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We have examined the realizations of chill symmetry in the Abelian vector-gluon model,
in the absence of gluon self-energy. The chiral symmetry is broken spontaneously in the
vacuum. A vacuum stability condition on the gluon coupling, g, and the gluon-fermion mass
ratio p/m of the form f~ (g 2, u /m2) &0 is obtained as a necessary condition for a Nambu-
Goldstone realization with bound-state Goldstone bosons. Here f~ is the decay constant of the
bound-state Goldstone boson. It is shown that for those channels that do not co~~unicate with
pairs of vector gluons this condition is satisfied in the weak-coupling limit, g2 0. For axial-
vector cux rents that satisfy anomalous Ward identities and communicate with pairs of gluons
we show that the renormalized integral equations for f, do not possess solutions. The failure
to find a Goldstone solution for these channels is associated with the fact that these axial-
vector currents have an anomalous dimension greater than three. Instead of Goldstone bosons
one finds that axial-vector-current conservation breaks down and the symmetry is broken
explicitly. Hence, there is no Goldstone boson associated with "axial baryonic charge. " This
also answers in the negative the old question of whether electrodynamics can support a
Goldstone mode. We also calculate g~-1 to order g and discuss phase transitions between
the Wigner-Weyl mode, the Goldstone mode, and the mode in which the symmetry is ex-
plicitly broken. We also speculate on the implications of this work for gauge theories of the
strong interactions.

I. INTRODUCTION

A. The U(3) problem

Suppose one takes as a model of the strong in-
teractions a triplet of fermions interacting with
a massive neutral vector gluon. There are vari-
ious virtues of this model and related models,
which we will shortly describe; however, there
is also a problem. That problem is that the for-
mal symmetry is U(3)x U(3) instead of SU(3)
x SU(3) x U(1). If one assumes that the U(3) x U(3)
symmetry is realized with a U(3)-symmetric vac-
uum then one has nine, not the desired eight,
Nambu-Goldstone bosons. This is because beside
the usual octet of conserved axial-vector currents
(in the symmetry limit) the ninth axial-vector cur-
rent, "axial baryonic charge" is also conserved.
In the SU(3)x SU(3) Z model this problem is avoided

by the introduction of the trilinear determinantal
interaction which breaks U(3) x U(3) symmetry
down to SU(3)x SU(3)x U(1). However, in the vec-
tor-gluon model, which avoids the introduction of
elementary spinless fields, this is not possible.
This is the U(3} problem.

Actually this problem of the extra U(1) symme-
try is nine years old. Itwas firstposedby Nambu. '
He asked why quantum electrodynamics .(QED}
does not have a zero-mass ground-state meson.
The point is that in a formulation of QED" in
which one ignores photon self-energy graphs, the
bare electron mass m, vanishes as the cutoff A-~.

Hence one might conclude that the axial-vector
current gy.„y, g is conserved (8„A„=2im /ye, g=0)
because the bare mass vanishes. If the physical
electron mass m does not vanish, this conserva-
tion of axial-vector current entails the existence
of a zero-mass Nambu-GoMstone boson. Clearly,
such a state is not desired in electrodynamics.

Subsequently it was pointed out by Baker and
Johnson' that although the bare mass m, vanishes
as the cutoff becomes large, the matrix elements
of the operator g y, g could diverge in just such a
manner that the matrix elements of 8 „A„
= 2im, g y, g do not vanish. Then the symmetry is
explicitly broken and one avoids the conclusion
of massless excitations, It was also pointed out'6
that there exists a Goldstone alternative in the
vector-gluon model. Either the axial-vector cur-
rent is conserved and one has Goldstone bosons
as bound states or axial-vector-current conserva-
tion actual. ly breaks down and the symmetry does
not exist in the first place. The Goldstone alter-
native is formally implemented in the boundary
conditions to the homogeneous Dyson-Schwinger
equations. '

The main point of the pxesent axticle is to estab-
lish the criterion, stated as a condition on the
coupling constant of the model, for which branch
of the Goldstone alternative one must take. It
turns out that for small values of the coupling con-
stant e' electrodynamics can not have the Gold-
stone mode. Similarly in the quark-triplet neu-
tral-vector-gluon model the ninth axial-vector
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current cannot have an associated Goldstone bo-
son, mhile the octet of axial-vector currents ean.
This is pxecisely the desired solution. Before
describing our solution to this problem me mill
digress with a discussion of the Z model as most
of our intuition about spontaneous vacuum symme-
try breaking has been developed in terms of this
model.

B.The Z model and the vector-gluon model

The Z models has the virtue of algebraic sim-
plicity. In the tree approximation most of the
interesting features associated with spontaneous
breaking can be realized. The price one pays for
this simplicity is the introduction of elementary
scalar and pseudoscalar fields. Such scalar fields
wiO contribute to the electric current and produce
a nonvanishing, possibly large, component to the
longitudinal cross sections in electroproduetion.
This is in conflict with SLAC experiments at the
present energy regime, so the Z model is prob-
ably irrelevant to real physics.

The principal idea in the Z model, or any mod-
el of spontaneous breaking, is that the stable vac-
uum state may not have the symmetry of the fuO
Hamiltonian. In the Z model (a field-theory ver-
sion of Landau's theory of spontaneous magnet-
ization) one has a potential which in the SV(2)
x SU(2)-symmetric version of the model is given
by

V(o', m}=p, '((r'+ n~) X+((r +fr')', X&0

where o, 7r are the usual o' and pion fields trans-
forming like (2, 2) under the group. In the tree
approximation if one minimizes the vacuum en-
ergy one finds for the order parameter f =-(o)0,
assuming that it is not zero,

What we want to emphasize is that this resulting
equation is for the square of f, not f itself. Since
f'&0 we require p, '«0 in order to have the solu-
tion which exhibits spontaneous breaking, fx0.
So for certain domains of the parameters p.

' and
A. the stable vacuum does not have this symmetry
of the Hamiltonian and the pion will have the role
of a Nambu-Goldstone boson. For values of the
parameters for which f'«0 we do not satisfy the
stabibty condition (1.1), and we must pick the
other branch of the Goldstone alternative, f =0,
which for this model implies parity doubling of
the o and m.

