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The current-algebra properties of gauge field theories are investigated. First, we consider
a unified gauge field model of strong, weak, and electromagnetic interactions, which is a
natural extension of the cr model combined with the Weinberg-Salam model. The violation of
CP invariance is forbidden, and isospin is only broken by electromagnetic interactions. The
pion is possibly a pseudo-Goldstone boson, which picks up its mass from weak and electro-
magnetic interactions. In the physical gauge the weak axial-vector currents are not of the
canonical form, thus invalidating the current-algebra hypothesis. However, further analysis
based on generalized Ward-Takahashi identities shows that the divergence equations are not
affected. Furthermore, we discuss in which case the partially conserved axial-vector current
approximation can be justified.

I. INTRODUCTION

The current-algebra hypothesis has been one of
the most fruitful ideas in the theory of weak and
electromagnetic interactions. ' According to this

hypothesis, the weak and electromagnetic currents
can be expressed in terms of currents that are
directly related to the internal symmetry of the
hadronic system. The latter are the so-called can-
onical, or Noether, currents, which can be gen-
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crated directly from the internal-symmetry trans-
formations. The second part of the hypothesis
states that the charges of these canonical currents
generate a closed algebra under equal-time com-
mutation relations in all orders of the strong inter-
actions. In addition to this hypothesis one often
assumes certain properties for the current diver-
gences, such as conserved vector currents (CVC)
and partially conserved axial-vector currents
(PCAC), which, again, are supposed to hold in all
orders of the strong interactions.

In the context of Lagrangian field theory the
second part of the hypothesis has been studied
in simple models. ' Perturbative calculations
in most cases confirmed the validity of the
various assumptions for canonical currents, al-
though there were sometimes difficulties, for
example, the so-called PCAC anomalies. ' But in
this approach one is still left with the really sur-
prising fact that weak and electromagnetic cur-
rents seem to be directly related to the canonical
currents. Possibly, a natural explanation for this
phenomenon can be found in gauge field theories,
because gauge fields are coupled to currents that
are associated with the gauge symmetry. Hence,
this would suggest that in a gauge field theory of
weak and electromagnetic interactions the current-
algebra hypothesis is actually no longer an assump-
tion, but it is an intrinsic part of the theory.

In this paper we will analyze the current-algebra
properties of gauge field theories. To get some
idea of the possible difficulties that one can en-
counter, we first investigate a unified gauge field
model for strong, weak, and electromagnetic in-
teractions. Models of this type' were recently pro-
posed by de Vht' and Bars, Halpern, and Yoshi-
mura. ' one of them allowed the suppression of the
neutral strangeness-changing currents without en-
larging the number of fermion fields. ' In another
model' a mechanism was discovered that could
explain the origin of the Cabibbo angle. Moreover,
the recent result that gauge field theories can be
asymptotically free is an additional argument for
the investigation of completely unified models. '

The particular model that we will consider is the
most direct extension of the o model to a gauge
field model for strong interactions, ' combined with
the Weinberg-Salam model of weak and electro-
magnetic interactions. ' The strongly interacting
particles of the model are two triplets of vector
and axial-vector mesons, presumably the p and
A, mesons, a triplet of pions, the nucleon doublet,
and two scalar mesons and one pseudoscalar me-
son. The weak and electromagnetic interactions
are mediated by massive vector bosons and by a
massless photon. Apart from leptons, there is
one additional scalar particle, as in the Weinberg-

Salam model, which interacts only weakly. Al-
though in this paper we introduce the model only
as a guide in discussing the current-algebra prop-
erties of gauge field models, it certainly has its
own merits. For instance, the isospin breaking
comes purely from electromagnetic interactions,
which means that the mass differences within iso-
spin multiplets are calculable. It can also be
shown that the gauge symmetry implies CP invari-
ance. Moreover, under certain circumstances
the pion is a pseudo-Goldstone boson, which re-
ceives its mass from weak and electromagnetic
closed-loop corrections, a possibility that has
been put forward by Weinberg. '

When the above-mentioned model is considered
in the physical (unitary) gauge, it turns out that
the current-algebra hypothesis is not fulfilled in
lowest-order (tree) approximation. The deviations
concern only the axial-vector currents, which have
no resemblance to any canonical current. In fact,
there does not even exist an infinitesimal trans-
formation from which they could be constructed in
the usual manner. This may be seen as an indica-
tion that certain gauge field models do not confirm
the validity of the current-algebra approach.
Nevertheless, it is not excluded that many results
derived by current-algebra methods remain unaf-
fected.

Subsequently, we analyze the generalized Ward-
Takahashi identities, which generally follow from
gauge invariance and hold in all orders of pertur-
bation theory. From these identities we derive
the so-called divergence equations, which depend
only on the gauge symmetry that has originally
been chosen for the weak and electromagnetic in-
teractions, which was SU(2)gU(l) in our case. A
characteristic feature of these equations is that
all the strongly interacting particles are on the
mass shell. We find that, as soon as strongly in-
teracting particles are off the mass shell, the re-
sults will in general depend on the specific struc-
ture of the strong interactions.

An important observation is that these divergence
equations have a similar structure as those equa'-
tions that can be derived from the current-algebra
hypothesis. In fact, the latter were sufficient for
the derivation of the main current-algebra results
for the vector currents. ' For the axial-vector
currents one additionally needed the notion of
PCAC in order to find results that are experimen-
tally testab1e. We show that in our unified gauge
field model the result of the PCAC assumption is
confirmed up to orders of some parameter Q, for
terms that enter in the divergence equations, pro-
vide that we keep only terms of first order in 5 in
the so-called 0 term. It turns out that the same
parameter b causes the chiral-symmetry breaking
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and a nonvanishing pion mass. This implies that
all current-algebra results that could be derived
from divergence equations and PCAC, such as the
GoMber ger- Treiman relation, the Adler-Weis-
berger relation, and the Adler consistency rela-
tion, "are ensured to be valid in an appropriate
(chiral) limit. Let us stress that, although we have
analyzed the PCAC assumption only in the context
of our unified model, our arguments apply for a
larger class of gauge field models. The divergence
equations, as already mentioned, are completely
independent of the specific structure of the strong
interactions.

