minimum in the
gs potential . This would then be a good candidate
for Wilson's us tadpole. However, we find below
that we can take out the infinite (o,) and all other
relevant self-energy divergences in a chiral-invar-
iant manner, and that the Goldstone and Sutherland
theorems continue to hold.

As well as examining the Wilson u, -type anom-
aly, for completeness we have also studied the
more traditional type of anomalies, and we dem-
onstrate their absence for all the graphs considered
in our analysis by constructing a gauge- and chiral-
invariant regulator scheme (even with a translated
oo field). In Sec. III we extend the analysis to the
more general SU(3)xSU(3) o model with the same
results, and we conclude with some comments in
Sec. IV, where we discuss a possible role for the
weak interaction. For brevity we shall actually
only discuss gm mixing in the text and leave the
details of the g-3m calculation to an appendix,
where we also raise a possible difficulty for the
pion-pole-model interpretation of the process.

II. TREATMENT OF THE SIMPLIFIED 0 MODEL

The model we consider first consists of an iso-
doublet of fermions, isoscalar Op' and m„and iso-
vector o, and ws. Electromagnetism will then be
minimally coupled to the fermions only. The mod-
el is essentially the neutral-meson part of the
SU(2)xSU(2) o model. The bare Lagrangian is

L' =w'i(kayo Bop)+ o(sooo &"co+ &o wos "wo+spoos" ooB+~ swowo) +go/(co+ iwoyoro)p
I P I v P

+goy(c, 7;+ iwoy, )y- (oo'—+ w, '+o,'+ wo')' "' (oo" -+ w, '+o,'+ w,') - —(o,'+ wo') .

The model has a conserved neutral isovector-
axial-vector current

3 1Ap= o$yoyor~g —wosooo woeooo—,
which is generated by the transformations

& iyo 3 3}4

7T3 7l'3 —63(Fp y 7Tp 7l'p —63(T3,

(2)

(3)

where v= (-6yo'/A)'r' so that (oo) =0 in the tree
approximation. The translated Lagrangian is now

L =Ew+ go/(co+ iwoyoTo)g

+got(oo~o+iwoyo}4+Eovf 0

t(oo +wo +co +wo )
t

~o &o+ Csps y (Ts gs+ Cs~o.

The vector current is given by

Vo= o gypvog (4}

0ov((To + wo '+oo + wo )

2
——vo ——(a +w )

2 2 ~ 2 2

3i (6)

0'o =0'p+ V y (6)

and commutes with the axial-vector current. Thus
if we choose pp &0, we will give o,' a vacuum ex-
pectiation value in the tree approximation, make
the ns a Goldstone boson, and have a Sutherland
theorem, i e , no wowo . m. ixing. (The 3wodewcoay
itself is discussed in the Appendix. )

Before introducing electromagnetism we recall
briefly how the Goldstone theorem is maintained in
perturbation theory (see, e.g. , Refs. 7 and 8). We
translate the Oo by introducing

where E~ is the kinetic-energy operator, and is
ready for perturbing about the classical minimum.
It is important, however, that we do not normal-
order L, as this would cause trouble with the sta-
bility of the Euler-Lagrange equations7or the chiral
transformation of the fermion fields. ' Anyway, it
is unnecessary to normal-order the fermion part
of a chiral theory, because the Dirac sea (which
gives rise to an infinite electrostatic energy) is
filled up according to the Pauli principle, leaving
the vacuum with zero chirality ((gy„yog)o = 0 for a
free fermion). This lack of normal ordering then
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allows tadpole graphs of the type exhibited in Fig.
1.

If we now calculate the w, self-energy, Z, (q'),
in order go' we have the graph of Fig. 2 and a
quadratic divergence. Also, the tadpole graph of
Fig. j. gives a quadratically divergent contribution
to (oo) in order ga'. A chiral-invariant counter-
term

I
Lg = — 5/0 ((70 + 2oov+ vg )

has to be introduced, with 5p,,' chosen so as to
bring (&r,) back to zero in order to maintain the
stability of the minimum of the potential consis-
tently in this order of perturbation. Note that I.,
is not a genuine renormalization counterterm
since it would be required even in a cutoff theory
so as to maintain the stability of the tree-approxi-
mation minimum. Moreover, the coefficient 5p,o
is unique, since the requirement of stability does
not allow us to add on a further arbitrary finite
piece to I, The counterterm I,, would not be
necessary at all, of course, had we chosen to
translate oo by v(1+ 5p,') and then perturbed con-
sistently about the tree+ one-loop minimum. How-

ever, this choice of 5g,' precisely cancels the
quadratic divergence in the w, self-energy, leaving