Whi1.e these features of the Z model are well
known, it is of interest to see how they are main-
tained when we now turn our attention to the vec-
tor-gluon models. The possibility of a chiral-

f,'(g', p, '/m') & 0, (1.2)

where f„ the order parameter, is the usual de-
cay constant. We conjecture that this is also a
sufficient condition. The phase transition curve
in parameter space is then f„'(g', p' jm*) =0.
For values of g~, p'/m' not satisfying (1.2}, one
does not have a Goldstone phase; rather what
happens is that the formal conservation of axial-
vector current breaks down and f„=0. (An alter-
native possibility is that the fermions become
massless in this normal phase. )

For values of g', p, '/m' satisfying (1.2) we can
calculate f, or, by the Goldberger-Treiman re-
lation g, =g„m/f „, the fermion-pion coupling
constant. Since f,™90 MeV is known, this serves

symmetry realization with hound-state Goldstone
bosons has already been discussed by one of us. '

The vector-gluon model has many virtues over
that of the Z model as a model of strong interac-
tions. It brings together the concepts of chiral-
ity, partial conservation of axial-vector current
(PCAC), and soft-pion theorems on one hand, with
quark-model spectroscopy, parton-model notions,
and approximate scaling behavior on the other
hand. Radiative corrections to the strong-inter-
actions are completely finite in this model'; the
usual divergence of lnA' is effectively replaced
by (4m)'/3g', with g the vector-gluon coupling con-
stant. The study of such models of the strong in-
teractions receives a further impetus from gauge
theories of the weak interactions, for one can
avoid the presence of parity violation and strange-
ness violation of order a = ~», in the .strong inter-
actions by redefining the fermion fields. '

The SU(3) x SU(3) Z model, even in the symme-
try limit, has many free parameters. Various
phenomenologieal fits to experimental data depend
sensitively on these parameters. We think it
mould be of interest to examine the data in terms
of the gluon model, as there is evidently only one
coupling constant and the mass of the gluon as
free parameters. Further, it is difficult to see
hom the phenomena described by Carruthex s and
Haymaker" wouM emerge in the vector-gluon-
type models. In short, the vector-gluon model
as we present it here is a new vehicle for the
study of chiral-symmetry phenomena and deserves
further investigation.

The main burden of this article mill be to ex-
amine the phase transition problem in the vector-
gluon model. In particular we wish to examine
the necessary conditions on the gluon coupling
constant g and gluon-fermion mass ratio p jm
such that me have a Goldstone phase. This neces-
sary conditon turns out to be similar to that of
the Z model, Eq. (1), and is of the form



PHASE TR'ANSITIONS IN VEC TOE-GLUON MODE LS: A. . .

to establish that in quark-gluon models with chiral
symmetry realized with Goldstone bosons the cou-
pling g and masses p. and m are not independent
parameters.

For quantum electrodynamics, far which p, =0
andg=e, 8'/4m=~»„we will show that the inte-
gral equations for the order parameter, f, do not
possess solutions. Consequently f =0 and there
is no Goldstone mode in electrodynamics. The
reason for this is that the axial-vector current
communieates with the two-photon channel and
has a dimension greater than the canonical value, "
given by 8+2g(e'), where }I(e')=-,' (u/w)'+ 0(n').
For g(e')&0, as is valid for small coupling, the
renormalized integral equation for f' diverges
like (A')" and no solution exists. Hence one must
pick the other branch of the Goldstone alternative,
f =0, and axial-vector current conservation
breaks down. This answers in the negative
Nambu's question' of whether there exists a Gold-
stone boson in m, =0 electxodynamics. The fail-
ure of QED to exhibit the Goldstone mode is in-
timately associated with the presence of an ano-
malous term in the axial-vector Ward identi-
ties."'"

This also solves the U(8) problem for the quark-
triplet neutral-vector-gluon model. The model is
realized with eight not nine Goldstone bosons. The
reason there is no Goldstone boson for the current
transforming like A,,y„y, is that this current com-
municates with the two-vector-gluon channel and
no nontrivial solutions exist for f,'. Instead one
has f,=0, there is no Goldstone boson, and the
axial-vector current conservation breaks down.
The other eight axial-vector currents A.,y„y5,
a =1, 2, . . . , 8 do not communicate with the two-
veetor-gluon channel, and one finds for small
coupling constants that f'&0, so there can be
Goldstone bosons associated with these currents
being conserved. This is the desired solution.

%'e examine the question of phase transitions.
For small coupling constants one can study the
question with some confidence. However, there
may be critical values of the coupling constant
for which the phase changes from a Goldstone
mode to the mode in which axial-vector-current
conservation breaks down or the fermion becomes
massless. The phase, presumably relevant for
real physics, of eight Goldstone bosons is most
simply accomplished if the coupling constant is
reasonably small; this suggests that leading-or-
dex Bethe-Salpetex approximation or perturba-
tion theory in the kernel is valid.

We also calculate to leading order in g2 the
axial-vector renox malization constant g„ for the
fundamental fermions. It turns out that g„&1
to this order. This suggests that the nucleonic

6„/G„=1.25, which in a free-quark model is&,
is modified in the presence of interactions to be
&Sg„&~3 in closer agreement with the observed
number. If g~=0.75 the agreement is precise.

Finally in our concluding section we remark on
the Goldstone realization for asymptotically stable
gauge theories of the strong interaction'~ such as
implemented by a Yang-Mills "colored" octet of
gluons. " %'e also discuss the relation of our work
to the bound-state Higgs models or "Higgs mech-
anism without Higgs scalars" of Jackiw and John-
son" and Cornwall and Norton. "

It is our primary purpose in this work to con-
struct a quark model consistent with the require-
ments of a chiral symmetry realized with Nambu-
Goldstone bosons. We believe that this shouM be
an essential feature of any future theory of strong
interactions. %'hat is left completely unanswered
in this work is how the quarks are contained in
the hadrons. In the present SU(3)x SU(3) model
the quarks are evidently real. Further, it is not
clear how to construct other bound states besides
the ground-state octet, whether such bound states
exist, or if they lie on approximately linear Regge
txajectories. Finally we have not treated symme-
try breaking —although that is not an essential dif-

ficultyy.

II. THE VECTOR-GLUON MODEL

The model we will examine is massive electro-
dynamics with a gluon (photon) mass p, and zero
bare fermion mass. We will also introduce an in-
ternal symmetry U(2}xU(2) with the fermions
transforming as a doublet under SU(2) and the
gluon as a singlet. This symmetry is trivially
generalizable to U(3) x U(8). The model we con-
sider will be in the absel. ce of gluon self-energy
insertions, ' so we do not consider vacuum-polar-
ization effects. This may be equivalent to assum-
ing that an eigenvalue condition is satisfied on the
gluon coupling g so that gluon propagatox's are
asymptotically free. Further, in actual calcula-
tions we will resort to the leading-order Bethe-
Salpeter approximation, although our general con-
clusions will be independent of any such approx-
imations.

The formal symmetry of the Lagrangian is
chiral U(2) x U(2) with formally conserved cur-
rents gy„2 v Q, gy„g, gy„y, 27'|I), Qy„y, g. Al-
though the bare fermion mass vanishes, the phys-
ical fermion mass need not vanish, provided that
we impose a nontrivial boundary condition, Z(m')
=m, on the fermion self-energy Z(p'}. Conse-
quently the chiral symmetry is broken in the vac-
uum by imposing this nontrivial boundary condi-
tion on the homogeneous Dyson-Sehwinger equa-
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tion for Z(p}.'
In the approximations described above, the

Schwinger-Dyson equation for the fermion propa-
gator (the gap equation) in the Landau gauge reads~

S(p ) 2m, 'r;(p, p)S(p)

=+i de d4Y e'~" "8-'~' "

-Sg i d~k Z(k')
(2 )' (&'- m')[(&-P)'-p'] '

(2.1)

x«l(q(x) s „&'„(0)y(y)).10}.