Finally, me mill make a fem remarks about a
possible pseudo-Goldstone nature of the pion.

This paper is organized as folloms: Section II
introduces the unified gauge field model of strong,
weak, and electromagnetic interactions, and re-
views its general properties. In Sec. III we con-
sider the model in the tree approximation. We
evaluate some quantities of interest, and deter-
mine the axial-vector currents, mhich turn out to
have no relation to the canonical currents. Section
IV contains an analysis of the generalized Ward-
Takahashi identities. From these identities we
generally derive the divergence equations in See.
V. Section VI gives an analysis of PCAC. In the
Appendix we give the propagators needed for our
considerations.

II. A UNIFIED MODEL OF STRONG, VfEAK, AND

ELECTROMAGNETIC INTERACTIONS

In this section we will introduce a natural exten-
sion of the c model' to a gauge field model of
strong interactions, combined mith the Weinberg-
Salam model of weak and electromagnetic inter-
actions. ' The underlying gauge group of the strong
interactions is the chiral SU(2)SSU(2) group, and
we denote the chiral gauge fields belonging to this
group by 4"& and I'& (a=1, 2, 3). In principle, ~&
and F& could mell correspond to the sum and the
difference, respectively, of the p and A, vector-
meson fieMs. Under the ehiral gauge group X'„
and V'„ transform according to

X&{x) U(x)X&(x) U (x) + fg 'U(x)e „U'(x),
(1)

I'„(x)—V(x) V„(x)V'(x) + fg„-'V(x)S „V'(x),

where me have used the notation X„=——,'X'„7, , Y„
=—

~ F& v, . The corresponding coupling constants
are g» and g„, and U(x) and V(x) are local SU(2)
matrices. In order to acquire massive gauge fields
without disturbing the gauge invariance, me will
make use of the Higgs-Kibble mechanism. " This
implies that, in addition to the pion and o fields of
the o model, me need additional spinless fields.
%'hen some of these fields acquire nonzero vacuum

expectation values, the gauge fields mill become
massive without affecting the gauge invariance,
and thus preserving the renormaiizability. "

Let us write the original fieMs of the o model as
a 2x2 matrix:

1
Kz =~ (az+iyzr. ),

where oz and pz correspond to the o particle and
the pions, respectively. We add tmo complex
doublet fields, which are denoted by Kx and K„.
As is well known, Ez transforms under the chiral
gauge group as

1~,(x) —U(x)Z, (x)V'(x),

and the new fields, K» and Zr (in the same 2x2
notation) will transform according to

X (x) - U(x)Z (x),
ff „(x)-V(x)Z, (x) .

A nucleon doublet field can also be added, which
transforms under the chiral group as

X(x) --,'(1+~,) U(x)X(x) + —,'(1 —y, )V{x)X(x) .
(2c)

We can now write down the most general gauge-
invariant Lagrangian, impose invariance under

parity, and find a completely renormalizable mod-
el for hadrons. Such a model mas introduced by
Bardakci. " However, we will first consider the
extension of this hadron model with weak and elec-
tromagnetic interactions, and combine it with the
Weinberg-Salam model. ' The underlying gauge
group for the weak and electromagnetic interactions
in that model is SU(2)SU(1). The gauge fields be-
longing to this group are denoted by Z'„and Z„,
and they transform in the folloming way:

Z„(x)-S(x)Z„(x)S (x) + fg, -'S(x)e„St(x),

Z'„(x)-Z'„{x)+q 's„A'(x),

where g~ and q are the coupling constants, Z„
=—2Z'„r, , and S(x) is a local SU(2) matrix. The
spinless doublet field of the Weinberg-Salam mod-
el is again written as a 2~2 matrix, denoted by

Its transformation properties are given by

X,(x)-S(x)Z,(x)7'(x), (4)

where T(x) =exp[ ,'fA'(x)7, j-.
As is mell known the vacuum expectation value

of K~, which is supposed to be very large, gives
rise to three very massive vector bosons and one
massless photon mediating the weak and electro-
magnetic interactions. The assignment of the lep-
tons into representations of the weak and electro-
magnetic gauge group is completely the same as
in the Weinberg-Salam model.



3402 B. DE WIT

In order to have weak and electromagnetic inter-
actions with the previously constructed hadron
model, the hadronic fields must in addition trans-
from under the weak and electromagnetic gauge
group. Because these gauge transformations must
commute with the previously defined transforma-
tions of the gauge group that governs the strong
interactions, there are only a few possibilities.
The only one which makes sense is

K,(x) -K (x)S'(x),

K,(x) -K,(x)T'(x),

N(x) -exp[-,'iA'(x}] N(x) .
(6)

Once all the transformation properties are de-
termined, the construction of the model is rather
straightforward. The covariant antisymmetric
tensors of the gauge fields are defined as

Gp v ~ pZv evZp&

G~ „=8~X„—8 „Xp —igz[X~, X„],

2 =2, +Z~M+Z~+2, +g„. (6a)

The first part, P~, contains only the strongly in-
teracting fields, together with their interactions
with the weak and electromagnetic gauge fields:

and similarly for Gp~, and Gz, . The covariant de-
rivatives of the remaining fields are given by

