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Ps(7'}=lim, u (r}—8, a (r). (19)

As stressed by Teitelboim, the final result (19)

Keeping only terms of orders e ' and e, and

integrating over all directions of the vector n
with the help of the integral relations f n dQ = 0
and (4w} 'fn n du= —', (g +c 'u u }, we find for
the bound momentum [see also formula (3.20) of
Ref. 1]

only depends on the state of the charge at the
present time, although the whole past history of
the charge contributes to the integral (8). Prin-
cipally, this is due to the mathematical property
(9), which seems to be quite general. For exam-
ple, a relation like this can also be proved for
particles which carry multipole moments of ar-
bitrary order. ' This makes it possible to extend,
in a unique way, the definition of the bound mo-
mentum for a charge to particles with a more
complicated electromagnetic structure.
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In the theory of a quantized scalar field interacting with the classical Einstein gravitational
field, the formal expression for the energy-momentum tensor has infinite expectation values.
We propose a procedure for defining, in certain cosmological models, suitable finite expecta-
tion values of this tensor, when the mass of the scalar matter field does not vanish. Our
method uses the decomposition of the scalar field into modes permitted by the symmetry of
the models. The identification of the divergent terms, which are to be subtracted mode by
mode from the formal tensor, follows in a natural manner from the identification of phys-
ically relevant creation and annihilation operators under conditions of arbitrarily slow
(adiabatic) time dependence of the metric. The extension of the results to periods of strong
time dependence is accomplished with the aid of the requirement that the four-divergence of
the regularized energy-momentum tensor remain zero at all times. The energy-momentum
tensor obtained by adiabatic regularization is the same as that obtained by the n-wave regu-
larization procedure of Zel'dovich and Starobinsky, although the two methods are conceptu-
ally quite different. In this paper we apply the adiabatic-regularization method to the mini-
mally coupled scalar field with positive mass in the Robertson-Walker universes. Later
papers will concern extensions to conformal coupling, anisotropic metrics, and massless
fields, as well as a possible physical interpretation of the regularization procedure in terms
of renormalization of coupling constants in Einstein's equation.

I. INTRODUCTION

In theories involving quantized fields, such as
quantum electrodynamics, the formal expressions
for the observables of the theory often possess

infinite expectation values. Methods for obtaining
suitable finite observables from the formal ex-
pressions fall into two main categories. One is
regularization, in which the divergent quantities
are replaced by well-defined expressions in a man-
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ner consistent with the physical basis of the the-
ory. The other is renormalization, in which the
infinities are absorbed into the physical constants,
such as charge and mass, or are eaneeled by
suitable counterterms in the Lagrangian.

Divergent formal expressions arise at the most
fundamental level in the theory of a quantized
matter field interacting with a classical gravita-
tional field through Einstein's equation. In such
a theory, expectation values of the energy-mo-
mentum tensor of the quantized field, which act as
the source of the gravitational field, are formally
divergent. ' In this paper we propose a procedure,
called adiabatic regularization, for defining suit-
able expectation values in the context of certain
homogeneous cosmologi, cal models. The essential
point is the identification of the contributions of
the vacuum, which are subtracted, to obtain a
finite result.

Utiyama and De%itt' have given a renormaliza-
tion prescription which applies to asymptotically
Minkowskian spacetimes, but has not yet been ex-
tended to the non-Minkowskian boundary conditions
which appear in most cosmological problems. In
the context of the general homogeneous, nonro-
tating, spatially flat metric, Zel'dovich and
Starobinsky' have offered a method ("n-wave reg-
ularization") for defining a finite tensor by sub-
tracting the leading terms in an asymptotic ex-
pansion of the energy-momentum tensor of par-
ticles whose mass and momentum approach in-
finity.

In our adiabatic regularization procedure, the
vacuum energy density and pressure are deter-
mined by considering the limit of an arbitrarily
slow time dependence of the metric, in which limit
a time-independent physical vacuum state can be
defined. The resulting expression for the regu-
larized energy-momentum tensor is extended to
the case of arbitrarily strong time dependence of
the metric by means of the requirement that the
four-divergence of the tensor vanish. The method
should be applicable to any metric of sufficient
symmetry to allow a decomposition of the quantized
field into modes. It should also apply to fields of
any spin. As we show in Sec. V, our regularized
tensor is the same as the one which mould be ob-
tained by the method of Zel'dovich and Starobinsky,
although the concepts invo1ved in adiabatic regu-
larization are quite different, and perhaps of more
direct physical significance.

In the well-known theory of a free field in Min-
kowski space, the infinities disappear when the
vacuum expectation value of the energy-momentum
tensor is subtracted mode by mode from the full
formal expression for the tensor, ~ the physical
justification being that such vacuum contributions

are unobservable. For a time-dependent metric,
gravitationally induced particle creation makes
the correspondence between physical particles and
creation or annihilation operators time-dependent
and inherently ill defined, ' so that it is not at all
clear how to determine the vaeuumterms to be
subtracted. The seemingly natural procedure of
using the creation and annihilation operators which
instantaneously diagonalize the Hamiltonian to
define an instantaneous vacuum' does not succeed
in preventing expectation values of such quantities
as particle density and energy density from be-
coming infinite in the course of the time develop-
ment. '

The present work develops ideas propounded
some time ago by one of us, ' and applies them to
the problem of identifying the correct vacuum sub-
tractions involved in regularization. The basic
assumption is the minimization postulate, which
leads to the conclusion that at any given time dur-
ing an adiabatic change of the metric the density of
newly created physical particles vanishes faster
than any finite power of a slowness parameter
when that parameter approaches zero. The im-
plementation of this postulate in the form of Eq.
(3.4) determines the physical Hilbert space of state
vectors even for a rapidly changing metric, pro-
vided the variation is smooth. It also determines
the form of the vacuum subtractions, by specifying
the annihilation operators which correspond to
physical particles in the adiabatic limit of arbitrar-
ily slow time dependence of the metric. Those
operators are obtained in Sec. III with the aid of
a higher-order %KB approximation, and are used
in Sec. IV to find the correct vacuum subtractions
and the regularized energy-momentum tensor.
The adiabatic operators do not diagonalize the
Hamiltonian during a period of finite time depen-
dence, because the time variation of the metric
induces a shift in the effective frequency or energy
of each mode.