(2.5)

~(p') m&(g ', u'/m')(-P'/m') '"",
gP ~oo

(2.2)
with4 e(g') =Sg'/(4w)'+ —,'g4/(4(()~+ and

A(0, p'/m2) =1. We will assume e(g') &0. It is
interesting to consider the weak-coupling limit
g'-0. Then as g'-0 we see from (2.2) that the
integral (2.1) diverges like I/g', so

(-3))'() {)(mm)'m) (2.8)

It is typically the appearance of coupling con-
stants in the denominator to cancel ones in the
numerator that characterizes spontaneously bro-
ken vacuum symmetries in the weak-coupling
limit. In this way the fermion acquires a mass
by spontaneous breaking. To see if this entails
Goldstone bosons one must examine the Goldstone
alternative.

If one considers the cut-off version of the mod-
el the divergence of the axial-vector current is
given by & „A„'(x)=2im, (A) yAy, 27'(I)„. Although
one can show" that as A-~, m, (A) -m (A'/m')-'
-0, one cannot conclude that matrix eIements of
8 „'A„' vanish, necessarily entailing a Goldstone
boson. This is because the matrix elements of
the operator QA y~ ~ ~, (I)~ can behave like (A /m )'
as A'- ~ so that matrix elements of ~ „A.„' need
not vanish.

To elucidate this further we introduce the unre-
normalized axial-vector vertex

&(0')')'„'((', 9)s(()= —Jf('«') ~"

x (0l(y(x) &(', (0) T((y)} I o}

(2.4)

and the divergence

with the boundary condition

Z(m') =m .
It is because (2.1) can possess nontrivial solutions
that, in spite of the bare mass vanishing, the phys-
ical mass need not vanish. For real electrody-
namics with p=0 the solution to (2.1) is well
known. " The solution for p. O 0 is not known.

The asymptotic behavior of the fermion prop-
agator in the Landau gauge and in the absence of
gluon self-energy insertions is given by

These cutoff-dependent quantities (the cutoff is in-
troduced as a regulator of the photon propagator)
are rendered finite by multiplication by Z„and
+D'

r (O' p) ='r'(O' p)

z, 2m, 'r;(p', p) =2m'r,'{p',p).
(2.6)

where S(P) is the renormalized propagator. Z„
is defined by

s(p')'r„'(O' P)M(P) z s(p') y„y, T's(—p).
Pl ~p

(2.V)

The axial-vector renormaHzation constant g„ is
defined by

{O'I &(l(0)I P&,, s(p')I g~y(, ys ' &'

+ (pole terms)]u(p) .
{2.8)

From this definition by contracting out the ferm-
ions and using (2.4) and (2.7) one has

g„-z,/z„. (2.9)

The axial-vector currents transforming like

y„ys 2 v' do not have anomalies 1n the neutral-vec-
tor-gluon model. The Ward identity is

(f~ 'r„'(p', p) =2m, 'r;(p', p)+S '(p'} y, (-.' &')-
+ y, (2 T') sp '(p) . (2.10)

Upon renormallzing

e"'r„(p', O}=2m'r:(O', O) z"
D

+ S~ P' ys pV'
2

+ y, (
—' r '}s '(p)], (2.11)

where the ratios (Z„/ZD) and (Z„/Z, ) can be
shown to be cutoff-independent. '9 Further, it can
be shown that 'f'~(p', p) satisfies the homogeneous
integral equation'

'r'= s'r' g (2.12)

We will denote renormalized, cutoff -independent
quantities with a tilde. The unrenormalized ferm-
ion propagator is specified by

S-'(P) =Z.-'S-'(p) —Z.-'(O'-m),
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where K is the renormalized fermion-fermion
scattering kernel. The Goldstone alternative now
depends on the choice of boundary conditions re-
quired to solve the homogeneous equation (2.12).

Suppose we pick a trivial boundary condition&
'I'~(P, P) =0 corresponding to matrix elements of
the divergence of the axial-vector current actual-
ly being conserved. Then taking q„=(p' -p)„-0

a'I „(p',p) — .' g -'z(p). (2.13)

This is the Nambu-Goldstone pion. If we further
define the quantities

in (2.11), one finds there exists a zero-mass state
which appears as a pole in the axial-vector vertex

S(( )y 7 G( (() (PS): fd xa *( (0 0 )((f(x) ((0)) (0))(~ (2.14)

and

(Oi A „'(0)i w'(k)) = If„k„6" (2.15)

in terms of the zero-mass bound state
~ w'(k)),

then we obtain from (2.4) and (2.5) the result

q"I'„'(p', p) q„f.r.-T'G(p', p).
a2 ~0

(2.16)

From this result defining the decay constant, f„,
and pion-fermion coupling, G(p', p), we obtain
from (2.13) and (2.6) the relation

g.f.G(P, P) =g. 'T(P) . - (2.17)

This is the Goldberger-Treiman formula. We
also find that since g„'Z(P} is cutoff-independent
so 1s

G(P', P) =&.f.G(P', P). (2.18)

G(P', P) is a useful quantity in our analysis. It
can be decomposed into invariant functions accord-
ing to

G(k, k+q) =g, (k, k+q}+gg, (k, k+q)

+k'k qg, (k, k+q)+ j((gg4(k, k+q),

(2.19)

where q2 = 0. The physical pion-quark coupling
constant g„ is related by f,g„=mg„=g„
(g, + 2mg, —2m'g~), evaluated on-shell.

From the definition (2.16) and (2.18) of G and
from the integral equation for 'I'„',

I'~ = ypy 2v'+ S I'~SK, (2.20)

one finds that G satisfies a homogeneous integral
equation

y, T' G=+ S y5 7'G SK (2.21)

subject to the boundary condition (2.17)

G(P, P}=g~ 'I:(p) (2.22)

We note that the quantities in the integral equation
(2.21) and the boundary condition (2.22) are all cut-
off-independent. We assume that there exist solu-

I

tions to this integral equation. This completes the
analysis of the Ward identity for the Goldstone
mode.

Alternatively we could have assumed there were
no Goldstone bosons and f,=0. Then the Ward
identity (2.11) would inform us that as q„-0

')';(p, p)=(~~zz())~, ~'.
2

(2.23)

This is the boundary condition for the integral
equation (2.12). Hence in the absence of Nambu-
Goldstone bosons the formal conservation of the
axial-vector current breaks down and matrix ele-
ments of ~ &A„do not vanish. In this instance the
symmetry is explicitly broken.

There is of course a rather uninteresting third
possibility: The current is conserved ('I'~=0),
there is no Goldstone boson (f„=0), and the phys-
ical fermion mass vanishes [Z(p) =0].

We now turn to the question of which of these
alternatives is actually realized.

III. CALCULATION OF f% AND THE STABILITY
CONDITION

(0[A „'(0)jw'(k))= Z6" k„f„. (3.1)

Next consider the current correlation function for
the unrenormalized axial-vector current

It is not possible to have both Goldstone alterna-
tives realizable for all values of the parameters
g, p. , andm since the integral equations of the
model may not possess solutions for all values of
the parameters. For example, in the Z model one
has the constraint —p, '/2A. &0, described in the
Introduction, which is necessary for the Goldstone
mode. The question before us is to determine
which branch of the alternative is actually real-
ized for the vector-gluon model.