Z„,(q') -q'xlog divergence. A ehiral-invariant
wave-function renormalization (a genuine removal of
of an infinity this time) will then make Z„(q ) fi-
nite and still proportional to q' so that Z„(0)=0.
Hence the m, stays massless. Further, I., auto-
matically takes out the quadratic divergence in the
oo self-energy, the reason for this being that the
short-distance behavior of the theory is chiral-
symmetric and not affected by the soft operator
(the go' &0 mass term) which was used to convert
the theory into the Goldstone mode. After wave-
functionrenormalization, however, Z, ,(q') is still
not finite but has a piece proportional to m'xlog
divergence [see Eq. (A5)]. This infinity is then
taken out simultaneously with all the logarithmical-
ly divergent 3- and 4-point functions of the theory
by one chiral-invariant counterterm (restricting
ourselves to the o„v, model only):

L = C[(O'0 + Fg ) + 470v(VO + vg ) + 4v (To ]

Note that this counterterm has no term linear in
the oo field; hence it does not affect the stability of

7'

FIG. 2. The order-go xe self-energy graph.

which upon translating the o,' field becomes

L2 = —l5+» (W37TO+gsoo+ Vav) . (10)

It is easy to see that L, is invariant under the
axial-vector transform of Eq. (3), though it is an
isovector under vector transforms. Now the only
difference between the diagrams of Figs. 3 and 4
is in the trace on fermion loops in the isospin
space, the Feynman integrations being the same.
But the couplings of the mesons to the charged
fermion are the same, so the cancellations re-
quired of L, will take place identically to those of
I~ with 5p, 03 =5@,o.

So we see that the translation of o,' induces a
linear term in the o, field in L, which takes out

(o, ) so as to keep the stability of the os potential.
Thus, though we induce a term -6p»'c, v [which
itself would appear to be in the (2, 2) representa-
tion if it were erroneously classified as though the
vacuum were still unique], it always comes togeth-
er with the n,m, and g,o, mixing terms, so that we
retain the condition 8&A„' =0 and continue to have
a massless m3 and no mom3 mixing. Strictly speak-
ing, so far we have only derived that there is no

mon, mixing at q' =0, i.e., when the ms is on shell,
though there is still mlxlng at q' =m, '. We dis-

the model, and is in fact the only counterterm we
could introduce with this feature. This completes
the discussion of the methodology of renormalizing
the o model at the one-loop level in the Goldstone
mode.

Electromagnetism is now introduced minimally
as usual by adding an interaction ,'e py—„(1+7;)gA"
The relevant divergent diagrams which we need to
consider in order go e' are exhibited in Figs. 3 and
4. The counterterm of Eq. (7) will continue to take
out the (v, ~w, ), (oo~oo), and (oo) infinities. We now

also have the (m, [mo), (o, ~&ro), and (cr, ) divergences
of Fig. 4 as well. For these we have to induce a
new isospin-violating counterterm

Lm —-5 Q» (W37TQ + ogVQ )

oo Z ob ~o G3

FIG. 1. The basic 0'() tadpole graph containing one
fermion loop.

FIG. 3. Some order-g02e2 self-energy and tadpole
graphs. These graphs have counterparts in the theory
without electromagnetism.
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FIG. 4. Mixing and tadpole graphs of order g02e which
are not present without electromagnetic isospin breaking.

gp

Op

cuss in the Appendix mhy this does not affect the
wo-w, ((,((, process. The (((o~vo) and (o, ~o,) diver-
gences can also be taken out invariantly, and we
have made a thorough search of other divergences
such as in 3- and 4-point functions and also al-
lowed for higher-order effects in g,', A.', and e'.
No violations of the Goldstone theorem were found,
as there is always sufficient residual chiral sym-
metry in the theory.