In this paper we carry out adiabatic regulariza-
tion in detail for the three types of Robertson-
Walker metric (closed, flat, and open) with a
quantized scalar field of ncnzero mass minimally
coupled to the gravitational field [Eqs. (2.6) and
(2.7)j. A later paper' will treat the modified
coupling which makes the scalar field equation
conformally invariant when the mass is zero. (In
the eonformal case, no infrared-divergence prob-
lem arises in the Robertson-%'alker metrics when
the mass vanishes. ) The method will also be ap-
plied in that paper to the general homogeneous and
nonrotating (but anisotropic) universe with flat
three-space (cf. Ref. 3). We have found that our
regularization procedure can be given a renormal-
ization interpretation (cf. Ref. 2) in certain cases,
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such as the Robertson-%alker universe with flat
three-space. " Also under investigation is the pos-
sibility of extending adiabatic regularization to
more general homogeneous metrics, such as the
mixmaster universe, for which the field decom-
poses not into single modes, but into finite mul-
tiplets of coupled mod

Throughout this paper we use units such that 5
= v=1. The summation convention is in force over
pairs of Greek (spacetime) indices, but not over
Latin (three-space) indices. We use the metric
signature (+ ---) and the conventions Rats
=( syj, s-' ' and R~q=R~~„.

A(x, &) fs=P(a)[w 'M~(.x)tl{t)~,H. e.], (2.8)

where H.c. denotes the Hermitian conjugate and
'JJ~ is an eigenfunction of the covariant Laplacian
associated with 0& .

assume that m' is nonzero. The conformal cou-
pling of the scalar field, in which ng' is replaced
by m2+ ~& B, 8 being the four-dimensional scalar
curvature, will be discussed in a sequel to this
paper (Ref. 9).

The general Hermitian-operator solution of the
field equation can be written as a sum or integral
over modes in the form

H. FIELD EQUATIONS AND ENERGY-MOMENTUM
TENSOR

"~a'g~ (x) =-k"1(~(x). (2.9)

For a Robertson-%'alker metric"

d s' = dt' a(t)' g-k dx~dx'

the Einstein equation

ft„" 2g„"It+-Ag„"=-8' (7„')
takes the form

(2.1}

(2.2)

These functions and the associated indices k, for
the three values of ~, are described in Appendix A;
note particularly Eqs. (A8), which give the num-

bers k in Eq. (2.9), and Eq. (A9}, which defines
the measure p(k).

The canonical commutators of the field and its
conjugate momentum m lead in the usual way to the
commutation relations

[A~, A~. ] =0, [A~, A~~ ] = 6(k, k'), (2.10)

(2.3)

Q
2 —+ —+—-A = -ewQP,8 8 6 (2 4)

where c is equal to+1, 0, or -1, for the case of
the closed, flat, or open (hyperbolic} three-space,
respectively. The cosmological constant A is usu-
ally set equal to zero. In a semiclassical theory
the energy density p and pressure P are the ex-
pectation values

g= '( g)'~'(g~ "-s-„4 s„y m'y2) . -
The corresponding field equation is

(2.8}

(2.7)

where V„denotes the covariant derivative. We

p = (T.') I'&g'= &Ti'&- (2.5)

in a pure or mixed state of the proper symmetry.
As explained in Sec. I, the expressions suggested
by canonical field theory for p and P are divergent
and must be replaced in a consistent theory by
finite regularized expressions, the specification
of which is our goal.

%e consider the model in which the matter in the
universe is represented by a neutral scalar field
Q(x, f ) [x= (x',x',x'), i= x'] characterized by the
Lagrangian density

provided that Eq. (2.14) below is satisfied. We
denote by

~ 0„) a normalized vector which is an-
nihilated by all the A». A basis for a Fock space
may be built up by operating on

~ 0„) with the A~.
The time-dependent function g~(t) appearing in

Eq. (2.8) satisfies the equation

si 4&+a &a Pa=0 ~ (2.11)

(2.12)

da dt' 8 = = a38--d. — (2.18)

The equivalence of the relations (2.10) with the
canonical commutation relations of Q and v re-
quires a particular value for the conserved
Wronskian:

(2.14)

Additional conditions are needed to determine p~
completely. Different choices of g» satisfying Eqs.
(2.11) and (2.14) determine different operators&&
and vectors ~0„) . The A& do not depend on time.
In general, no choice of the A& corresponds to the
annihilation operators of physical particles, since
the particle number is not constant in time-de-
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T~~ =-—' (S p)R t 2a (S~dt))

3-

'-m'
f=z

(2.16)

(no sum on j). We take the expectation values of
these quantities in a homogeneous and isotropic
state, pure or mixed. " For the state ~0$, one
finds for the energy density

pendent gravitational fields. In Sec. III we will
restrict the solution $d, (and hence A& and

~ 0„))by
requiring that P, be a generalized positive-fre-
quency solution [see Eq. (3.4)] to any finite order
in a slowness parameter T '. Although the cor-
responding A& cannot be associated with definite
observable particles when the metric is rapidly
changing, they do correspond to physical particles
in the adiabatic limit (T-~), as well as in the
limit of large k (with T fixed). We will often refer
to the A& specified in that way as adiabatic particle
operators.

The energy-momentum tensor T» [=2(-g} 'I'
x M, /5g»] has the diagonal mixed components

3

T() =R (&0/) +a Q (S((t)) + m'p', (2.15)

J dkk' for &=0,
0

k+1 ' for &=1, (2.18)

dqq' for e =-1
0

(see Appendix A}. For a more general homo-
geneous and isotropic state one finds

2 —2,+ (aed) 'f d(4(a)

x (2(A~tA~& (Is.y, I'+~, 'ly~l')

+ 2 Ref(A&A z) [(s,p, )'+ u&~' I()~R]j),
(2.19}

J,= (0„(T,'[og-

where Re denotes the real part. Equation (A12)
has been used here. The matrix elements (A& A&)
and (A&A &) must depend only on the scalar k,
because of the assumed symmetry of the state.
The analogous expressions for the pressure are

p =(o„iT (0„)

=(4ed) 'f di (a)(la, (4('em, 'l(4(*),

where

(2.17)

and

=(42) JA( 4)'a-l'a, d, (* (2, +m') (2, I*

(2.2o)

P=P, +(42') f( )dl aa( '(2Aeadlae)2 I' — 2, +m' (4 I' +2Re &AAAA) ()a'd-)2, +m'
0 k 3g2 A'

(2.21)

When c =0 or e = -1, the calculations leading to
Eqs. (2.19) and (2.21) are more subtle than for the
closed universe. Because of the infinite volume
of the universe, a homogeneous state ~4') of non-
vanishing energy and pressure necessarily rep-
resents infinitely many particles. Such a state"
cannot belong to the Fock space of the operators
A&, and the expectation values (4'~A&tA&~4'), etcea
are generally infinite. Equations (2.19}and (2.21}
remain valid, however, if (A&A&) is interpreted
in the static limit as the expectation value of the
number of particles per unit volume in k space
and per (2v}' units of coordinate volume [physical
volume (2va)'] in x space, and if (A& A &) is sim-
ilarly "renormalized. ""The correctness of this
normalization can be seen by examining the
(A&A& ) term in p [Eq. (2.19)] for the case of a
static universe, with

(t) = (2a~(g ) (2.22)

We remark, incidentally, that for the purposes of
a semiclassical calculation where the main inme

terest is in the solution a(t) for the metric, a
state may be taken to be defined by its quadratic
expectation values (A& A&) and (A&A &) .