Let us assume that the axial-vector current is
conserved so 'f'g(p', p) = 0 and we have a bound-
state Goldstone pion. The meson decay constant
f„ is nonvanishing and specified by
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'6"(q)=-(fd xe'"'*
x&01(A J(~)A'„(0)),I0) . (3.2}

Matrix elements of A&(x) are finite, provided we
introduce the mull'iplicative factor Z„/Z, accord-
ing to A„'-(Z„/Z, )A„' for each axial-vector cur-
rent in the matrix element. However, subtractive
renormalizations are also required in dealing with
'A„"„(q) because of quadratic divergences. Crew-
ther, Shei, and Yan" define the cutoff-independent
amplitude '8„"„(q)according to

'A„"„(q)=(z,/z. )' 'A'„'„(q) (q—„q. g„—.q')s, (A)

—g„„[q*s,(A) +s,(A)+ s,(A)],

where the S, (A} are given by them in their paper.
In our application the cutoff dependence of S,(A)

is of no concern if we extract the residue of the
pion-pole term in (3.2). Using {3.1) we have

6'f q q ~ q"A'(q)
a ~0

(Z,/Z„)' q' A„"„(q).
~0

For later convenience we will introduce

f.=(Zgzm)f. , (8.5)

which is cutoff-independent even in the presence
of anomalies (to be considered in Sec. IV). In the
present nonanomalous case, Z„/Z, ~g„-' is a fi-
nite number. We emphasize that it is the unrenor-
malized current which is associated with the weak
interactions and which obeys canonical commuta-
tion relations.

The Schwinger-Dyson equation for '4„'„' is

Z ' d4a
Tr[y„y -v'S(k)'I"'„(k, k+q}S(k+q)] .

Z~ 2Ã)

Using (3.4), (3.5), (2.16), (2.18), and (3.6) one obtains the result for f„:
def „'q„=-Z„f,Tr[y„y,S(k) y, G(k, k+q)S(k+ q)]2w' q2e 0

(3.6)

We introduced the quantity G(k, k+ q) before and it
is given by the solution to the integral equation
{2.21) subject to the boundary condition G(P, P)
= g„'Z(p}. As in the Z model the assumption
of the existence of a broken vacuum symmetry
leads to an equation for f„'. In general (3.7) spec-
ifies f„' as a function of g' and p'/m'. Vacuum
stability requires

f '(g' V'/~')&0 (3.8)

Otherwise f„=0and the Goldstone mode is absent.

In general it is difficult to calculate f„'(g', p, '/m'),
but for small values of the coupling constant we
can compute it exactly.

As we have assumed that the axial-vector cur-
rents correspond to nonanomalous channels we
can compute in the Landau gauge which makes Z2
finite and therefore Z„ is finite also. Further, in
this gauge, we may write S(P) =[P'+Z(P)]/(P'-m'}
which has the correct asymptotic behavior. Using
this and the decomposition (2.19) for G in terms
of the invaxiant amplitudes one obtains

4iZ„de, y' d
(2 P (k2 gP Z(k )-

2 d g Z(k ) g, (k, k)

+ [Z'(k') + -k'] g, (k, k)+ k'[Z'(k')- k'] g, (k, k)- —,
' k' Z(k')g, (k, k)

4fZ„d'k Z'(k')
(2s)~g„(k -m )

(8.10)

It can be shown from the integral equations for
the g, (k, k) that g. ..contribute terms of O(g ')
larger to f,m than g, so we may ignore them in
the weak-coupling limit. Similarly k'd 1nZ(k')/(fk'
is of O(g ). Hence, usingg, (k, k) g„'Z(k) one
has

This e(luation implies f„&0 since the integrand
(after transforming to Euclidean space) is posi-
tive-definite. However, this result was based on
perturbative-type approximations; for the general
expression (8.7) we have not obtained any such
general positivity requirement. Hence there may
be values of the coupling constant g' and p'/m'
such that the stability condition (3.8) is not satis-
fied.
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For small coupling constants for which (3.10) is
valid, we find that since Z(k'}-m(-k'/m'} I t&~"~'

as k' ~p g 0

2m2f '-g'f '—
fr A fr Sg2 (3.11}

We conclude that in channels which are free of
anomalies, the stability condition for the vacuum
(3.8) is satisfi ed for sufficiently small values of
the coupling constant. Hence the necessary con-
dition for the existence of the Goldstone mode is
fulfilled. We conjecture that this condition is also

sufficient.
For larger values of the coupling there may be

a phase transition. The boundary of the phase re-
gions is given by

f '(g' p'/m') =0

We will discuss possible phase transitions in
Sec. V.

From the defining equation (3.'l) and the axial-
vector current Ward identity we can use manipu-
lations introduced by Jackiw and Johnson" to ob-
tain the alternate exact relation

4

g„„f„&,(, = —iz~
2 ~ Tr[S(k} sv'y&S(k) I',(k, k)-g„S(k) ~ r'y& ysS(k) I'~'™(k, k)], (3.12)

IV. AXIAL-VECTOR ANOMALY

In this section we will consider the case of those
axial-vector currents which satisfy Ward identi-
ties with an anomalous term present. "'" This
occurs if the axial-vector current communicates
with the two-vector-gluon channel. An example
is the axial-vector current in electrodynamics;
another is the ninth axial-vector current in the
quark-triplet vector-gluon model.

A. Analysis of the Ward identity

Let us consider the axial-vector current in

electrodynamics. For the unrenormalized irre-
ducible vertices one has the Ward identity"

q~'r„(p', p) =2 'mr, (p', p)+S, '(p') y,
-

+ y. Sr '(P)+F(P', P) (4 1)

Here 'I'„(p', p) is the vertex corresponding to the
axial-vector current gy„y, j, 2m, 'I'v(P', P) to
2mo (l(y, (t(, and Sr '(p) is the unrenormalized fer-
mion propagator. These quantities, since they
are bilinear in the fermion fields, are rendered
cutoff -independent by multiplications:

where 1"'„ is the renormalized vector-current ver-
tex and '0„"~ is the nonpole part of the renormal-
ized axial-vector vertex. If we approximate Z2

= [)f+Z(k)]/(k' -m') in (3.12), we recover the re-
sults (3.10) and (3.11) for the leading contribution
to f,' in the weak-coupling limit.

'I'„(p, p}= z„'r„(p,p},

2m 'I'v(P ', P) = Z 2m, 'I (P ', P},

s&(p)=z. 's (p).

(4.2)q"r, (p', p) = -q„fy, 2G(p', p).8~0

As before we will introduce the cutoff-independent
amplitude G(p', p) =Z„fG(p', p) which satisfies a
homogeneous integral equation similar to (2.21).

Next we note that since there is a Goldstone
boson, F(P', P) defined by

F(p', p) is the anomalous term corresponding to
the interaction -ia/4v: F„„*F„„:.

The analysis for the anomalous Ward identity in
electrodynamics without a Goldstone boson has
been given by Adler. " Here we want to see if this
is the only possibility. Let us assume that the
"normal" term in the axial-vector divergence
2mo g y, g vanishes, corresponding to an axial-
vector current conserved up to the anomaly.