Having exhibited the cancellation mechanism, we
nom construct a regulator scheme to ensure that
me can attach a meaning to the diagrams we have
just discussed. Since a normal fermion regulator
mass would break chiral symmetry we employ the
parity-doublet scheme of Gervais and Lee.' In
order to impose gauge invariance we look at dia-
grams such as v going to 2y through a fermion
loop, regulate the diagram using the Pauli-Villars
technique, and then close the photon loop to obtain
the tadpole graph. %e have collected together in
Fig. 5 the primitively divergent one-fermion-loop
graphs which need regulating. %e note first that
the graphs (o,}, (o, ~ c,&ro), and (oo ~yy) are all pro-
portional to the fermion mass on dimensional
grounds and are thus only nonvanishing in the
translated model. Thus, for instance, (oo} is pro-
portional to g, from the vertex and to g,v from the
fermion propagator, i.e., (oo}-go'v. The graphs
mith an even number of external lines also exist in
the normal case (v=0).

Following Ref. 9 we introduce sets g,. of parity
doublets which transform according to

pl~ ~g( 2lp2 e' T)(
(

where p, is a Pauli matrix mhich acts in the doub-
let space and T is the usual isospin. Then Xx and

gp, x are chiral invariants mith oo coupling to Xp,x
and m coupling to gp, ~. Thus, we have

FIG. 5. The primitively divergent single-fermion-loop
gx aphs which require regulating.

med fermion loops, while the translated parts add,
giving an over-all factor proportional to g, 'v from
the doublet. This factor then stays finite when we
send m( to infinity. [This will be made more clear
by Eq. (17).]

Returning to Fig. 5 me calculate the graph

(co((f,= o) ly, (&),y. (&))

for a fermion of mass parameter m and obtain

8ns2
~(m2) = [1+4m2/(-u')] -"

(-a')
[1+4m'/(-h')] '~'+ 1(
[1+4m'/(-n')] '"-1j (14)

so that J„„,mhile completely finite, is not yet
gauge-invariant. [8„„is found to be finite because
we performed the angular integration first. If me
first integrate over the time component of the loop
momentum then me need to introduce the regulators
immediately. Either procedure leads to Eq. (18).]
Thus our regulator scheme must make (oo~yy) and
the vacuum polarization gauge-invariant mhile
taking out all the other infinites of Fig. 5 as mell
at the same time. As a solution we try two sets of
doublets, one with charge ne and coupling g which
is quantized with the negative metric and a second one
one (Pe and gs) which is quantized normally. Thus
the couplings are fixed as follows:

(y ~y): e'- 2o.'e'+ 2P'e' = 0,

+& ((tl'(& 4';+ 4'( T 4';)]],

mhere L~ is a chiral-invariant regulator Lagran-
gian. After translation each parity doublet will
get a mass splitting of 2g,v. More importantly, in
tadpole graphs such as that of Fig. 1 the normal
parts of the doublet mass, m, , cancel in the sum-

(&o I &(po) and (&oco l oooo)' (go 2g'(( +as
(15)

(oo} and (oo ioo): go —2g + 2A = 0

(.lyy): g.'-2g ' '+2g(('P'=0,

Hence we now have, for instance for (oo)yy)~,
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g«N(P2)(x e2g
1 1

(ir( —gov)' " (P+ P'- g()v)

(if'-m —g„v) "(P+g —m —g v)

4 1 1 2 2d pTr
(~ ), y„(~ ~ )

y„+e gap {p contribution)

~e2v g — ",' g'A 'v' —2n'g 'A. m ' +2 g 'Am ' +e'vg '-2a'g '+2P'g 'kgb,

(18)

(17)

for large m, m8. Now A(m ')-0 asm ', the un-
translated part of the doublet mass in E(I. (12),
tends to infinity. Thus

J'e"„(k*)=(ge. — ", ")e' g,'A(g, *g'), (18)

III. EXTENSION TO THE COMPLETE 0 MODEL

In this section we extend the calculation to the
more realistic SU(3)xSU(3) g model, which is not
an Abelian model and possesses the nonlinear con-
straints of current algebra. This then gives the
electromagnetic current a slightly better chance
of knowing about the axial-vector current. Also,
the )} and rr (which will now be referred to as rr,

and )r, respectively) are this time put in the same
SU(3)xSU(3) multiplet. In the full model electro-
magnetism can couple to both the quarks and the
charged mesons. Following the notation of Ref.
11, we generate an axial-vector current

A„=(1y))yg@A), (I —( ) ()r), B„g + rr 8 g )

(19)

through the transformations [a represents the 8

SU(3) matrices]