Since the density of physical particles is pre-
sumably finite at all times, it is reasonable to
assume, after the A& have been properly chosen,
that for any physically realizable state the ex-
pectation values in the second terms of Eqs. (2.19)
and (2.21) approach zero sufficiently rapidly at
large k that the integrals are convergent. The
terms p, and I', arise as a consequence of the
commutators (2.10). They are generally not the
energy density and pressure associated with a
physical vacuum, since the A& do not correspond
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to physical particles except in the adiabatic limit.
Therefore, although p, and P, contain all the di-
vergences, they cannot be simply subtracted as in
a free-field theory in Minkowski space. In mhat

follows me shall argue that the form of the correct
vacuum subtraction' is determined by the first
three terms in the adiabatic asymptotic expansions
of the integrands of Eqs. (2.1V) and (2.20}, the g,
being those associated with the adiabatic particle
operators.

HI. PHYSICAL PARTICLES IN AN ADIABATICALLY
CHANGING METRK

An analysis of the concept of particle number in
an expanding universe has been given in Ref. 5.
Although the discussion was in the context of the
Robertson-Walker metric with Euclidean three-
space, it also is applicable to the closed and open
cases. The physical particle number is, in prin-
ciple, not precisely defined when expansion-in-
duced particle creation is significant. The min-
imization postulate [Ref. 5(b)] was proposed as a
means of reaching the best definition of the phys-
ically relevant creation and annihilation operators,
to within the uncertainties intrinsic to the mea-
surement process. According to the minimization
postulate, particle operators for each mode should
be chosen, subject to constraints which must be
determined by physical reasoning, "to minimize the
time rate of change of the average particle number
and its derivatives. " The identification of physi-
cal particles becomes exact only in the limit of
an adiabatic (slow) expansion, or for sufficiently
high mode number k.

The minimization postulate was implemented
(although not given that name) in Ref. 5(a) in order
to put an upper bound on the creation rate for
pions, electrons, and protons in the present ex-
panding universe. " To carry out that program a
higher-order WKB approximation to the time de-
pendence of the scalar field mas developed through
an iterative procedure called successive adiabatic
approximation. '0 Essentially the same extended
%'KB approximation for solutions of equations like
(2.11) has recently been given in explicit form to
all orders by Chakraborty. " This approach forms
the basis of our present discussion.

To talk about the adiabatic limit with mathe-
matical precision, we generalize Eq. (2.11) by
replacing a(r) in the a'(k'/a'+m') term by a(7/T).
In the limit of large T the quantity a(v/T} and its
derivatives will necessarily be slowly varying
functions of 7 [We are assum. ing that a(v) is a
smooth (C") function. ] By changing to the variable
v,=v/T in the parametrized equation [cf. Eq. (3.1)],

one easily sees that an equivalent may of intro-
ducing the large parameter T into Eq. (2.11) is by
associating a factor of T ' with each derivative 8, .
Therefore, in an asymptotic expansion in inverse
powers of T (v; being regarded as independent of
T), each factor of T ' will be associated with a
time derivative. The adiabatic expansion of the
solution of the original equation (2.11}is obtained
by setting T = I in the more general expansion.
The order of each term may be identified after the
yarameter T is suppressed, by recalling that each
derivative 8~ is associated with a factor of T '.
%'e mill often speak of expansion in powers of T ',
and of the adiabatic limit T , without introduc-
ing T explicitly.

The particle number is an adiabatic invariant,
remaining constant in the limit of an infinitely
slow expansion. [Note that passing to the adiabatic
limit is not the same thing as specializing to a
static metric; a(7/T} never becomes a constant
function globally. ] In i'his limit, therefore, par-
ticle number ought to have a definite physical
meaning. More precisely, if two static epochs
are separated by a period of adiabatic expansion,
the density of particles created by the exyansion
(which is well defined) approaches zero faster
than any power of T ' in the limit that T ap-
proaches infinity. " This behavior permits us to
define physically acceptable particle operators
during the expansion, up to any finite order of T

From the parametrized equation in the form

d2 y2
, y, +T'a(r,}',„+m' rP, =O,g~~ ~2

it is clear that the problem of expanding P~ in the
limit of large T is mathematically equivalent to
that of finding an asymptotic expansion in the limit
of large A and m. Such an expansion will remain
valid for k-~ with m fixed. For a given mode 0,
an asymptotic expansion in powers of T ' will be
valid if T~~ is large with respect to unity. " Each
factor of T ' in the terms of such an asymptotic
expansion will be associated with a factor of k '
in the limit of large k. This feature ensures the
convergence of the integrals defining the regular-
ized energy density and yressure, which will be
obtained by subtracting the three leading terms in
the adiabatic expansions of the integrands of po
and Po [see Eqs. (4.16) and (4.20)].

On the other hand, since the mass m is assumed
nonzero, there is a lower bound on the mode en-
ergies (k'/a'+m')'~2. Hence as T-~ the adiabatic
expansions are uniformly valid for all the modes
at once. This fact will also play an important role
in the argument of Sec. IV.

%'e turn now to the actual construction of adia-
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batic approximations to the solutions of Eq.
(2.11).' The general solution can be written to
any given finite order in T ' as a superposition
of positive- and negative-frequency generalized
WKB functions:

t
+ P, exp i W» df', (3.2)

where the real function %~ approaches m~ in the
adiabatic limit and is chosen to make a» and p
constant to the desired order in T '. (The de-
tailed construction of W» is described in Sec. IV.)
The Wronskian condition (2.14) requires that

(8 8)

to that order of approximation. [We have reverted
to the variable f through Eq. (2.13).]