2m, 'I'v(p', p) =0 and the fermion has a non-
zero physical mass (which we will always assume}
then we must have a Goldstone boson. To see this
fact suppose to the contrary that there is no Gold-
stone boson. Then (4.1) implies as q„-0,
Sr '(p)y, +y, S„'(p)+F(p,p)=0. But if there is
no zero-mass particle then the anomalous term
vanishes at P' =P so F(P,P) =0. Hence we have
Z, 'Z(p}=0 or Z(m') =m=0. Consequently, we
must have a Goldstone pole if 2m, 'I'v(P', P) =0
and mcO.

The vertex 'I'„(p', p) thus has a Goldstone pole:

S(p')P(p', p(S(p(=+ fd d ye' "''e s' '' ('O (P(y& —:p„„(O&p„„(O(:p(y() O) (4.3)
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FIG. 1. (a) Typical anomaly diagram which vanishes
for p'-p = 0. (b) Pole contribution to anomaly which

survives whenp'-p = 0.
+ e ~ ~

=».C(A) G(P, P). (4.4)

In the q -0 limit the Ward identity (4.1) reads

fG(P, P) =Z '~(P)-C(A)G(P, I) (4.,5)

Since this result is valid for all P, Z(P)/G(P, P)
is independent of P. We will define

(4.6)

and since C(P, P} and Z(P) are cutoff-independent
so is gA. We also have as the boundary condition
for the homogeneous integral e(tuations for G(P', P)
that g„G(p, p) = Z(p). From (4.5) and (4.6) we ob-
tain for C(A)

c(k) =f (k„~~ -() .Ag (4.7)

An important characteristic of axial-vector
currents with anomalous Ward identities is that

does not vanish as p'-p. Diagrams of Fig. 1(a)
do vanish in this limit but diagrams of Fig. 1(b)
do not. This is because the pole term of O(l/q )
just cancels the O(q'} contribution of the
(0(E„„(0)*E„„(0)~ v) amplitude [shown in the box
of Fig. 1(b)] as q-0. The residue of the pole
term is proportional to y,G(P, P) times a diver-
gent quantity C(A) from the integral over the pho-
ton loops. Here A' is the cutoff introduced as a
regulator mass of the photons. %'e conclude that
since these are the only nonvan'ishing terms in the
q„0 limit the anomalous term is of the form

k(k', k)=kC(k)k*(—,.) y C(k, k)

FIG. 2. Diagrams responsible for the leading diver-
gence in Z+Z2.

Z„/Z, is not cutoff i-ndependent .In our consid-
erations in electrodynamics to leading order in
o., one has"

Z 3~i = 1+, In(A'/m')+O(c. )xfinite
Z2 4@2

+ O{n')x finite . (4 8)

It is now known that the axial-vector current de-
velops an anomalous dimension"

Q22y=, +O(n')272 (4 8)

Q2
C(A) =f 2 In(A2/m~)+O(n)xfinite. (4.11)

On the other hand, we can calculate C(A) directly
to this order by calculation of the fermion trian-
gle contribution to Fig. 1(b). One has to leading
order

and that, according to the analysis of Crewther,
Shee, and Yan

Z /Z =(A'/m')" +(less singular terms)
(4.10)

so that the divergences in (4.8) sum up to (4.10).
The relevant diagrams are shown in Fig. 2. In
the case there is no anomaly C(A) =0 and g„~g„
= Z,/Z„, consistent with the conclusion from the
Ward identity (4.V).

In the anomalous case we can check the Ward
identity (4.V) in perturbation theory We co.nclude
from (4.V} and (4.8}that to leading order

C(k)k*=, ln, ', k" -'k„k, Tr[y„y, k(k)ykC(k, k+k)k(k+k)]) .

Using the analog of (3.7) (which is still valid) the quantity in large parentheses is just q„f ', so that C(A}
=f(3a'/4v') ln(A'/m'), in agreement with (4.11).

B. Stabihty condition for the anomalous channel

Before we can conclude that Goldstone bosons are present we must examine the question of vacuum stabQ-
ity and whether solutions to the integral equations exist for the Goldstone mode. The analysis we gave in
Sec. III is also valid in the presence of the anomaly and we have for f = {Z„/Z }fth2e result from E(I. {3.V):
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4

f q = —Z„i ~ Tr[y y, S(k) y, 2G(k, k+q)S(k+q)j (4.12)

Here G is defined as the solution to the homogen-
eous integral equation

y,G = Sy,GSK+0 q (4.13)

5I q(k k) y~y5( k~/m )x (4.14)

subject to the boundary condition G(p, p) g„'Z(p).
Contrary to the nonanomalous case the factor

Z„ in Eq. (4.12) diverges even in the Landau gauge.
Further, there are potential overlapping divergen-
ces in the integral representation (4.12). To cal-
culate f ' we will utilize the method given by
Jackiw and Johnson in the appendix of their paper"
to obtain a representation for f ' in terms of
renormalized amplitudes and free of overlapping
divergences. The method of Jackiw and Johnson
is applicable here, in spite of the differences be-
tween their model and ours, since it gives the
residue of the pole term in the axial-vector cur-
rent correlation function.

Some care must be exercised in obtaining the
final representation for f ' since in our applica-
tion, we allow for the possibility of contributions
from the two-gluon (anomalous) channel. (Jackiw
and Johnson have removed, by doubling the num-
ber of fermions, all anomalous contributions in
their treatment. ) In obtaining the representation
for f ' one will encounter the axial-vector-two-
photon triangle graphs which, as is well known,
have the ambiguity that their value depends on
how the momentum is routed through the graph.
Such ambiguity, however, is completely removed
once we specify that the triangle graph is always
to be computed by imposing gauge invariance for
the photon legs. This is equivalent to specifying
the regulator value of the triangle amplitude. "
With this proviso the representation we obtain for
f ' is identical to that given by Jackiw and John-
son." For the reader interested in details this
representation for f ', shown in Figs. 3(a) and 3(b),
3(b), is rederived in our appendix. Our notation
in Figs. 3(a) and 3(b) is that the slash denotes dif-
ferentiation with respect to the momentum trans-
fer q„ flowing through the amplitude and then set-
ting q, to zero. 'f'"„(k, k) denotes the regular or
nonpole part of 'I'„(k, k). For the anomalous chan-
nel this vertex has the asymptotic behavior (in the
Landau gauge)

haves like (4.14) instead of just y„y,. One finds,
a,s in (3.10),

8i -d4k(-k'/m')" 8 (k')
(3~) (2s)~g (k' —m')'

e2 ~p
4m'/3e'. (4.15)

2
IIpvf =

k

(a)
k P

(b)

k+q k+q p+q

(c)

((j ) (e)

2

I I

vp
I
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I

I

I
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I

I

I

I
I
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The integral (4.15) converges provided 2e(e')& ll(e')
which is certainly valid in the weak-coupling lim-
it, relevant for QED. For stronger couplings for
which 2«It, f' does not exist and there may be
a phase transition to the mode for which f =0. We
discuss possible phase transitions in the next sec-
tion.