(1+ pz y~A. ' E)(I )

g() g() +(g) E rr ee
)ra rr() (3) Egga dgrg)Ergg) e (20)

rro rr() —(3) E (r'
/2%1/2

g,
0'g + 3) 4no+dng~E, 11m ~

We introduce a Lorentz-scalar SU(3) nonet

and is now manifestly gauge-invariant. The other
diagrams of Fig. 5 are simultaneously regulated
in the same manner by E(ls. (15). Further the sol-
ution in the cr, sector is identical so we do not pre-
sent it here. Thus we have constructed an explicit
set of chiral-invariant and gauge-invariant regula-
tors which takes out all divergences including
those to be subsequently met in the Appendix, to
confirm the absence of anomalies for the class of
diagrams considered in this paper. "

2~
+ ~ g,g,' + (pions),

2W, 1 I
d8 ~ g8 0 i 1 2 g3 g8 (22)

(g4'+ g,2+ g,2+ gr2) + (pions),2v'3

d() = (gr + rrr ) +g(') + rr()

We also need

M„=g, +g22+g~ +(r,2+ (pions),

Ms = (r,'+ g,'+ (pions);
(23)

M„and M~ belong to linear combinations of the 1,
8, and 27 [under SU(3)] Lorentz-scalar pieces of
the (8, 8) representation. It is then seen that d„
d„M» and M» while not chiral invariants, are
still left invariant under the e, transformation
(and also under E,).

We proceed as before and translate the 0,' first
at the strong-interaction level so that we have to
introduce a stability counterterm ~d, in order go'.
In the presence of electromagnetism we will have
to restabilize the oo, g„and o3 potentials. This
is done by a counterterm

Lc = D d3+ ds + Edoy
1

(24)

where D and E are of order e'go'. In this order
(diagrams analogous to Figs. 3 and 4) the D and E
terms simultaneously take out the quadratic di-
vergences in (rr, )r,}, ()r,)ro), (rr, )r,), ()r,rr,), ()r,rr, ),
and ()r, rr, ). However, the fermion loop contribu-
tions to the charged-meson self-energies are still
quadratically divergent after restabilizing the po-

dg = d p 0'pV +1Tp7T (21)

where d,. (i =1,8)H(8, 1)$(1,8) and doe (1, 1) under

SU(3)xSU(3). In particular,

1 2 2 2 22
d, = ~g,g, + ~ (g4 + o, —(r6 —gv )
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tentials and so we have to add on a normal infinity-
removing counterterm AM„+ BM~ to take out the
(w, w, ), (w, w, ), (w, w, ), (w, w, ), (w, w, ), and (w, w, ) in-
finities. " The situation is then exactly the same
as that considered in Sec. II.

Thus there will still be massless m, and m, states
and no w, w, mixing after renormalizing the SU(3)
xSU(3)-translated o model in the presence of elec-
tromagnetism.

IV. COMMENTS

The intuitive reason why Wilson's proposal does
not seem to work in perturbation theory is best
stated by asking how we can break the degeneracy
of the vacuum, or more correctly, what made the
vacuum degenerate in the first place. Proceeding
by analogy with the example of a ferromagnetic
phase transition we would expect spontaneous
breakdown to be a consequence of long-range order
and hence basically an infrared problem. More-
over, since it is a cooperative phenomenon it
should be a consequence of the dynamics, i.e.,13
output (or bootstrap), rather than the fake tree-
approximation destabilization traditionally used in
the o model or the Higgs-Englert-Brout mechanism.
Indeed there have been a few attempts" "topursue
the dynamical (i.e. , without input scalar tachyons)
Goldstone program of Nambu and Jona- Lasinio, "
and presumably this underlies the interesting results
of Casher, Kogut, and Susskind, "who studied a
particular infrared-singular situation, the
Schwinger mechanism in two-dimensional quantum
electrodynamics (QED}. Since we require infrared
nonpertubative effects to make the vacuum degen-
erate it would seem to be extremely difficult to
lift that degeneracy using perturbative ultraviolet
(UV) effects (though the results of the work of this
paper certainly do not exclude possible nonpertur-
bative ultraviolet effects), and even when we de-
stabilize the vacuum by hand we see that this does
not happen either. Essentially, if Wilson's pro-
posal is to work then the u, tadpole must be in-
duced nonperturbatively, and for the moment we
see no particular reason why a nonperturbative
UV term would want to break 8„A&' = 0 at all. '