We argue now that, for a sufficiently slow and
smooth expansion, the operators A& in Eq. (2.8)
correspond to physical particles when )I)» is chosen
to be a solution which is approximated to sufficient
order, say T '", by the expression (3.2) with
n»= I and P»=0:

, {=t{ sd' t)t"'etttt(-if W dt )+a(T ''" ')

(8 4)

More precisely, the identification of A& with phys-
ical particles is good to the order 2n of the ap-
proximation used in Eq. (3.4), and it becomes
exact in the adiabatic limit T-~ as well as in the
limit k- with T fixed. It can be shown that for
the closed universe the Hilbert spaces eonstrueted
using the above A& for any values of n» 1 are the
same (i.e., carry unitarily equivalent representa-
tions). If Eq. (8.4) holds at one time to a given
order, it wiQ be satisfied to that order at all times
provided a(I.) is a smooth function.

The reason for imposing Eq. (3.4) can be ex-
plained by considering a smooth expansion pos-
sessing static periods. During any time interval
in which c(v) is constant, the particle interpreta-
tion of the field theory is clear"; Q~ reduces to
»)», and the A& in Eq. (8.2) correspond to physical
particles if P~ is chosen to vanish. During a later
static interval. as a result of the change in u(I ),
the quantity IP» I', which is a mea, sure of the num-
ber of created particles in mode k [see, e.g., Ref.
5(b)], will no longer vanish. However, it will
decrease faster than any power of the adiabatic
parameter T ', so that I p» I

' =0 is a valid asymp-
totic representation of it. Consequently, the A&
corresponding to the choice of g» in Eq. (3.4)

accurately represent physical particles to order
2n in T ' during any static interval (i.e., there is
no particle creation to that order} The minimiza-
tion postulate then suggests strongly that the A&
represent the physical particles also at times
when the metric is changing, up to the order 2m

specified 111 Eq. (3.4). Flllally, tile same 11111st

then be true for a metric without static periods.
Since m is nonzero, these considerations are valid
for all modes in the limit T-~, and they apply in
any case for large k. Supyort for the validity of
these ideas is given by their successful application
to the regularization of the energy-momentum
tensor (Sec. IV).

The time independence of the A& does not con-
tradict the phenomenon of particle creation, since
the creation rate, to the extent that it is well de-
fined, falls off faster than any order of T ', .

whereas the identification of A& with the physical
particles is valid only to finite orders.

As noted earlier, if the arbitrariness in the A&
is restricted by imposing Eq. (8.4) to order T '
or higher, the Fock space generated from ) 0„)by
the A&t (i.e., spanned by eigenstates of the number
operators A&A& with a finite total number of par-
ticles} is uniquely determined" in the case 8 =1.
This Fock space is (the closure of) the space of
physically realizable states. The assumption that
p-p» and P-P» in Eqs. (2.19) and (2.21) are finite
now emerges as a restriction which may be im-
posed consistently at all times on the number of
physical particles present in the high-energy
modes. (The last statement is true also for the
flat and open universes. "}

The minimization postulate evidently implies
that Eq. (3.4) should be imposed on the solution
g» to all orders s, because then the A& yield no
particle creation to any finite order in T . (How-
ever, to carry out the regularization procedure it
is sufficient to require that condition only to order
I' '.) Note that solutions P» exist satisfying Eq.
(3.4) to all orders, even though for any finite T
the sequence of functions 8'~ corresponding to in-
creasing values of n does not generally converge.
One considers that solution p» (I,) of the param-
etrised equation (3.1) which is to reduce to g (T)
when T = I, and demands that its asymytotic ex-
pansion in powers of T ' agree with that of Eq.
(3 4) to each order. (The explicit expression for
W» is given to every order in Ref. 21.) These
considerations refer to all times 7., not just pe-
riods when a(I') is slowly varying [provided only
that a(I'} is a smooth function]. The remaining
arbitrariness in the particular solution Q» (namely,
the part of g» which vanishes faster than any
power of T ') is connected with the creation of
real particles. Complete specification of P» would
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require a physically motivated initial condition,
consistent with Eq. (3.4) and with the particular
circumstances of the problem under study.

IV. IDENTIFICATION OF VACUUM TERMS AND
DEFINITION OF REGULARIZED ENERGY

DENSITY AND PRESSURE

(Ref. 21) by letting

W= ~(1+& )' ' (1+@)' '

where"

f =—(g (gp)
'i' s f(a &) ' s [(as &)'I'])

e, =-(a'u)) '(1+e,) '"

(4.5)

(4.5)

P =(4lf') .' J &v, (ll)P.(&),

with

(4.1)

Po(k) = Isol'a I
+ &a Ital

= (2a' W~) '( ~~' + W,
' +-,' [8,ln(a'W, )] ')

+ O(T '" ') (4.2)

In accordance with the discussion in Sec. III, we
can assume that the particular solution g» which
appears in Eq. (2.8) satisfies Eq. (3.4) with n at
least as large as 2. Making use of Eq. (3.4) to
evaluate the contribution of each mode to p, and

P, in Eqs. (2.17) and (2.20), we find

xs,((a'up) '(1+a, )
' '8, [(1+@,)'i']). (4.7)

We have dropped the subscript k for convenience.
We refer to e, and ~4 as the adiabatic frequency
corrections. Note that e, is of order T ' and that
&4 contains terms of order T ' and higher. The
terms of higher order than T ~ make no contribu-
tion to the divergent integrals. We will write e@,i
for the terms in e'4 of order T 4 precisely. Ex-
plicit expressions for e„e„F„and e@@ are
given in Appendix B.

Let

aZ —3 +
a

and

J'=(4w ) f, dw(a')P'W, , (4.3)

=—(u '(2(o'+ m'),
a (4.3)

with

J,(a) =18,0, I*-(z . + m*) le, l*

where the dot denotes differentiation with respect
to t. Expanding in powers of T ' and retaining
only terms relevant to the divergent integrals, we
have

= (2a Wq) '(-g tuq -pm + Wq

+~ [Soln(a'W~)]')+ O(T " ') .

(4.4)

W ' = &o '(1--', e, --', e~@ +$ e,'),
P

2

ln(a'W) = Z'+ Zh, .
~-dt

(4.9)

(4.10)

We wish to obtain the leading terms in the as-
ymptotic series for p, and P, in powers of T ',
since we want to study the adiabatic limit T-~,
and since the divergences in p and P are concen-
trated in those terms up to order T 4. To calcu-
late these terms we may use the generalized WKB
approximation good to order T ', which is obtained

I

p, (k) = (a'(o) '[(u'+-,' Z'+g Ze, ~6 Z'e,

+-,' (u'e, '+ O(T ')] (4.11)

Substituting into Eqs. (4.2) and (4.4), one finds to
fourth order

Po(k) = (a &o)
' [—,

' (k'/a') + 8 Z'+ 3@2(&u'+ 2 m') +I Z4, —~6Z e, + 3 &@4' (ur'+~2m')=~a, '(&u'+ m ) + O(T )].
(4.12)

s, (pa') +Ps, (a') =0, (4.13)

It is important to note that although a term like
E'2 m' by itself leads to a convergent integral in
P„ it cannot be dropped from consideration here,
because it is of order T and there are terms of
that order which do diverge. The condition of the
vanishing of the covariant four-divergence V„T&",
which in a Robertson-Walker metric reduces to
the equation

is satisfied in the integrands of p, and I'0 for each
order in T ' separately, as well as for each mode.
Terms of a given order should, therefore, be
treated as a whole, so as to obtain after vacuum
subtraction a unique regularized energy-momen-
tum tensor which possesses this fundamental
property, required for consistency of the Einstein
equations.