On the basis of Fig. 3(a) alone there is no rea-
son to rule out a Goldstone mode for QED. Next
we examine Fig. 3(b). For kernels K not contain-
ing the two-photon state we find that the integrals
are sufficiently convergent for f ' to exist. These
contributions to f ' behave at worst as constants
as e'-0.

However, for the kernel with the anomalous
channel [shown in Fig. 3(c) in skeleton expansion]
we find that its contribution to f ', f„' diverges
for g&0. Consequently, there does not exist a
solution to the renormalized integral equations
for f ' if the anomalous channel is present.

To see this we differentiate K„as is required

First we examine the diagram of Fig. 3(a) in the
weak-coupling limit. Here G(P, P) =Z(P)g„' so
that this diagram is the same as for the nonanomal-
ous case except that the axial-vector vertex be-

FIG. 3. (a) and (b) The two terms in the formal ex-
pression for f2. (c) The anomalous kernel. (d)-(f) The
derivative of the anomalous kernel. (g) The leading
contribution tofz .
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in Fig. 3(b) and this is shown in Fig. 3(c}. The
graph with crossed photons contributes equally.
There arise the terms shown in Figs. 3(d), 3(e),
and 3(f). The terms corresponding to Fig. 3(d)
and 3(e) if substituted into the integrals for f'
shown in Fig. 3(b) actually give a vanishing con-
tribution. The reason for this is that the triangle
amplitude involving Gy, and the two photons van-
ishes if the photons have momenta that are pro-
portional, as is the case here. There remains
the contribution of 3(f}which if substituted into
3(b) gives, to lowest order in the couplings in the
kernel, the diagram shown in Fig. 3(g}. The axial-
vector vertex triangle denoted by R „s(L) and the
pseudoscalar vertex T,„s(L) are shown in Fig.
3(g).

For the anomalous channel contribution to f '
we finally obtain from Fig. 3(g) the expression

g~„j '= i
2 L

T„s(L)R~ s(L), (4.

where l is the photon-loop momentum. The am-
plitudes in (4.16) are completely specified accord-
ing to

R pa8 e pnsx I xR(L }i

T„„s= c„„s„L~ T(L'),

so that

(4.1'7)

d L'R(-L*) T(-L')A '
32~2 (4.18)

in terms of the invariant functions R(L'), T(L').
The axial-vector vertex triangle with the axial-

vector vertex given by (4.15) can be calculated by
requiring gauge invariance for g „8for photons
with arbitrary momenta. One finds for the asymp-
totic behavior of the invariant amplitude

(4.19)

ie
9n

(4.20)

The asymptotic behavior of T s(L) may be estab-
lished by a much more laborious calculation. %'e
have carried out this computation in the Landau
gauge using the correct asymptotic forms S(p)
=[P'-Z(p)J-', Z(p) = I{-P'/m')-', and y,G(p, p)
=y,g„'Z(P) =y, Z(P). The result is that L'T(-Ls)- is „(constant). That is, the damping factor
(-P'/m') ' from G(P, P) does not propagate
through the diagram to damp L'T(-L~). The ex-
act result is

-e4m2i
4 fe' l'L'T(-L'), +0(e')+0

i

——,
is 48K f (t rn j
e ~02

The factor 1/e in (4.20) is a manifestation of the
property that the potential logarithmic factors,
lnL', are replaced by I/e in finite QED.

From (4.18), (4.19), and (4.20) we find that f„'
diverges:

(4.21)

If we regulate the photon propagator in (4.21}with
a mass A, me find

X&0

m2e4
) A

,x~ ln~A 3x 26 &6' =0 (4.22)

finite, g & 0.
%'e have found no other diagrams that could cancel
this divergence.

This divergence in the renormalized integral
equations for y) 0 is associated with the fact that
the axial-vector current has dimension greater
than 3. Does this divergence in f really destroy
the possibility of a Goldstone state V It might be
argued that since f is not a measurable quantity
(unless the weak interactions couple to neutral
axial-vector currents), who cares if it does not
existed The homogeneous integral equations for
the Goldstone boson coupling Q are completely
convergent and mell behaved in the presence of
the anomalous channel. The difficulty with this
line of argument is not that the homogeneous in-
tegral equation do not have solutions but in the
boundary condition me impose, which is where
the divergent quantity f„enters. For example,
the renormalized coupling constant for the Gold-
stone boson to the fermion is given by g, =g„m/f
and this quantity actually vanishes as A -~, f-~.

The failure of f ' to exist for LL) 0 has the phys-
ical consequence that the Goldstone mode cannot
exist in electrodynamics. Instead me must choose
the other branch of the Goldstone alternative f=0
and axial-vector current conservation breaks
down. Similarly, there are no Goldstone bosons
associated with axial-vector currents in vector-
gluon models which communicate with the two-
vector-gluon channe1. As the ninth axia1-vector
current in the quark-triplet model has this pro-
perty, there is no ninth Goldstone boson and this
current is not conserved. Our general conclusion
is that for axial-vector currents zvhich communi-
cate uith turo vector mesons and satisfy anomatous
8'ard identities, there are no associated Gold-
stone bosons for sufficientiy small vaiues of the
coupting constant. This is our solution to the U(3)
problem.
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V. GLUON-MODEL PHASE TRANSITIONS

It is intex esting to examine what possible phase
transitions might oeeur in vector-gluon models.
We will hoM p. '/m' fixed and consider the behavior
of the model as a function of g', the coupling con-
stant. The three phases we will consider are the
Goldstone mode, the mode for which the physical
fermion mass m=0, f =0 and the axial-vector
current is conserved, and the mode in which axial-
vector current conservation is violated and f =0.

First we consider the behavior of the critical
exponent corresponding to the asymptotic behavior
of Z(p'), which we denote by s(g'} [Z(p'}- (-P'/m')-'(' I for large -P']. For small g',
e(g')&0. Suppose that for g'&g, ', e(g')& 0 de-
fining the critical coupling g, '. Then the integral
equation for the fermion propagator, the gap equa-
tions, will not have 5 nontrivial solution. So for
g'&g, ' we have m =0 and the chiral symmetry is
realized by massless fermions.

Next consider the decay constant f„associated
with Goldstone bosons whose quantum numbers do
not communicate with the two-gluon channel. Ac-
cording to (3.11)f„'(g') has a pole at g' = 0. As
g' approaches g, ', f„' will again diverge as
I/s(g') since both Z(k) and g, (k, k) behave as
{-k'/m'}-'(' ' for large k'. The residue of this
pole could be either positive or negative: Neither
the normalization of Z nor the behavior of g, 3 4

in {3.9) (which can also contribute to the pole) is
known for g'-g, '. These two possibilities are
shown in Figs. 4(a) and 4(b), respectively. In
Fig 4(a) the axial-vector current is everywhere
conserved. For g'&g, ' the Goldstone mode (in-
dicated by G) is present and f,'&0. For g'&g, '
we are in the Wigner-Weyl mode (indicated by W):
f,'=0, m=0. In Fig. 4(b) we have f,'&0 for
g'&g&'. Between gz' and g, ' the divex gence of
the axial-vector current no longer vanishes {in-
dicated by D). In this case f „s=0 and the matrix
element of ~ - A' between fermion states at zero
momentum transfer has a form factor 2mg„(g')

[we assume g„(g') e 0 and me 0]. For g'&g, ' we
again have 8 ~ A'=0 and are in the Wigner mode.
There are of course more complicated possibilit-
ies, such as the one shown in Fig. 4(c).