We thus see a basic distinction between the u3
tadpole anomaly and the usual triangle anomaly,
since the latter is perturbative and already pres-
ent even in the normal vacuum case, so that it
does not affect the degeneracy of the vacuum at all.
In passing we should then remark that whatever
does take place in g 3m will also take place in
7T yy, though its effect may well be masked by the
the triangle anomaly. (This remark would not be
so academic if the triangle anomaly were to go

away, say, at the finite QED eigenvalue. }
Given the above remarks it appears that the

natural place to look for an explanation of g 3n
would be in a theory in which the axial-vector cur-
rent plays a major role and whose infrared struc-
ture is not of the mild form of conventional fer-
mion QED. Indeed, the Weinberg theory of weak
interactions (see Ref. 5 and references therein)
which is built out of Yang-Mills fields has these
features. " We can at this stage only speculate on
the economical possibility that a dynamical Higgs
mechanism takes place which gives the interme-
diate vector bosons their masses by providing dy-
namical u 0, u„and u, tadpoles [i.e. , in (3, 3}
(3, 3)]. At the same time, these then give the
strong interaction [whose vacuum we hope became
SU(3)xSU(3)-degenerate because of its (infrared-
unstable) Yang-Mills structure" ] its preferred
direction. This means that the Hamiltonian due to
Gell-Mann, Oakes, and Henner" plays a double
role. It has a piece in (8, 1)$(1,8) [the D term of
Eq. (24) only, once we have understood octet en-
hancement] coming from the ultraviolet (which
would be of the original Coleman-Glashow type,
that is, pure electromagnetic, and would make
electromagnetic masses finite, and not just mass
differences"), and a second piece coming from
the weak-interaction infrared in (3, 3) $(3, 3) (which
gives the pion its mass and contributes a finite
piece to, say, the n-p mass difference). This
viewpoint is not the normal one, namely that the
terms which break chiral symmetry also break
scale invariance (i.e. , that the same soft operator
which removes the degeneracy of the chiral vacu-
um also destroys the scale invariance of the La-
grangian —over and above the hidden scale break-
ing due to the ultraviolet regulators which are ac-
counted for by the Ward identities for broken
scale invariance, the Callan-Symanzik equations).
Here scale invariance is broken by a degenerate
chiral-invariant vacuum through the nonvanishing
of a vacuum expectation value which sets the scale
for the masses. (I.e., the mechanism which makes
the chiral vacuum degenerate necessarily introduces
a scale. Note that this is not a dilaton theory,
there being no spontaneous breakdown of the dilata-
tion current. Here scale invariance is broken by
infrared regulation since it is infrared instabilities
which generate spontaneous breakdown of the
chiral group. } The chiral degeneracy is then re-
moved by the weak interaction, which tells us
which of the degenerate vacua to use, i.e., how to
label the strong- interaction quantum number s."

What we have suggested here is highly tentative,
but would seem to be what is required of the Wein-
berg theory when contact is made with the hadrons,
and in particular with the pion.
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APPENDIX: DETAILS OF THE q~3m CALCULATION

Any tadpole mechanism which breaks the Suther-
land theorem for q -3w would have to eliminate the
Adler zero in qm mixing as well, since the same
current-algebra and partial-conservation-of-axial-
vector-current techniques used to demonstrate the
Sutherland theorem would give an Adler zero to the
gm-mixing matrix element at q2 = 0. Our analysis
in See. II has shown that this gm Adler zero is
maintained in renormalized perturbation theory.
Since the q is not introduced as a massless Gold-
stone boson in the simplified model of Sec. II,
where it belongs to a different multiplet than the
pion [in the full SU(3)xSU(3) o model the q would
have to be a potential Goldstone particle as it is in
the same multiplet as the pion], we do not have a
no-mixing theorem at the g mass. We discuss in
this appendix how gp mixing at q' =m„' still does
not affect the Sutherland theorem for q-3m, and
how the theorem itself is maintained for arbitrary
q mass. "

Before we discuss the m,oom@, model we discuss
first how the Adler zero is obtained in one loop
for the mn -nw and gv era on-shell scattering am-
plitudes when one w is softened in the most simple
model, i.e., just a pion and a cr without electro-
magnetism, a purely strong interaction. It is con-
venient to set X = SK, to introduce the o mass M
and the fermion mass m, and to rewrite the trans-
lated Lagrangian of the model [similar to Eq. (6)]~ (.=~/1~=m/g, )