Hence the contributions to po and Po from the
first three orders of T ' in the adiabatic expan-
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p„,„=(44) 'fdrr(4)(a'ra) '4a'+-,' Z'+-,' Z4, —»Z'4, +-', ada, ') (4.14)

P„; =(44) 'fd'rr()r)(a ) '[ ('IP-',/a')+-'Z*+] a'.(ad+-,'m')+-', Za, - ad Z'a, +]add (ad+-,'m') ,'a, '(ad+ —m')].

(4.15)

Note that z@~ appears only in the pressure term.
As remarked in Sec. III, the dependence of a

term in the expansions (4.11)and (4.12) on k, at
large k, is closely related to its order in T '. Con-
sequently (as one may see by inspection), the inte-
grals in Eqs. (4.14) and (4.15) of the terms of or-
der T, T ', and T ~ diverge at the upper limit as
4, ~', and ln, respectively, . while higher-order
terms lead to convergent integrals. Therefore, if
one considers the adiabatic limit (T-~) of p and P,
the terms of higher order than T ' unambiguously
approach zero. However, the lower-order terms
diverge for each finite value of T. [This behavior
occurs even though the terms of order T ' and
T 4 appearing in the integrands of Eqs. (4.14) and
(4.15) vanish in the adiabatic limit for each value
of a.]

In the adiabatic limit, the regularized expres-
sions for p and P clearly should approach their
static values. The static Robertson-VYalker uni-
verse with flat three-space is simply Minkowski
space, for which p, and~, are given by the
normal-ordered expressions for p and P [i.e., the
second terms in Eqs. (2.19) and (2.21)] . In the
closed and open static universes as weQ, the par-
ticle interpretation appears to be clear. Thus, as
a working hypothesis (see Sec. VI) we assume that
the normal-ordered expressions for p and I' give
the regularized energy density and pressure whenmm

ever a(t) is constant (and i[)» is the positive-fre-
quency solution). For the static metric, therefore,
the entire quantities p~ and P~ are to be attributed
to the vacuum, and subtracted. To approach those
same normal-ordered expressions in the adiabatic
limit, we must subtxact p„.„ from p in the expres-
sion for p, (and similarly for P~ ) before letting
T approacn infinity. (The subtraction is to be
carried out for each mode before integration ).

This identification of vacuum subtractions is
consistent with the viewpoint that the operators
A& specified by the minimization postulate, in the
form of Eq. ($.4), correspond to the physical par-
ticles in the adiabatic limit. The adiabatic cor-
respondence implies more than just that A& an-
nihilates physical particles when s(f }is static.
Through Eq. (2.4) it determines what limiting ex-
pressions will be approached when T (or k} is

p.(» =Is.4» I'+ ~»'I |t» I ', (4.17)

and

p, (n) =2(A~tA~) p,(r)

+ 2Re((A&A z)[(8,$»)z+ au»'Q»']], (4.18)

P (k) =0 (4) ((4) +» Z +» ZC»-~M Z 6z

+() (d 6Z ).
For the regularized pressure we have

(4.19)

P... = (44*) 'f drr(4)[P(4) + P(4) P..„(4)],(4 2())-.
P(4)= la. (a('-(4 . +m') )4. (',

P](k) = 2 (A~t A~) Po(k)

a2
+2Re . A~A~, 80 ~

—
2 +m

(4.21)

(4.22)

allowed to approach infinity, and hence the form
of the terms which must be attributed to the phys-
ical vacuum.

Thus, in the adiabatic limit pd,-„and I'd;, give the
correct vacuum subtractions. These subtractions
apply, in particular, during an interval when s(t)
is slowly varying (or, more precisely, smoothly
approaches a constant). These quantities must
therefore be subtracted at all times, since other-
wise the condition that the regularized tensor have
vanishing four-divergence [Eq. (4.18)] would be
violated at the time when the form of the subtrac-
tion changed. For consistency this conclusion
clearly must hold in general, even when a(t) does
not possess an interval of slow variation. Hence
we assume that pd„. and P&;„are the correct vacuum
subtractions at all times, even when a(t) varies
rapidly (but smoothly). "

We thus find for the regularized energy density

4 , =(4P) 'f drr„(.4)[ .(4)ap, (4) 4 ()r)1 (4 (4-)...
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P„,, (k) = a '&a ' [-,' (k /a ) +() Z' +—', e, ((d' +-,' m') + 8 Zk, —~ko Z'e, +-,' e~O (+' +-', m')--() e,'((4)'+m')]. (4.23)

These expressions apply even when the metric is
strongly time-dependent, at which times p, (k) and

p„„(k}[and similarly P,(k) and P„„,(k)]. .may be
quite different from one another. The quantities
p,, and P,„.„, are the regularized energy density and
pressure which should appear in the Einstein equa-
tions (2.3) and (2.4).

V. COMPARISON WITH THE METHOD
OF ZEL'DOVICH AND STAROBINSKY

In Ref. 3 Zel'dovich and Starobinsky discuss a
conformally coupled scalar field in the general
homogeneous, nonrotating, spatially Qat cosmo-
logical model. They employ a procedure of "n-
wave regularization, "which they introduce as a
modification of the Pauli-Villars regularization
in quantum electrodynamics. " The method we
have developed in this paper gives the same re-
sults as theirs. (It will be applied specifically to
their problem in Ref. 9.} The conceptual basis we
have presented, however, is quite different. Hence
it is worthwhile to point out why the two methods
are mathematically equivalent. "

Consider the gk, of Eq. (3.4) (without setting T = 1.)
as a function of 7,—i.e., as a solution of Eq. (3.1).
Then a, ~~, T'e„and T'a&4& are independent of
T, as can be seen by substituting a(v/T) for a'(t)
in Eqs. (4.6) and (4.7}, performing the differenti-
ations, and then setting r/T =7,. Then for the three
leading terms in ~p~~', for instance, we have from
Eqs. (3.4) and (4.9)

4'o=lim ) gk, ]',

kiko = lim
d( o)W 00

2
1™

d(T ') I gl

(s, y'~(k, m)('=T '[s, y(Tk, Tm)(',

and hence, from Eqs. (4.2) and (4.4),

pl'P (k, m) —=
( 80 Pt~ (k, m) I

' + (4) i P
~ (k, m) I

'

=T 'po(Tk, Tm),

PP(k, m}= T'P, (Tk, Tm).