Dp x = ~ pKx igx&pKx+igz xZp

DpK~-8 pK~-ig„YpK„+ 2iq'Zp Ey73,

DpK~ =&pK~ —ig X„K~+ig K~Y„,

DpKz = 8 pKz igzZ Kz + 2 iqZ'K 7

D&N=B&N- zigzX&(l+ys)N

,'igr—Y„(1—y, )N- ,'iqZ„—N

We divide the most general Lagrangian, invari-
ant under the chiral SU(2)@SU(2) gauge group of
the strong interactions and under the SU(2) SU(1)
gauge group of the weak and electromagnetic inter-
actions, into five parts:

—Ny„D„N G„N(oz —-2igzy)N+ g,(IKz I'+ IK, I') + p, IKz I'+ p, ( IKz I'+ IK„I')
+ ~.IKz I'IK, I'+ ~. IKz I'+ I .IKz I'(IKzl'+ IK, I') (6b)

We used the definitions gz = ,'PzT„ IK—zl =oz
+ (yz)' = Tr{Kz~Kz}, etc. The fields that have only
weak and electromagnetic interactions are con-
tained in &wEM:

Zvz„=- —'G'„,G&, ——,
' Tr(G„,G&„+DuKzD„Kz}

+p, IKzl'+czlKzl'+leptons . (6c)

The last three terms contain the remaining inter-
actions among the spinless fields:

Z, = IKzl'[~, (IK I'+ IK, I')+~, IKzl'],
i', ~

= b Tr(KzKzKzKr exp(ip'7, )},
(6d)

g „=(IK I'- IK„I')[6,+6,( IK I'+ IK I')

+ 6, IK, I'+ 6, IKz I'].
Let us now discuss some important features of the

the Lagrangian (6). First, the spinless fields are
expected to acquire nonzero vacuum expectation
values in order to have massive gauge fields. As
noticed before, the vacuum expectation value of
Kz, (Kz), must be very large, such that the inter-
mediate vector bosons of the weak interactions
are very massive. In fact, (Kz)0 must be of the
order of Gz '~', where G„ is the Fermi coupling
constant. This also necessarily implies that cer-
tain couplings with the fields Kz must be small,
such that the large value of (Kz)0 will not induce

too strong effects. Hence, A,, and A are of order
G~, whereas n must be of order G '/2 ""

The nonzero vacuum expectation values will
make the gauge fields massive. " However, in
order to have still one massless gauge field, which
will be identified as the photon field, one local
U(1) subgroup of the total SU(2)NISU(2) SSU(2)U(1)
gauge group of the strong, weak, and electromag-
netic interactions must remain unaffected by the
presence of these nonzero vacuum expectation val-
ues. In that case, one can show that after a suit-
able redefinition of the syinless fields, only
ox ~ ~ z will acquire nonzero vacuum expectation
values. The electromagnetic local gauge trans-
formations are then defined by

U(x) = V(x) = S(x) = T(x) = exp[-,'iAz" ( }v, ] . (7}

In the case that all vacuum expectation values
were zero, the parameter p' contained in 2,
could be absorbed into the field Kz by redefining
Kz Kzexp(ip'r, ). One must realize, however,
that once the vacuum expectation value of Kz is
chosen such that pz is the only component with a
nonzero vacuum expectation value, p' can no
longer be absorbed into the definition of the fields.
In fact, p' is now determined by the tadpole con-
ditions, the equations that determine the magni-
tudes of the various vacuum expectation values. "



CURRENTS AND LOCAL GAUGE S VM ME T RI Z S 3403

However, the term proportional to sinp' is the
only one in the Lagrangian (6) that breaks CP in-
variance. Under CP the fields transform in the
foQoming way:

X„(x,x,)-X„*(-x,x,),
and similarly for 1'& and Z„,

Z'„(x, x,)- (1—25„,)Z'(-x, x,),
K»(x, x,) -K»(-x, x,),

and slmllarly fox' Kyy Kpy and Eg.

This implies that, unless a peculiar cancellation
between different orders of perturbation theory
takes place, sinp' must be equal to zero, and the
system is not allowed to have CP violation. Hence,
we may choose p'=0.

Subsequently, we consider the behaviox' of the
total Lagrangian (6) under the parity transforma-
tion. This transformation is defined by

X„(x,x,) ——(1-25„,) r„( x, x,),-
Z„(x,x,)--(1-25„,)Z„(-x,x,),
Z'„(x, x,)--(1—25„,)Z'„(-x, x,),
K»(x, x,) -K„(-x,x,),
K, »(x, x,}-K,' »(-x, x,).

ft turns out that parity is broken by interactions
with the massive weak gauge fields [the interac-
tion with the photon is obviously parity-conserving,
as follows from the structure of the electromag-
netic gauge group (f)]. Furthermore, parity is
broken by terms proportional to g» —g~ and by the-
terms contained in gp, . Therefore, me must take
g»-g„and the coupling constants 5,. of g„ to be
at least of order C~."