K-
L = Er+mg)1)+m —g(o+ ivy, 7;)P

—SK (s +g ) —2XMo(v +g ) —2M o

(Al)

The loop expansion is now obtained by perturbing
in K, holding Mand m fixed. We discuss first the

fermion sector in order K . We have from Fig. 1

d4u
(n'-m') '

where we have omitted a factor 8/(2v)' coming
from the spin-isospin trace and from the phase-
space factor of the integration. This obliges us to
introduce a stability counterterm as described in
See. II,

mK dk M
( .)

"-.") (A3)

Z'm' d'I (q'+q u)
W' . (u2-m2)[(u+q)'-m']

Km= 3~2 q'&i(q'), (A4)

EP
&.(q') =

3 ~ (q'- 4m')&, (q'), (A5)

where

(k' —m')[(k+q)'- m'] ' (A6)

[Technically Eqs. (A4) and (A5) involve the i'rans-
lation of a linearly divergent integral, so strictly
we should introduce the parity-doublet regulator
scheme immediately before translating. However,
since we have shown that the regulator scheme
preserves chiral symmetry, we know that no
anomaly can occur so we can safely use Eqs. (A4)
and (A5) in their unregulated forms. ] It is now an
easy matter to check that both the tree graphs and
the one-loop graphs for ws-vv (which are collect
ed together in Fig. 6) add to zero when any one
pion is softened and the others are on shell. Thus
the logarithmic divergences in the 2-, 3-, and 4-
point functions cancel among themselves at the
Adler point. In any other momentum configuration
we would have to take out these infinities using
the counterterm of Eq. (8). However, this counter-
term is chiral-invariant, as is the regulator
scheme, so we also have the Adler zero in the re-
normalized theory at the one-fermion-loop level.

From now on we shall use I '= I.+ I., as the unre-
normalized or bare Lagrangian, since as we ex-
plained previously I, is not to be treated as a con-
ventional renormalization counterterm. The theo-
ry built on I ' as an input Lagrangian is no more
than logarthmically divergent, and to demonstrate
the Adler zero requires that we show it first in
the L, ' theory with a cutoff, with no further counter-
terms, and then show that the cutoff ean be re-
moved in a ehiral-invariant manner so as to have
the zero in the renormalized theory.

We calculate first the pion and o propagators in
order K' from I', so that
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FIG. 6. The tree graphs and one-fermion-loop graphs which give the Adler zero to m —~n scattering through order
K 4. The shaded blob o propagator is that of Eq. (A5) .

The one-meson-loop graphs which are presented
in Fig. 7 are handled analogously. The fermion-
loop graphs for wm -ocr are presented in Fig. 8.
Again the cance11.ation is achieved. In this case
there is a subtlety, however. Though the pion
mass shell does not move at all, the 0 mass shell
does move to M„' =M'+ Z, (Me'), i.e., a shift of
order K'. Thus at the Adler point (t=u=M„', s=O)
there is a contribution of order K' from the tree
graphs which are superficially of order K', and
that contribution precisely cancels the other

(A7)

Thus the most general translated chiral-invariant
Lagrangian for the system is

graphs.
We now proceed to the w3opmpo3 system, and dis-

cuss it first without electromagnetism. As well
as the Lagrangian of Eq. (6), other chiral-invari-
ants for this system are TrM,.M,. M,.M~ and
He ~M~, where M, =g,. +iw(, which are

2 2 2Trace =op 0'3 + 20'piTpp37T3+&p 713

Determinant =o pn p- @3773.

E-
L, =E„m+gg+m —g( g+iw, yT, +,g)+ igoy, ) g

—() K (vo +gg +)(g +go ) —2KMgo(110 +gg + 1Tp + go ) —2M go —gg (gg + 1T&) )

—T(K go2g3 +K wo )(3 + 2K gom~3s, + 2MKgog~ +2MKw~~ws+M g,2)

-D(K go vo +K'g~ m~ —2K go))ogsv, + 2MKgowo —2MKv~3vs+M vo ) . (A8)

emote that L, is a strictly chiral-invariant strong-
interaction Lagrangian. To L3 we must still add

L, of Eq. (A3) for stability. The T and D terms do
not contribute in fixing the tree-approximation
minimum, since they contain no term which is a
pure power in op. They are necessary to provide
new vertices such as npm3o3 so that the allowed
strong-interaction processes w37T3 77Q7TQ 1T37T3

g303 and n 3mp 03o Q may al 1 have the Adler zero
for a softened w3 at the one-loop level. Also they
would be induced as renormalization counterterms
anyway to take out infinities in diagrams such as
7T3mpo 30p and m3n ~3 in one 1oop.