Now define

T v&8(k, m) =T kT v(Tk, T-m), (5.2)

The analogous statements hold for ~sop~[' and
hence for po(k) and Po(k) as defined by Eqs. (4.2)
and (4.4).

Secondly, we use the equivalence between large
T and large k and m pointed out in Sec. III. Writ-
ing P (k, m) to indicate explicitly the dependence
of ())~ on T and m, one easily sees that

lie ~(k, m)l'=Tl&(Tk, Tm)l

where the factor T comes from the factor ~ ' in
Eq. (5.1). Similarly, we have

~)1)~['=(2a'&a~) '(I 2e, ,'e&+ + (-)e-,'),

where --,'~, is proportional to T ' and the next two
terms are proportional to T o. That is, ~g~~' has
the form 4'o+ T '414, + T '4~+ O(T '), where the
4 's are independent of T. Clearly,

where

T"=(44') 'fdk(k)T "(4 m). (5.3)

Then, combining the considerations of the pre-
ceding two para, graphs, one obtains

(5.4)
d 1 d'

(oz(Ts"(k, m)102;„=0m Q„T~"40(k,m)+, , T~k)o(k, m)+ —4. .. T„)(km) 0o„)",
~00 .

as a formula for the divergent vacuum terms de-
fined in Eqs. (4.14) and (4.15). This equation de-
fines the n-wave procedure of Zel'dovich and
Starobinsky. [Cf. their Eq. (21). They write n
instead of T.] In Ref. 3, Eq. (5.4) was supple-
mented by the condition that g~ reduce to a posi-
tive-frequency solution during some time interval
when the metric is static. That boundary condition
attains the effect of our Eq. (3.4), in the special
case that such a static time interval exists. The

increased generality of our method, which does
not assume a static interval, may be important
in applications.

VI. CONCLUDING REMARK

The main purpose of this paper is to present a
general approach to defining a physically accept-
able energy-momentum tensor, based on the iden-
tification of physical particles in the adiabatic
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limit. The details of the particular regularization
ansatz proposed in Sec. IV should be regarded as
subject to possible refinement on the basis of
further investigation. Such work is in progress
along two related fronts: (1}reinterpretation of
the vacuum subtractions as renormalizations of
coupling constants; (2) application of the method
in special cases where the spacetime curvature
vanishes. Our results to date confirm the reg-
ularization prescription of Sec. IV for the
Robertson-Walker universe with flat three-space.
On the other hand, the preliminary evidence in-
dicates that in the closed and open cases the meth-
od may need to be slightly modified by including
in p,„and P„„.„, even when the metric is static, a
nonvanishing vacuum energy density and pressure
associated with the curvature of three-space.
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the natural eigenfunetions have the form '

[e=l] '9 ( )=II"(y.) Y"(e,p), k=(l, Z, M}

(I =0, 1, . . . ; /=0, 1, . . . , I;
M= -Z -2+1, ... , Z), (AS)

where the Y~ are the usual spherical harmonics
with an appropriate phase.

The metric of the open three-space (by which we
always mean that of negative curvature, e =-1) is

[e=-1]: Qk~ ds~Ch =d)P

+ sinh'X(dS + sin'ed/ ).

The eigenfunctions~ are obtained by replacing X

byiX and 7+1 byiq in the formulas for a=+1.
However, q is now a continuous variable and J
can be arbitrarily large:

APPENDIX A: EIGENFUNCTIONS OF THE
COVARIANT LAPLACIANS

The solutions of Eg. (2.9) for Euclidean three-
space (e = 0) are the plane waves,

[e = 0] 'V (s) = (2w) '"e'" ' "

k=2=(k„k„k,) (- &k, & ). (Al}

For & = 1 (closed, spherical space) two forms
are in common use. If the metric is written (so
as to emphasize the homogeneity of the space) as

[e =1]: Qa„dk'dx' = du)2+ sinaa) de2

+ cos'&u dP', (A2}

then a convenient set of eigenfunetions consists of
functions of the forms'

M=-J, -J'+I, . . . , J). (AV)

if a=0,

[l(l +2)] ~ if e =1,
(q'+ I)'~' if e =-1.

(ASa)

If we let q= /+1 for e = 1 and q = ~% ~
for e =0, Eq.

(ASa) takes the unified form

k=(q'-e)'" (q=1,2, . . . if e =1;
0&q&~ if a=0 or -1). (ASb)

The functions II ' are defined up to normaliza-
tion by certain differential equations with boundary
conditions. Solutions are given in Refs. 33 and 34.

The eigenvalue -k' in Eg. (2.9) is determined by

[e 1]. 'JJa(x) d~/a((u) ei "as~"s k = (f,m, s)

(AS)

An arbitrary function on the three-space can be
expanded in a series of eigenfunctions [cf. Eg.
(2.S)]. We symbolize the summation or integra-
tion thereby involved by a measure p(k):

where d'~' is, up to phase, a representation func-
tion of the group SU(2). On the other hand, when
the isotropy of the space about one point is ex-
hibited by writing

[e =1]:Qa„dx'dx'= d)('

+ sin'g(d8'+ sin'8 dp'),
dq if c =-1.

We shall take the functions to be normalized so
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d xk' ~ x J~e x =5 k, k', (Alo)

where h(x) is the determinant of (h» j and 6(k, k')
is the 6 function with respect to p:

(A 11)

In quantum field theory it is convenient to choose
the phases of the '9& so that

(A12)

[e = I]: -(I,m, n) =(I,-m, -s)

yg(x) ='9 ~(s),
where -% has its usual meaning when e =0, and in
the other cases -k is defined by

Z ID'-'(x) F",(e, 4) I'= (A14)

which follows from Eq. (21) of the second paper of
Bander and Itzykson (Ref. 34} in the limit 8-0.
The form of dp(k) now being established [Eq.
(2.18}], one obtains Eq. (2.19) for e =0 and e =-1
in the way sketched at the end of Sec. II.