Finally, let us analyze the stx'ucture of the pux'e-

ly hadronie Lagrangian. That is, g~+S~+2„
where we disregard all terms of order g~, q, and

g»- g„and replace the field K~ by its vacuum ex-
pectation value (K»}0, which as argued before, is
proportional to the identity matrix. Consider nom

the effect of the following global transformations:

K»- UK»S~, Xq- UX~ U,
K~ VK~T, Fp VFp V,
K, —UK, V', ~--.'(1+y, ) mr+ -.'(1-y, )nr,

when U, V, S, and T are independent global SU(2)
transformations, The only term that violates in-
variance under these transformations is Z,. Sup-
pose that 5 = 0, and that we choose a gauge mhich
does not disturb this invariance. Then in the pres-
ence of nonzero vacuum expectation values of the
fields o», o~, and ez, the Goldstone theorem"
ensures that all the fields g», g~, and g~ are

massless. As the physical pion field must be a
linear combination of these fields, the pion mass,
a gauge-independent Quantity, must be zero.
Hence me have proved that the pion mass is of or-
der b(o»)0 in all orders of the strong interactions

Consider nom those transformations with 8= U

and 7= V. These transformations are the usual
global chiral SU(2)SSU(2) transformations. And
the chiral-symmetry breaking is again g„and
thus of order b(o»)„just as the pion mass.

Finally, the tx ansfor mations U= V = 7 = S are
identified as the isospin SU(2) group. Extending
these transformations for the total Lagrangian (6),
we find that the only isospin violation comes from
the eleetromagnetie interactions. This implies
that all mass differences within isospin multiplets
are calculable in this model.

In conclusion, we have introduced a unified
gauge field model of strong, weak, and electro-
magnetic interactions, which, due to the gauge in-
variance, is renormalizable. It has strongly inter-
acting vector and axial-vector mesons, and two
scalar and one pseudoscalar isosinglets. The re-
maining spinless isotriplet fields are unphysical. "
The pseudoscalar particle (1/W)(o»-o„) cannot
correspond to the q meson because of its behavior
under CP. Finally, me mention the presence of
triangle anomalies in this model coming from the
electromagnetic interactions. ' Although there are
several ways to get rid of them, they wi11 be
ignored in this paper.

III. SOME RESULTS IN LOWEST-ORDER APPROXIMATION

As argued before, only the fields o» ~ z ~ mill
acquire nonzero vacuum expectation values, which
me wi11 denote by E», E~, Ez, and F~, respec-
tively. Neglecting parity violation, mhich was sup-
posed to be of order G~, me have E»=E„=Eand

g» =g~=g. In this section we mill consider the ef-
fects of the nonzero vacuum expectation values in
the tree approximation.

The fix st result will be that certain linear com-
binations of gauge fields become massive. To ac-
count for the main effects of mixing between the
gauge fields, it is convenient to make the foQowing
substitutions:

X~ = (Uq+ Vq)+ ——

Aquas+

—~IVY(1+ e),
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We have used the following definitions:

e=g g»&(g &+g g»+2g»& }

gw= ggw[g'+2(1+&')g»'] ' ',

1
Po ~(4x PY)~

tv=a(1 e) (tzP» tzPr+2gz)~

kw=2(1 —E)(tzkx —t»PY tztzkz) Pz ~

(10b)

2(2 ' t 2) 1
(Sb)

t~ =FFz and tz=FFz

~ X/2

(4» PY zkz 44»)2
(10a)

The remaining linear combinations correspond to
unphysical states:

With these substitutions the gauge field propagators
are diagonal at zero momentum. " The parameters
e and g~ are the electromagnetic and weak coupling
constants, respectively. The latter is related to
the Fermi coupling constant by G~ = 8 Wg~'M~ '.
Notice that the quantity t» is of order G„' '.

The calculation of the masses is now straight-
forward in this approximation. The field A„, cor-
responding to the photon, remains massless. The
remaining masses are given (in lowest order in
G„) by

M~ = —,'gF,

Mv =c Mv,

1M„,= ~g„,Fz ~

Another effect of the nonzero vacuum expectation
values concerns the physical states. This is ob-
vious for the gauge fields, as the massive vector
particles acquire one additional polarization. For
the four spinless isotriplet fields, it implies that
only one linear combination of them will corre-
spond to physical states. " This is the pion field,
which has the following form (in lowest order in

Gr}:

where we used again the notation q»= —,'y»v, , etc .
In order to calculate the masses of these spinless
fields, we must first determine the so-called tad-
pole conditions. In the tree approximation, these
conditions are simply found by requiring that,
after the substitutions,

&xr &x, r+ F,
Qp «Qg+F py

0'z-oz+ E, ,

the coefficients of the terms linear in the fields
vanish. This yields three equations for E, F~,
and Ez, and making use of them, we can calculate
the masses of the spinless mesons. It turns out
that the fields go v w are massless, as they should
be according to the Goldstone theorem. " The
pion, however, picks up a mass, which is given
by (in lowest order in G»)

m„'=bF»Fz(1 —e) '.

As was generally argued in the previous section,
this is indeed of order bFz.

Let us now consider the purely hadronic part of
the total Lagrangian (6), and subsequently analyze
the first-order weak and electromagnetic inter-
actions with the hadrons. It is obvious that this
can be done the most appropriately in the physical
gauge, as in this gauge all fields will correspond
to physical particles. In the tree approximation
this simply implies that all terms containing go,
g, or g„can be disregarded. If we do so, and
moreover use the substitutions (8) and (11), we
find the following result for the purely hadronic
part of the Lagrangian (in lowest order in G~):

g = Tr( ,'U„„U„„-+Mo'-U„'+ —,'V„,V„,+Mv'V„'+(s„w)'+m„'w')

—-'[(ego~}2+m ~2o~2+(ego'z)2+m z2oz2+(aqua)2+mw2q2]

—N(y„s„™„)N—,gMoWTr(o- ,U„'+(o, +2&tz 'oz)V„'+2gU„V„+2i(1 —a}' 'w[U„, V&])

+ —,'~g Tr((1 —e)' 'qs„wU„+(1 —e)' '(o, —vYtzoz) 8„wV„—i(1+a)8&w[w, U~])