We now switch on electromagnetism. Immediate-
ly the cr3 goes to the vacuum in one loop, i.e.,

where J"„(m') is defined in Eq. (18). To obtain Eq.
(A9) we performed the fermion integration first.
It is more convenient to perform the photon inte-
gration first and so we set

(g )=-e m — -— F(k).2K dk
M (k2 m2) (A10)

e2m'K'
M

CL7 k M
()' —m') '' l( ' '')'

Moreover, we shall set F(k') = 1, since it will fac-
tor out as a universal factor in all of the remain-
ing graphs to be considered in this appendix. We
must now restabilize (g, ), so we add

4

, Z)„'(k', m'), (A9)
(A11)

We now have the following mixing matrix elements:

FIG. 7. The additional graphs needed for the Adler zero in n.—~7( scattering in the meson-loop sector in order K4.
Here the loops are both x and o. Also needed are the graphs of Fig. 6 with meson loops.
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FIG. 8. The Adler-zero graphs for ~m &o scattering through order K4 in the fermion sector.

e2+2 2

e'Z'
Z, , (q') =, (q'-4m')I, (q'),

(A12)

and we are finally ready to study mo-m, w, n„using
L, +L, +L, as the input Lagrangian. All the re-
quired graphs in order e'K' are collected together
in Fig. 9. The m, denotes which pion is softened.

The photon line is a shorthand for all possible
permutations around the fermion loops. We need
not consider graphs of the type shown in Fig. 10,
where w, m, mixing takes place at the w, mass shell
[because of Eq. (A12)], but only those which have

7T37TO mixing for an external w, . We need to calcu-
late a fermion loop with two external pions and an
external o, I,(p, q, r), and a loop with four exter-
nal pions, I,(p, q, r, w). We find that

7' 773

7TQ 7T3 7TO 7T3 7Tp 7T3

7' Fp 7' 7'

~o ~o

7T3 7T3

/a. ,g
7TQ 7T3

7r3 7' Trs 7T3

+ y~g +

7Tp 7T3 7Tp 7T3

7TQ 7Tp

7Tp 7TQ

FIG. 9. The Adler-zero graphs for n&
—7|37rp3. The x@3 and 0&0& propagators (shaded blobs) are given by the mixing

matrix elements of Eq. (A12). The graphs are of order e2K4, the loops are fermion loops, and %3 denotes the pion which
is softened.
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J (q' —m )[(q +p + q) —m '] (q' —m )[(q +p)' —m'][(q +p + q)' —m'] ' (A13)

d'k d'k r.(k+ q)
(k' —m')[(k+q+r)' —m'] (k'- m'}[(k+q}'- m'][(k+q+r)' —m']

=I,(q, r) . (A14)

Adding all the graphs of Fig 9.at the Adler point then gives [we use I,(q) to denote I,(p„=0,q)]

M(wu(gv =p +2M D) +ws(p&= 0) +w~(r =0)+w~(q =0) 0)

=-e'm ', [I,(q, r) + I,(r, q) + I,(q, gu) +I,(w, q) + I,(r, a)) + I,(tu, r)]

4K4 2I,(zu) [I,(s), q)+I, (q, N))+I, (su, r)+I,(r, m))]f
M (p +2M D —M) M

, )q' j[),(r, q)+),(q, q)] qf).(r)+).(q)II
2M'(D- T) (q'+2M'T)

(p'+ 2M'D 4m')-I, (w') Sm'I, (0)
2M (D T)(jp, +-2M D —M ) (p +2M T)M

mK ] MK 2MK
(

2 y 2M2D Mm)
(A15)

Simple algebra then shows that the above sum van-
ishes identically with M, = p. +2M D uncon-
strained.