APPENDIX B: CALCULATION OF THE ADIABATIC
FREQUENCY CORRECTIONS

In this appendix we evaluate the quantities E'2, E'2,

and e~@ which appear in the formulas (4.19) and

(4.23) for the vacuum energy and pressure.
The definition (4.6} of e, reduces to

e =-4a'M '[8- M 'M'+ 3( /aa)M],

or -(I,Z, M)=(l,Z, -M),

[e=-11: -(Q,J,M)=(aJ, -M}.
(A13)

where

M g6 (k)2 jpg4 + m2 ge

In deriving Eqs. (2.17) and (2.19) and the anal-
ogous formulas for the pressure, one encounters
an integrand which is known to depend only on k,
so that fdic(k) can be replaced by an integration
over k alone [Eq. (2.18)]. Although we omit the
details of these tedious calculations, we must
outline how some tricky questions of normaliza-
tion are handled. (See also Refs. 13 and 15.) When
the volume is finite (e = 1), one can exploit the
symmetry of the quantities by integrating them
over the three-space and dividing by the volume;
Eqs. (2.17) and (2.19}result easily, with the aid
of Eq. (A10). Equation (2.17) for e =0 is easy,
because of the explicit and x-independent value of
l&~(x)l' from Eq. (Al). For e =-1 no such ele-
mentary method is visible, so we use an addition
theorem,

—co —4+ —m +— (B3}

The equations

2

e, = ——
&u 'C, (k, t) — ru-'C, (k, t)

2u) 'S(k, t)-
relate e2 to notation used in Ref. 5.

It follows that

(a4)

M=(4k2a + 6m'a )k, (a2)
~ 0

M= (4k a'+ 6m'a'}a + (12k'a'+ 30m'a~)a',

and the differentiation is with respect to t. Thus
we have

4k' 3 2a= -Q7 —+ —m
8 2 8

6'2=-(d —
2

+-m' -3u '
4 + ——,m', + 3~ ' 3 —,m +-m

and

—,+ —m' -4u '
4 + ——,m'- —m, -3w —4+- —,m'

+ 3m '
4 m'+19 —,m + —m', -9~ ' -3 —4m + ——,m'+ —m' (S6)

where a ' is the nth derivative of a.
According to Eq. (4.7}, e4 is given by

~0

e4 = -g &gP (1+F2) +e~q2&v 8(I +e~) tm -4 (d (1+f2)

The terms in e, of lowest order (T ) are thus
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I 2 qk' a
(d & + CO

4 2 g2 g 2

, a' 3, u«, Sn' 7 a', i, 6&"u, a' 5a', ii
(d —

2 + —Sl + 3(0 ——
~ + ——28' — .Sl + 3' —

4 + ——
2 t84 u' 2 u 3 a' 2 a' 2 a' a' 2 e' e

„ae 3a', a', 3, ~h' „a', u', , h 4-
+ 34gp —

6 + —
4 ps —19—2 sf — ps 3 + 36ctp —

4 sl + 2 tB + 18mg 2 8 6 2 Q

*Research supported in part under National Science
Foundation Grant No. GP-38994.

~For discussion of this semiclassical theory see
L. Parker and S.A. Fulling, Phys. Rev, D 7, 2357
(1973), and the references cited there. We remark that
in that paper we avoided the problem of divergences
by considering only the quantum states for which one
can plausibly argue that the precise form of the vacuum
terms (to be subtracted in regularization) is unimpor-
tant. We believe that application of our present results
to the situation studied in that paper would not affect
the conclusions.

2R, Utiyama and B, 8, DeWitt, J. Math. Phys. 3, 608
(1962); B.S. DeWitt, Phys. Rev. 162, 1239 (1967). See
also)A. D. 8akharov, Dokl. Akad. Nauk SSSR 177,
70 (1967) [Sov. Phys. —Dokl. 12, 1040 (1968)]'
H. Nariai, Prog. Theor. Phys. 46, 433 (1971).

3Va. B.Zel'dovich and A. A. Starobinsky, Zh. Eksp.
Teor. Fiz. 61, 2161 (1971) [Sov. Phys —JETP 34, 1159
(1972)].

4This prescription is equivalent to normal ordering the
expressions with respect to the creation and annihilation
operators of the particles.

5L. Parker, (a) Ph.D. thesis, Harvard University, 1966
(unpublished); (b) Phys. Rev. 183, 1057 (1969).

~(a) A. A. Grib and 8. G. Mamaev, Pad. Fiz. 10, 1276
(1969) [Sov. J. Nucl. Phys. 10, 722 (1970)]; (b) 8. A.
Fulling, Ph.D. dissertation, Princeton University,
1972 {unpublished), Chap. X; (c) B.A. Levitsky, Teor.
Mat. Fiz. 8, 226 (1971) [Theor. Math. Phys. 8, 791
(1972)].

This happens because the vacuum states so defined at
different dmes belong to different Hilbert spaces (in-
equivalent representations of the canonical Geld
algebra).

See Ref. 5. For the ease of spin one-half, see
L. Parker, Phys. Rev. D 3, 346 (1971).

98. A. Fulling, L. Parker, and B. L. Hu, paper in
preparation.

~oS. A. Fulling and L. Parker, paper in preparation.
B. L. Hu, Phys. Rev. D 8, 1048 (1973); B. L„Hu, 8. A.
Fulling, and L. Parker, ibid. 8, 2377 (1973).

~2The time-independent line element
Qh&s(x', x,x )dx Jdx refers to a three-dimensional
manifold of constant curvature, appropriately nor-
malized. See Appendix A,

~38patial symmetry of the quantum state ensures that
(T& ) and (T&&) will be independent of x, (T&~) = P-
will be independent of j, and (T&") will equal 0 for
p. & v, as required for consistency in the Einstein equa-
tions for a Robertson-Walker metric. {InRef. 1 we
have explained, in the context of the closed universe,

that a state which is only roughly symmetrical on a
global scale may be replaced by the symmetrical mixed
state obtained by averaging it over all "orientations"
in three-space. ) Since (To ) and (T&~) are independent
of x, they are equal to their average values over the
three-space. In evaluating po and Po [Eqs. (2.17) and
(2.20)] for the cases a=+1, such an averaging is used
to justify an integration by parts which allows one to
evaluate the terms involving space derivatives without
explicit knowledge of the first-order partial derivatives
of the $&'s. Averaging is also essential in arriving at
Eqs. (2.19) and (2.21) in aQ three cases. When the
volume of the universe is infinite (e = 0 or e =- 1),
such averages should be defined by an appropriate
limiting process, " we have justified our statements
for e = 0 in that way, and are conMent of the results
for e =-1, obtained less rigorously, because of their
very close analogy to the r esults for the other two
cases. The factor (4m ) arises in po and Po for that
ease directly from the addition theorem (A14), without
averaging.