Finally we consider the case of those axial-vec-
tor currents which communicate with the two-glu-
on channel. For smail g', I((g') & 0 and we define
g„' so that X(g')&0 for g'&g„'. This is shown in
Fig. 5{a). A possible behavior of the associated
(renormalimed) decay constant f'(g') is shown in
Fig. 5(b). For g '&g„', axial-vector current con-
servation is violated and f' =0. For g„'&g'&g, '
there is a Goldstone mode, with f '--1/I((g'} for
g' near g„'. For g'&g, ' the Wigner mode is pres-
ent. If g„'&g, ' there is no Goldstone mode. This
is shown in Fig. 5(c).

The crucial point about all these critical values
of the couPlingg, s, g„', and gzs is that for g'
smaller than any of them toe kame tke desired sym-
metry of the tvorld of real kadrons. This at least
suggests that g' is small enough to pexmit pertur-
bation expansions for the Bethe-Salpeter kernel.

It would be quite interesting to examine the be-
havior of hadron amplitudes when the coupling con-
stant approaches a critical value. Amplitudes are
apparently nonanalytic and perhaps diverge at
phase transition points. If there is a phase transi-
tion of the type described here in QED for some
value +=a, of the coupling then we do not expect
analytic perturbation theory to converge in the
neighborhood of a,. %hether this influences ex-
pansions about the origin, n =0, of course depends
on the physical value of n, .

It would also be useful to study the Bethe-Sal-
peter equations for the invariant functions g& de--
fined in (2.19) for both the anomaly and non-ano-
maly eases. One may be able to distinguish, for
example, between the options in Fig. 4. If Fig.
4(b) were correct, then the small physical value
of f„=90 MeV on the scale of hadron masses
would suggest that real physics is close to a
phase transition point. If one had some idea as
to the behavior of hadxon amplitudes in the neigh-
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FIG. 4. Three possible behaviors of f~t(g } in the absence of anomalies. G indicates the Goldstone phase (f„t&0,
m & 0), S' indicates the Wigner-Vfeyl phase (f„2= 0, m = 0), and D indicates the phase in which f~2 = 0, m & 0 and azial-
vector-current conservation is violated.
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FIG. 5. {a}A possible behavior of ths anomalous dimension It{g ). {b) and {c) Two possible behaviors for f {g ) in the

presence of anomalies.

borhood of a phase transition point then it might
be possible to exploit the small value of f„. In
our present state of ignorance, however, this is
not possible.

VI. AXIAL- VECTOR RENORMALIZATION

Because the vector current is conserved it is
well known that the interactions do not renormal-
ize the vector form factor. For the axial-vector
current there is a nontrivial renormalization and

for axial-vector currents without anomalies this
renormalization is finite. Here we will calculate
g„=Z, /Z„ in the vector-gluon model to order g'.

Consider the diagrams of Fig. 6, where we have

already subtracted out the mass counterterms.
They contribute to the renormalized vector ver-
tex

u(P) Z2
'

rs[1+ (Z» ' -1)-2(zs ' -1)]s &' u(p)

=(Z,/Z„)u(P) r„z7'u(P)+O(g ). (6.1)

The factor Z~
' comes from the wave-function re-

normalization. Since the Ward identity implies
Z, = Z~ the vector current is unrenormalized.
The renormal. ization of the axial-vector current
to O(g '} is given by a similar set of diagrams
and contributes

u(p) Zs 'r~r5[1+(Z~ '-1)-2(Zs '-1)] ~ &'u(p)

=(Z2/ZA)u(p)

roars�

'v'u(p)+O(g') (6 2)

Consequently for g„we have

g„-z,/z„
=1+(Z„-' -1)—(Z, '- 1)+O(g') . (6.3)

For the vector renormalization one obtains to
O(g')

XI„1, (P+ I+ m) (P'+ 1+m)
u(P)(z» '-1)r„u(P)=u(P) (2„), fs „s -g s+ fm

' r (p f)2 ms rs (p f)s ma rs (P).

(6 4)

The result (6.5) is infrared finite. For u, '=0
one has

1
g~ -1= ——(g'/4r} .

2m
(6.6)

For arbitrary y. '/m' (6.5) implies that g„-1
& 0+ O(g~). This suggests that the nucleonic
G„/G» = 1.25 which in a free tluark-triplet model
is G„/G»=, will get modified in the right direc-
tion by the interactions due to neutral vector glu-
ons. We would have G„/G»=~sg„&na. For g„
= 0.75 the agreement'would be precise.

Suppose the gluon coupling is small and gluon

A similar expx'esslon with 'yp 'yp ys fox' Zg -1
has the property that (Z„' -1)-(Z» ' -1) is in-
dependent of the gauge parameter A.. Hence g„
is gauge-independent. A straightforward calcula-
tion then gives us

mass p, is small so (6.6} is valid. Then with g„
= 0.75, using our result for f „* given by (S.ll) we

obtain for the fermion mass

(6.7)

Z —1
V

FIG. 6. Lowest-order diagrams contributing to the
xenormalization of the vector vertex.

m = [12''(1 -g„)y.']'~'= 0.5 GeV

for f„=g„f„=90 MeV. We do not take this low-
est-ox'der calculation very seriously, since it re-
tluires g'/4 s=s2 and since (p/m)' is probably
large. However, (6.7) is of a reasonable magni-
tude. In general the calculation of g„must be
compatible with the calculation of f, and this will
impose constraints on the parameters of the mod-
el.
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VII. CONCLUDING REMARKS

ZA/Z2 p 1 (A2/ 2)
-const,

(V 1)

where C„ is a positive number depending on the

group. Here Z„ is the renormalization constant
associated with the ninth axial-vector current.
From the discussion given in Sec. IV for the Abe-
lian case, if we examine the integral equations
for f ', assuming there is a Goldstone boson in
this channel, then as in the Abelian case for g =0
we will again encounter a divergence in f '
- ln(A~/m'). So on this basis we speculate that
no solution exists for GoMstone bosons in this
channel. Instead axial-vector current conserva-
tion breaks down just as in electrodynamics.

For those '*color" singlet axial-vector currents
transforming like SU(3) octets, there are no ano-

%e have seen that in an Abelian vector-gluon
model one can have the desired realization of
chiral symmetry. Most of our results are pre-
dicated on anomalous dimensional behavior of
amplitudes. This follows if, as we have done,
one considers the model in the absence of vacuum

polarization or if some eigenvalue condition is
satisfied by the coupling constant.

If we now turn to gauge models of strong inter-
actions such as that based on SU(3) & SU(3) x SU'(3)
with a "colored" octet of Yang-Mills gauge vector
bosons" then we lose the anomalous dimensional
power behavior in the momenta. In such asyrnp-
totically free theories'4 one typically finds from
an analysis of the Callan-Symanzik" scaling equa-
tions that amplitudes have power behavior in the
logarithm of the momenta.