—2 gmTr(4[o, '+@+4(1+a)w ](U~~+V„}+oz V„'+o~rjUV„+i[2(1 e)]' tzozw[U-&)V„]-2ew(U„wU& V„wV&'))-

+ zig WN(y& U~+y~y, V&)N-G»N(oz+i[2(1- e)] tzwy~)N+2'(w, o~, oz, '9) . (12)

8' gives the interactions of the spinless fields among themselves. We have used the following definitions:
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U»»=ay U„—B» Up —~ ig[U~& U»] — ig[Vp& V„],
1 ~ 1

V„„=a„V„—B„V„— ig[U„, V„]
1

teraction can be completely accounted for (apart
from a less relevant term g 'B„U„„,the deriva-
tive of an antisymmetric tensor) by simply re-
placing the derivatives by "minimal" derivatives:

7T
a ~M g a b 1 b c

1
o& ~ (ox or)

1
'g —~ (ox —or)

When we now consider the coupling of the hadrons
to the weak and electromagnetic gauge fields, W„
and A„, it turns out that the vector part of this in-

and similarly for U'„and V'„,
B„N-a~"N =a„N ,ie-A—„(l+T,)N- 2igwW„N.

This clearly shows that the weak and electromag-
netic vector currents are indeed related to isospin
transformations in a way that is prescribed by the
CVC hypothesis. The remaining interactions with
the weak gauge fields W„will define the weak
axial-vector currents:

tg, cTr(W„[V„,U„,]+W„[U„V„.]+2vYg W„B„V„„)
--,'gw(I-e)' 'Tr(W~[(1 E)o&+e-tzVYoz]a„w+2iMo(1+ e)W„[w, U~]+ 2i Wg[W~, w](o'zU&+ &~tzozU~+7iV~)]

+gwMo Tr((1 —e)W„Upq+Wp V„[(1—e)o, —2&etz 'oz] )
--,' Wgwg Tr(2(e —1)W„U„qo,+ W„V„[(e—1)(o,'+ q') + 4eoz'+4m(1+ e) w] 4(1 —-e- 2~')W„w V„w)

1 ~+ &i eg& Ny&y5W&N .

These axial-vector currents are certainly not of
the canonical form. Their scale is not fixed, and,
moreover, there exists no infinitesimal transfor-
mation of the fields that can generate these cur-
rents from the hadronic Lagrangian (12).

We conclude that this raises some doubt about
the validity of the current-algebra hypothesis in
this type of gauge field models. In the next sec-
tion we will investigate the possible validity of the
current-algebra approach in more detail. This
will be done by analyzing the constraints of gauge
invariance as given by generalized Ward- Taka-
hashi identities. Finally, we will argue that, al-
though the current-algebra hypothesis in its origi-
nal formulation may or may not be true, the di-
vergence equations, which can be derived from it,
are not invalidated.

IV. GENERALIZED WARD-TAKAHASHI IDENTITIES

The constraints that follow from gauge invari-
ance can be expressed in generalized Ward- Taka-
hashi identities. These identities are valid in
every order of perturbation theory, and depend
explicitly on the gauge in which the calculations
are carried through. Let us first briefly summa-
rize in a general way how to proceed in higher
orders of perturbation theory, and then give the
generalized Ward- Takahashi identities. "' "

In a gauge field theory higher-order calculations
must be performed in a certain gauge. Qne way

of fixing a gauge is by choosing functions of the
fields, C, (x), where the index a labels the genera-
tors of the gauge group, and replacing the original
gauge-invariant Lagrangian g~, by

Zm„—~Q C,

A, (x) -A, (x)+ t
&
A'(x) +gs'„.Ai(x)A'(x) . (14)

The functions C, are chosen in such a way that
this replacement removes completely the original
gauge freedom. We will suppose that the C, are
linear combinations of the various fields.

The next step is to add a Faddeev-Popov La-
grangian to (13), which is defined as

BC.(x)'"'=~*"BA(x) ~ '"'.
where BC,/BA' represents the change of C, under
an infinitesimal gauge transformation, described
by parameters A'. The fields (t), are unphysical
and occur only in closed loops. These so-called
Faddeev-Popov ghost fields obey Fermi statistics,
which implies that every closed ghost loop has an
additional minus sign.

The starting point for our further discussion is
the generalized Ward- Takahashi identity, as it
was formulated by 't Hooft and Veltman. " Sup-
pose the fields A,. of the original Lagrangian ex-
hibit the following behavior under infinitesimal
gauge trans formations:
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U(x) -1+ 'ig(A' +A„'—)7, ,
'

V(x) -1+2ig(A'„- A») 7, . '
(15b)

We will partly take into account the mixing of the
photon field with the neutral weak gauge fieM by
substituting

(16a)

The parameters e Rnd g~ Rre defined by

e=QZw4 +XI )

In our case, t',. is always a constant or a deriva-
tive, and it is of zeroth order in g, the coupling
constant belonging to the gauge group. The quanti-
ties s&z are simple constants. With these defini-
tions, the generabzed Ward- Takahashi identities
can be graphically represented as in Fig. 1. A
solid line with index g belongs to the field A- ~ As
the gauge factors C, were supposed to be linear
combinatio~s of the fields, the first diagram is
simply a linear combination of the Green's func-
tions of the fields A. A dashed line with index a
represents the Faddeev-Popov ghost P, . The ad-
ditional vertices i,'. p, (x) and gs~ A (x)P~(x), which
do not occur in the S matrix, are completely de-
fined by the transformation properties of the .