We still have to renormalize the theory, so we
add an isospin-violating term which leaves the
neutral axial-vector current untouched (it trans-
forms the same way as L, under the chiral group):

I =EK (w +g +w +g'o' }—+ (wow +g

which upon translation becomes

L4 =EK (wo + gg +wg +0'() )(w()wg+ gaga)

+EMKg~(w() + gs + w~ +g() )

(A16)

+ 2EMKgu(wuw~+ gsgu) + 2EM g(ps p (A17)

where E is a suitably chosen logarithmically di-
vergent constant of order e'm'K'/M'. The -M'/
K' term has been chosen in E(l. (A16) so that the
translated form of E(l. (A17) will not contain a
term which is linear in the a, field in order to
keep the stability of the g, potential; then L, is
found to cancel precisely all the required diver-
gences, including the logarithmic divergence that
was left over in Z, , (q') of E(l. (A12) after wave-
function renormalization. (Also it does not intro-
duce any new w, w, mixing. ) Thus we finish with the

7TQ 713 7'

FIG. 10. Another class of graphs for ~()—7)37f31l3 haviBg
the Adler zero.

Sutherland theorem still holding in the renormal-
ized theory.

We conclude with a final observation. The mech-
anism for maintaining the Sutherland theorem in
order e'K4 is by a cancellation between the two
different classes of diagrams exhibited in Fig. 9,
i.e., between diagrams containing internal photons
and diagrams with electromagnetic mQn, mixing on

an external leg followed by purely strong interac-
tions. A popular way of discussing the mQ -m3737T3

process is the n, pole model which keeps only wQF3

mixing followed by m, m;m, w, described, say, by
the Lovelace-Veneziano form. The reasons for
the success of the pole model have always been
obscure (i.e., how the Lovelace-Veneziano model
is clever enough to get rid of the neutral pion
Adler zeros while retaining the charged pion ones,
and why the rate seems to be normalized to the
psuedoscalar octet electromagnetic mass differ-
ences). Now we must add a new challenge, namely
what happens to the internal photon diagrams in
the fu11 theory.
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%e propose an SU{1,1)-invariant vertex for the emission of Pomeranchuk resonances in the
generalized Veneziano model. Known amplitudes for the decay of spin-l Pomeranchukons on
the leading trajectory are recovered and an integral representation is given for multi-Pomer-
anchukon-Reggeon N-point functions. The Regge limits of elastic Pomeranchukon-particle
scattering are investigated. Applications to inclusive reactions are suggested,

I. INTRODUCTION

Since its conception in 1968 the Veneziano mod-
el' has developed from a phenomenological model
for a few particle reactions to the point where it
represents a serious hope for a strong-interac-
tion theory adequate to deal with the steadily in-
creasing numbers of resonant states. As a con-
sequence of the group-theoretical understanding
of duality it was at one point possible to construct
vertices for the emission of high-spin particles
(Reggeons) at arbitrary positions in the multi-
peripheral chain. ' Recently the resonances of
the Pomeranchuk sector were successfully fac-
torized, first for the conventional Veneziano mod-
el' (CVM) and then for more general models. ~ It

was found that in any ghost-free model based on
SU(1, 1), barring unknown and pathological gauge
mechanisms, the Pomeranchuk trajectory would
have twice the intercept and half the slope of the
leading Reggeon.

The purpose of the present paper is to repeat
the procedure of Ref. 2 to construct invariant
vertices for the emission of Pomeranchuk reso-
nances. We will then be in a position to write
the amplitude for M Pomeranchukons scattering
with N Reggeons. For simplicity, we deal only
with the CVM in the present work.

It has been shown4 that the amplitude for a spin-
I Pomeranchukon of momentum k on the leading
trajectory to decay into N ground-state Reggeons

P-1 , N

A~ » —— t1 d8,. k, 0 (a„') ~'(a„")' exp(at a' t) g:exp[ik, ~ Q(z;, —,'a+a't, —,'a'+at)]: 0, (1.1)
t =1

where z, =exp(i8, ) and (a„) =a„a„a„,. The
problem at hand is to construct invari. ant vertices
such that

and to investigate the multi-Pomeranchuk ampli-
tudes suggested thereby. For completeness we
review briefly the covariance properties of the
conventional vertex for ground-state emission:

'~

V,(k, z, a, at) = exp[ik Q(z, a, at)] .

Q is the generalized coordinate four-vector

Q„(z, a, a ) =y'„(z, a )+Fp(z ', g),

where

F„(z, n) =- Qy„z""o„„