~4"State" must be understood here in the algebraic sense
of a normalized positive linear functional (the expecta-
tion value) on an algebra of bounded local observables
associated with the fields p(x, t) ox with the A& and
A~&. See xeferences cited in footnote 30 of Ref. 1. The
expectation value of AzAz need not be defined, since
A&A& is unbounded, global, and of a distribution nature.
SIn the case of the flat universe (~ =0) these quantities
may be defined by the following limiting procedure:
Replace the infinite three-space by a cube of coordinate
length I, and write the conventional field expansion
into discrete modes:

P =g [a (t (t)L a "'" + H. ], c
71

where k = 2'�/2, the components of n being integers.
In the limit I —~, I +P goes over into (2x) 3fdtk.
Formally, AP =limL „[(2m') 3~2L ++ ngq. One easily sees
that for a homogeneous state (4') the density of particles
in k and x space is

(2x) t(At A~)-=(2x) Slim (4'(a~ a„)4').

The quantity Q& A p) is then defined by analogous
relatl. ons.

6We use this term because the subtractions are associ-
ated with the unobservable energy density and pressure
of empty space, although subtraction of the expectation
value with respect to a particular state vector is not
necessarily implied.
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~~Any function satisfying Eqs. (2.11) and {2.14) can be
written in the form

with W(t)=It)(t)( /(2s ) [P.C. Waterman, Am. J.
Phys. ~41 373 (1973)]. However, such a choice of TV(t)
in general violates the physical x equirement that 8"(t)
reduce to co =(k /a2+ ypg2)' during any pexiod when the
expansion parameter a (t) becomes constant.

Furtherm-

oree, rapid oscillations in the above-mentioned +t)
on the scale of the de Broglie frequency will generally
occur, indicating that g should be considered a super-
position of positive- and negative-frequency solutions.
The %" (t) provided by the extended %KB approximation
[see Eqs. (3.4) and (4.5)], in contrast, reduces to u
during any static period, and varies only on the same
time scale as u(t).

~SIn the present paper, unlike Ref. 5, we do not deal
explicitly with time-dependent particle number oper-
ators. Instead, we concentrate all the time dependence
in the function g~ and use Eq. (3.4) as the effective
embodiment of the minimization postulate to order n
in T, since it implies that thexe will be no particle
creation to that order. The two approaches are equiv-
alent.
The results were reported in L. Parker, Phys. Rev.
Lett. 21, 562 (1968).

20Ref. 5(a), Chap. 5.and Appendix CI. More precisely,
that procedure was used to define time-dependent
creation and annihilation operators w'hich yielded no
particle creation to a given order in the slowness
parameter of the expansion, thus satisfying the mini-
mization postulate to that order.

"B.Chakraborty, J. Math. Phys. 14, 188 (1973).
Ref. 5 (a), pp. 41-50. The conclusion is based on a
theorem of J. Littlewood [Ann. Phys. (N. Y.) 21, 233
{1963)]. In accordance with the discussion below, the
number of particles created in mode k also falls off
fastex than any power of k.
From a physical point of view, one may say that a(t) is
slowly varying with respect to a mode k if u~ ~, the
reciprocal of the de Broglie frequency, is small com-
pared to a time, such as (ci/a) (x T, which is charac-
teristic of the variation of a{t).

24Cf. Refs. 5 and 21. A thorough and rigorous treatment
of asymptotic expansions for equations of the form
(3.1) has been given by F. W. J. Qlver [Proc. Camb.
Philos. Soc. 57, 790 (1961)]. Giver's expansions can
be obtained from ours by expanding the two 8'z-de-
pendent factors in Eq. (3.4) in powers of T ~. The
approach of Refs. 5{a) and 21 is much superior for our
present purposes because it leads to the identification
of the effective frequency W~, with respect to which
the concept of a "positive-frequency solution" g& [see
Eq. (3.4)] corxesponds to physical particle operatoxs

Aq.
It was shown by S. A. Fulling [Phys. Rev. D 7, 2850
(1973)] that the particle interpretation can be ambiguous
in a space-time which is static with respect to two
different coordinate systems, but it was also pointed
out that the discrepancy in such cases is probably due
to a tacit boundary condition imposed on the edge of a
coordinate patch. There can be little doubt that the

interpretation assumed here is correct under the
present circumstances.

28Any two sets of operators A& consistent with Eq. (3.4)
to a given order will be related by a Bogolubov trans-
formation. In the case of the closed universe the
technical condition required for coincidence of the
corresponding Fock spaces (i.e. , unitax'y equivalence
of the field representations) is that fdic()t)[uz [t & ~,
where v& is a coefficient in the Bogolubov transforma-
tion [see, e.g. , Ref. 6(b)]. This condition, which
ensures that the total number of particles in a given
state is finite with respect to both definitions of the
number operators, will be satisfied if the order of the
approximation {3.4) is T 2 or higher. In the cases
~ =0 and & =-1 the representations will be only locally
equivalent; an inequality analogous to that above [and
satisfied when Eq. (3.4) holds to second order] ensures
that the density of particles in x space remains finite
under the Bogolubov transformation.

2'The complications arising when «1 are due entix'ely
to the infinite volume of the three-apace. As remarked
in Sec. II, in order to obtain states of the proper sym-
metry for Eqs. (2.3) and (2.4) in those cases, one must
consider states whose total energy and particle number
are infinite, but whose energy density and pressure
are finite (and homogeneous). Thus, some states out-
side any given Fock space must be considered physical-
ly realizable in the context of our application. However,
as outlined in Ref. 26, there is still a restriction on
the density of particles in k space at large k; it leads
to finite total number density, and also, when Eq. (3.4)
is imposed to order T 4, to finite p -po and I' -Po.

2 (a) The explicit form of the extended WKB approximation
correct to order T 3 was given in Ref. 5(a). In the
notation of that reference, ~2 =-2~ ~S. (b) The argu-
ments that follow will be concexned with the adiabatic
limit T-, or the high-energy limit k-~. In either
case ~ct( and )e4j will be small with respect to unity,
so that no problems arise with respect to the definition
of the square roots in Eq. (4.5). Since W& does not
appear in the final results [Eqs. (4.16) —(4.23)], it is
not necessary to define it for small T.

290ur argument involving the adiabatic limit does not
exclude the possibility that terms in po and P p of
higher order in T 2 should be included in the vacuum
subtractions. However, the condition of vanishing four-
divergence does require that the number of such terms
subtx'acted be the same at all times (i.e. , they cannot
be switched on or off.) We have assumed that only the
minimum number of terms needed to yield the correct
adiabatic limit should be subtracted. This procedure
is the one which leads to the same result as Ref. 3.
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