fields A, , as given by (14). The "etc." in Fig. 1
represents similar diagrams as the second and
the third one, with the Faddeev-Popov ghost con-
nected to one of the other external lines, labeled
by j - ~ k. Notice that for any given set of external
lines, we have as many identities as the number
of generators of the gauge group. For further de-
tails and a proof of these identities, we refer to
't Hooft and Veltman. "

After this rather general discussion we turn
again to our unified gauge field model. Let us
first define the infinitesimal transformations of
our SU(2)SSU(2)SU(2)SU(l) gauge group. They
are directly related to the local transformations
U(x), V(x), S(x), and T(x) which were introduced
in Sec. II. We choose the following parametriza;
tion for the gauge group of the weak and electro-
magnetic interactions:

S(x) -1+—,'ig, A', (x)~.+ —,'ieA„(x)»„

r(x) -1+,'ieA„(x)», , —

and for the chiral gauge group of the strong inter-
RCtiOns:

+ ~

FIG. 1. The graphical representation of the generalized
Nard- Takahashi identities.

(18)

For the strong gauge we mill consider several
possibilities, one of them being

with M„» and P„,» as defined in Egs. (9) and (10).
The relevance of this particular gauge comes from
the fact that in the limit p~ ~- ~, the fields 4~ and

Q» become infinitely massive. This implies that
they mill no longer contribute to internal lines.
And as g~ and |Il„were by definition unphysical
fields, this limit will give us the physical gauge,
as far as the strongly interacting particles are
concerned.

Finally, we add the following terms to the La-
g rRQglRn:

8, = -Tr[Cg'+ C»'+ C~'} —~C„2 . (20)

The Faddeev-Popov Lagrangian is detex mined by
the change of the various factors C under infinites-
imal gauge transformations. For example, for C~
and C„we find the following transformation prop-
erties:

C»-Cw+ev'*A +i&wp eg[A W ]
+ ~iep sq[A, A~» ]+ ai3ep sp[A~»3, Wp],

order in the weak and electromagnetic interac-
tions.

It is of interest to give the transformation prop-
erties of these newly defined fields under the in-
finitesimal weak and electromagnetic transforma-
tions (15a).

W„-W„+SqA~ +igni[A, W„]

+-,'isa„[A„T,]+-,'ieA„[r„W„],

A~ A~ + 8pA~,

where AI, =--,'~r, .
Henceforth, we fix the weak and electromagnetic

gauge by choosing

Notice that these definitions differ from the pre-
vious ones (8b) only by terms that are of higher

This result gives rise to the following terms in
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&-s &*s gp 2-p}» Tr[s Ave Av+ g [~(kv* 4}N]~„+ [s(A»*, Q]&„,),
(21)

&'A'=i~p. »([~&&,~&]~,]e&

An analogous calculation for Cgg and C», with, for simplicity, &2pU =&2p»=-p, gives the remaining terms:

= -2& Tr[Mgg'4v 4}v +M»'4'» 4»]'

—2pg Mrr Tr[2 2 4}vdgg&2+4}» gtg»(~&&2+4~z '&z)+2 2 (4}vA»+4}»4'v)&

yi([g ~2 4'P]+ [4'»2 Q»]) (/~+Jr)+i[/~2 Q»](g~ —fr)+i[/»2 Qgg](fx —gr+4tz 'gz)) 2 (22)

2~g' = gpeM„Tr[4g 'Mgf(QI}~», +&2(p~o, + gp»q}r, +i[pggp /~+fr]r, +i[/»2 (I}» —gr] Tg]'Q~

+Pg„M T (2"+2 }(T(2&2g M+2, '~ 2}+((2 +P, Q]2 I.2

The total Faddeev-Popov Lagrangian is given by
the sum of these terms: Z~ +Zpp+2'pp +lapp.
Furthermore, we used the definitions 4}U» v

a 1 gg
&'qt g, p', g Ta and Cp, v, + 2@V,v, w~a ~

In S-matrix calculations, where the Faddeev-
Popov ghosts occur only in closed loops, the terms
in Z~ and ZFp cannot contribute. The ghost field
4}z can even be ignored completely, because it is
a free field essentially. Hence we are only left
with ZF'p and ~, which can be evaluated sepa-
rately.

However, the terms in ZF'p and ZF' can no longer
be ignored, when we consider the generalized
Ward-Takahashi identities. As an example, we
consider such an identity for two nucleons, which
is given in Fig. 2. In theories where the strong
interactions are not governed by local gauge
groups, so that Q and (P„are the only Faddeev-
Popov ghosts, the ghost field in the second and
third diagram will not interact with the blob in
lowest order in g~. And in this order the blob is
described by strong interactions alone. In that
case, one easily derives identities like

(p, -p,)„r.„(p„p,) = .»s'(
p) s'(p,)-

(23)
(p, —p,)„r.„(p„p,)+ r:(p„p,}

=».r,s '(p„)+s '(p-. )».r„-
where I „„1'„„andI, are proportional to the
irreducible vertex functions of the vector current,
the axial-vector current, and its divergence, re-

spectively. The nucleon propagator is denoted by
S, and the momenta of the incoming and outgoing
nucleon are p, and p, . Notice that this result is
valid in all orders of the strong interactions. The
first identity is the one originally derived by Ward
and Takahashi for the case of quantum electro-
dynamics, "from which one can show that the
charge is not renormalized.