The ninth axial-vector current, a "color" sing-
let, will have a divergence with an anomalous
term proportional to E„', *E„'„,where E„',=8„A„'
-~„A'„+iC'-"A„' A'„and A„' is the "color" gauge
field. One might expect that because of the addition-
al term C"'A„' A'„matrix elements of E„'„*E„'„
do not vanish at zero momentum transfer and

hence the naive Goldstone theorem is violated and

there is no Goldstone boson. However, one may
easily verify that E„'„E„'„is still a total diver-
gence and hence its matrix elements vanish at
zero momentum transfer if there is no GoMstone
boson. The zero-mass ghost states that are re-
quired in gauge theories will not change this cir-
cumstance since they have the wrong parity and
do not couple to ferrnions as is required in order
to eliminate the factor proportional to the momen-
tum transfer in the matrix elements of E„'„*E„'„.

In asymptotically free gauge theories of the
strong interactions one finds that Z„/Z, is finite:

malies in the color gluon model. However, it is
not clear if one can have GoMstone bosons in these
channels since it is difficult to calculate f' for
these channels. In the Abelian case this calcula-
tion was facilitated by the fact that the integral
equations for f ' diverged as 1/g' as we took the
weak-coupling limit. However, in the color gauge
models one has for the fermion propagator

iZ(p')i ~ [in(-p'/m')]-'r, (V.3)

g2f 2 ~ 2 (V.3)

where g' is a coupling constant of the gluon and

p.~ is the gludh mass. The calculations of p, a' and
g'f, ' are formally identical and for weak coup-
lings axe positive, as is required if these mech-
anisms are to work.

In spite of the formal similarities the physics
is quite different in these models. The mass-
less Goldstone state for our formulation of the
model is a real physical state and couples to
hadron amplitudes. Further the vector-gluon
mass gets put in by hand. In the work of Jackiw

where the positive number cz is a number depend-
ing on the gauge group and is independent of the
coupling constant. In order for the integral equa-
tions for Z(p'} to have nontrivial solutions we re-
quire c~& j., so that the integrals converge which
places a constraint on the possible gauge group.
The contribution to f ' as given by Eg. (3.10) will
satisfy f '&0. The result f'&0 can also be ob-
tained from the general equation (3.13) provided
we make the standard approximations g„=1;
r'„=~„-.'~' r'„'&-y„~, —.'~', s(u)=[It'+z{x}]/
(k' -m'). Hence we conjecture that an octet of
Goldstone bosons can exist in those channels free
of anomalies.

On the basis of these speculations we conjecture
that everything works out as before for gauge mod-
els of the strong interactions; however, this ques-
tion deserves more detailed investigation.

Finally we remark on the relation of our work
to that of Jackiw and Johnson" and Cornwall and
Norton. ' These authors have constructed models
with real axial-vector-meson gluon coupling to an
axial-vector current (which is conserved). Al-
though the axial-vector meson starts out massless
in the bare theory, it acquires a mass through the
interaction without benefit of introducing explicit
scalar fields. The point is that in their model, as
in ours, the axial-vector current correlation func-
tion develops a zero-mass pole corresponding to
a Goldstone boson which decouples from physical
hadron amplitudes. The residue of this pole is the
mass squared of the decay constant, so the formal
connection between these models is the correspon-
dence
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and Johnson" and Cornwall and Norton" the mass-
less excitations must decouple as they are un-
physical and should not contribute to intermed-
iate states in unitarity sums. Also the axial-vec-
tor-meson mass is an output of the model. In gen-
eral, however, models of the strong interactions
based on axial-vector gluons (rather than vector
gluons) have the problem that bound states will
be charge-conjugation-degenerate in conflict with
the observed hadron spectrum.

(Ipvf—
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FIG. 7. (A1) The starting expression for q& f2. (A2)
The integral equation for G(k, k + q). (A3) The starting
expression for f g». (A4) 'The integral equation for
G' = BG(k,k +q)/Bq„~~ 0. (A5) The integral equation for
for the regular part of I

& (k,k). (A6) A representation
for f2 free from overlapping divergences.

APPENDIX

Here we will derive the representation for f '
shown in Figs. 3(a) and 3(b). Our procedure is
identical to that given in the Appendix of Jackiw
and Johnson" and is repeated here for the con-
venience of the reader.

Our starting expression for f 'q„(4.12} and in-
tegral equation for G™are shown diagrammatically
in Figs. 7(A1) and 7(A2). The result of different-
iating these expressions is shown in Figs. 7(A3)
and 7(A4). Here differentiation with respect to q„
is denoted by a slash. The next step is to use the
integral representation for

Z~yqys= 1 „—S f'"„SK,

as is shown in Fig. 7(A5). Here 'I'"„(k,k) is the

regular part of 'I' „(k,k) with the Goldstone pole
subtracted out. In writing this representation for
Z„we understand that if one encounters the am-
biguous triangle graph then the regulator, or
gauge-invariant, value is to be used. Substituting
(A5) into (A3) we obtain (A6). The final step con-
sists of substituting the solution for the integral
equation for G given by (A4) into the third diagram
of (A6}. One finds cancellations ainong the vari-
ous diagrams and one is left with the integral re-
presentation shown in Figs. 3(a) and 3(b) of the
text. The cancellations among these diagrams
occur in spite of the routing problems associated
with the ambiguous graphs if one specifies the con-
dition of gauge invariance for all triangles. Then
routing differences can be ignored and the cancel-
lations can be guaranteed.
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Simple construction of the physical- state projection operators in dual models*
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We present a simple way of understanding the Brink-Olive projection operators by relating
them to the light-cone HamQtonian.

The purpose of this short technical note is to
present an alternate method for building the pro-
jection operators recently introduced by Brink
and Olive. ' This method has the advantage of being
purely algebraic in nature and it will hopefully
shed some light on the simple structures that
underlie the projection operators. We first re-
mark that the Hamiltonian that corresponds to
time translations in light-cone coordinates is
given by

is given by

where the angular brackets denote the average
over the proper time ~. Here ~' is a constant
with dimensions of (length)'. It corresponds to
the slope of the Regge trajectory.

What we are going to do is to compute the light-
cone Hamiltonian (1) using the constraint (2),
which we call II, . We have

H, = (U,+).1
(4)

where P' and P' are the momentum components in
the time and & directions, respectively.

We start by considering the Veneziano model.
In this model, all quantities of intepest can be
derived from a generalized four-velocity vector
Uz(~) which obeys a proper-time constraint'

(2)

Note that the sign on the right-hand side indicates
the tachyonic character of the constraint. One
can show that the use of (2) leads to the consistent
construction of a Poincare group only where there
are 26 dimensions.

On the other hand, by use of a useful principle
introduced earlier, ' the physical momentum P&

The proper-time constraint in light-cone coordi-
nates reads

2U+U —UT' UT= -1
or

U'(v) = —
(

(-1+Ur Ur),

so that

1 1
H, = . . (-1+11 U )) .

2l~ U (7

It is convenient to introduce the longitudinal and
transverse Virasoro operators through