However, in our case the ghost field will interact
with the blob, in first order in g~, through terms
which were contained in S~. An example of one
of those contributions is depicted in Fig. 3. Ob-
viously, as the ghost 4}~ goes into Qv and the lat-
ter can strongly interact with the blob, the identi-
ties (23) will be affected by strong interactions.
Furthermore, as Z~ is actually determined from
the behavior of C~ and C~ under the weak and elec-
tromagnetic gauge transformations, the identities
(23) depend on the choice of the "strong" gauge.
For instance, if we had fixed the gauge by choos-
ing functions C~ and C~ which do not transform
under the weak and electromagnetic gauge trans-
formations (18), the right-hand sides of Eqs. (23)
would vanish. On the other hand, in the previous
gauge (19) in the limit p-~, the physical gauge as
far as hadrons are concerned, one can still show
that the first identity (23) for the vector current
is correct.

Hence, we have observed that in unified gauge
field theories of strong, weak, and electromagnet-
ic interactions, the Ward-Takahashi identities that
involve hadrons off the mass shell are affected by

cw
+ e 3 + -)- =0 &w

~--P-

FIG. 2. Generalized Ward-Takahashi identity for two
external nucleons. FIG. 3. One of the diagrams that will affect Eq. (23).
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strong interactions in lowest order in e and gw.
Furthermore, they depend on the gauge that has
been chosen for the strong interactions. In the
next section we will consider generalized Ward-
Takahashi identities where the hadrons are on the
mass shell. The resulting identities turn out to
depend only on the structure of the weak and elec-
tromagnetic gauge group, which is SU(2) I83 U(1) in
our case.

V. DIVERGENCE EQUATIONS FOR THE SU(2) (3 U(1)
WEAK AND ELECTROMAGNETIC

GAUGE GROUP

In this section we will derive a class of diver-
gence equations for the hadronic matrix elements
of weak and electromagnetic currents. Our start-
ing point is the generalized Ward- Takahashi identity,
as it was depicted in Fig. 1. However, henceforth
we will take all the strongly interacting particles
on the mass shell. This has the consequence that,
due to the pole structure, all the attachments of
the Faddeev-Popov ghosts to the external physical
hadron lines will vanish. '4 Hence, the physical
hadrons give no explicit contribution to the gener-
alized Ward- Takahashi identities.

The first class of Ward-Takahashi identities we
will consider are those with only physical hadrons
on the mass shell. They are depicted in Fig. 4(a),
where "&"denotes the external hadrons. This ex-
pression will be considered in first order of the
weak and electromagnetic interactions, in which
case the blob is given by the strong interactions
alone. The identities represented by Fig. 4(a) lead
to what we will call first-order divergence equa-
tions.

Another class of generalized Ward-Takahashi
identities gives rise to the second-order diver-
gence equations. These identities which are pic-
torially represented in Fig. 4(b) contain, apart
from the external hadrons h, an additional line ~,
which corresponds to a field that transforms only
under weak and electromagnetic gauge transforma-
tions. In our model, this can only be one of the
fields W'„, A&, and K~. Due to this requirement,
the Faddeev-Popov ghosts that are attached to
vertices s and ~ are necessarily the fields Qw or

A'

Henceforth, we take the weak and electromagnet-
ic gauge transformations as defined in Eq. (15a),
and the gauge fields S'& and A„as given by Eq.
(16). The weak and electromagnetic gauge is fixed
by choosing C and C„as given in Eq. (18). In this
gauge the propagators of interest are calculated
in the Appendix, whereas the pertinent part of the
Faddeev-Popov Lagrangian, 2„'~+2~, was de-
termined in Eq. (21).

After these definitions, the derivation of the
divergence equations is rather straightforward.
Using the expressions for the propagators, we
find directly from Fig. 4(a):

k„J'„(0)=i™Ji,(k),
&w

k„J"„(fi)=0.
(24)

~)h =0

Cw.a &w, a &w,a

= 0

FIG. 4. Generalized Ward-Takahashi identities that
lead to the divergence equations.

We call these equations the first-order divergence
equations. J'„(k) and Z"„(k) are the hadronic matrix
elements of the weak and the electromagnetic cur-
rents, respectively. These currents are defined
by the coupling of W'„or A„with (incoming) mo-
mentum k' to the hadrons, disregarding the corre-
sponding coupling constants gw and e. The quanti-
ty J&(k) is the hadronic matrix element of the had-
ronic source that is coupled to the fields y~. As
argued in Sec. II, J& must be of first order in the
weak interactions. The origin of this term in the
divergence equations comes from S"„, proceeding
through gz, before it couples to the hadrons. "

The derivation of the second-order divergence
equations is somewhat more involved. When we
consider only second order in gw or e, we can re-
place Fig. 4(b) by Fig. 5. The ghost fields Q~ and
Q„can no longer entangle with the strong ghost
fields, because ~ was required to transform only
under the weak and electromagnetic group. This
is then also the case for u' in Fig. 5.

Let us now introduce the notion of "weak irreduc-
ibility. " A diagram is called weakly irreducible
when it cannot be divided into two nontrivial parts
by cutting a line that corresponds to one of the
fields that transforms purely under the weak and
electromagnetic gauge group. The weakly reduc-
ible graphs contributing to the first diagram in
Fig. 5 are given in Fig. 6. The lower part of the
graph is the hadronic matrix element of the source
of the field u". For the top part of the diagram,
consisting of a vertex with three lines Cw „, w,
and co", we can write down a generalized Ward-
Takahashi identity. It is depicted in Fig. 7, and
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t(~) 4'e, AP E,1
+ +

FIG. 5. Generalized Ward-Takahashi identity in
second order in gz or e.

FIG. 7. Generalized Ward- Takahashi identity for the
top part of the weakly reducible diagrams of Fig. 6.

and A „respectively:

of first order ing~ or e. Subsequently, we sub-
tract the weakly reducible diagrams in Fig. 6 from
the expression in Fig. 5, using Fig. '7. It turns
out, that the second and third graph cancel the
contributions from the second and third graph of
Fig. V. The contributions from the fourth dia-
gram in Fig. 'l for the various possible ~" cancel
among themselves, due to the first-order diver-
gence Eg. (24). Hence, we are left with the ex-
pression depicted in Fig. 8, where the left-hand
side is confined to only weakly irreducible dia-
grams. The fields ~ and ~" are by definition
fields that purely transform under the weak and
electromagnetic gauge group, in our model given
by W'„, A„, g~, and g~. Notice that the blob con-
tains only contributions from strong interactions.

Finally, after x emoving the various propagators
fx'om Fig. 8 we find the following result:

~ M~
P„U'„(P, q) -~ 'T'(P, q) =ps~(~, ~"9 -(p+q),

8 w

p„U"„(p,q) =ps„((u, (u")J -(p+q),

where &u, e"= W'„, A„, $4s, or vs. U'„(p+q) is
the hadronic amplitude of a vector boson W'„and
a field ~ with incoming momenta J) and q, respec-
tively, where both W'„and u interact directly with
the hadrons. U„" and T' are similax' quantities
with W'„replaced by A„and g~, respectively.
The quantity J (k) denotes the hadronic matrix
element of the source that is coupled to the field
cu with corresponding (incoming) momentum k.

The behavior of co" under infinitesimal gauge
transformations determines s~(&u, &o") and s„(co,e")
Explicit calculation gives the following results for
the identity (25a) in the case that u = W'„, g~s, os,

M~
p„U'„', (p, q) i -—T~(p, q) = e,~Z'„(p+q),

p„U„'(p, q) -z T"(P—, q)

=25„Z,(p+q)+ ,'e,~Jq-(p+q), (26a)

M~
p„U'„(p, q) -&—&'(p, q) = '~y(p+-q-),

P, U'„".(P, q) -~ ~:"(P,—q) =e.~&;(P+q).
M~

A similar calculation gives the identity (251) for
~ —Wb qb o

P, Uf!(P q) =e3~~'.(P+q),

p„U„(p, q) = s.,~;(p.q).

For + =A, ox' o~ the right-hand side of the identity
(25b) is simply zero. The definitions of the vari-
ous functions in these identities is obvious. Notice
that we have already extracted factors g~ and e
from those functions where the fields W„and A„
are involved.

Equations (26) are called second-order diver-
gence equations. Not quite unexpectedly, they
show the same structure as the divergence equa-
tions that can be derived from the usual current-
algebra assumptions, provided we identify the
divergence of the axial-vector current as gs and
the so-called 0 term as J, up to appropriate con-
stants.

Hence, we have proved an important set of iden-
tities purely from the gauge invariance of the
weak and electromagnetic interactions. The der-
ivation did not depend on the structure of the
strong interactions, and is also valid when those

CN, A

FIG. 6. Weakly reducible graphs contributing in Fig. 5. FIG. 8. The second-order divergence equations.
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interactions are governed by a local gauge group,
as in the unified model of Sec. II. Compared with
the current-algebra derivation, our approach
needs only one assumption: that of weak and elec-
tromagnetic gauge invariance. The generalized
Ward-Takahashi identities, which were the main
ingredient in the derivation, are proved to be val-
id in all orders of perturbation theory. And they
are manifestly Lorentz-covariant, so that Schwin-
ger and seagull terms do not play a role. '~

VI. THE PCAC HYPOTHESIS AND THE PION

+bZ~(Ks, s, )+Zws„(Ks, Wq, Aq) . (27)

S~ contains only the strongly interacting particles
together with their interactions with the weak Bnd

electromagnetic gauge fields, 8"„and A„. Apart
from a quadratic, respectively, linear dependence
on the field K~, the second and third terms con-
tain only hadronic fields. As argued in Sec. II,
A, is of order G~, whereas 5 must be of order
G~'~'. However, due to the large vacuum expec-
tation value of the field o~, which is given by
E~ =2g~ 'M~, these terms still give rise to con-
tributions of zeroth order in the weak and electro-
magnetic interactions. These contributions taken
together with the first term Z~ are denoted by Z»

(v„W„,A„). The last term in Eq. (27), ZwEM, con-
tains terms that only depend on K~, A.„, and 8'„.

As far as the hadron fields are concerned, we

As is well known, "most of the results of the
current-algebra approach are essentially based
on the divergence equations which were found in
the previous section. It is obvious that these
equations were independent of the specific struc-
ture of the strong interactions. The only additional
information one usually needs concerns the iso-
spin and parity properties of the various matrix
elements.

However, the divergence equations contain ha-
dronic amplitudes involving gs, and it is desirable
to relate them to purely hadroni. c matrix elements
in order to find experimentally testable predic-
tions. As argued before, in the current-algebra
approach gs corresponds to the divergence of the
axial-vector current. In that case, by making
use of the PCAC hypothesis, one is able to find
results for the corresponding matrix elements of
the pion field.

In this section we will analyze the question of
how to relate the hadronic matrix elements of

Ps to the corresponding ones of the pion field, in
order to find a similar result as that given by
PCAC. The starting point of our discussion is the
total Lagrangian, written as

only made the dependence on the field m, explicit.
This field is defined as the physical pion field in
the absence of weak and electromagnetic inter-
actions. In the presence of these intex actions,
the physical pion field can be written as

&p
= ~~ ~ ass+0(R'w ) ~

gS' 2

where the parameter a can in principle be deter-
mined in perturbation theory. In lowest order we
have a= ——,'F[2(1-e)]' ', where F and e were
defined in Sec. III.

Let us first consider the irreducible diagrams
with one external Q~ and one external physical
pion line in first order in g~. By irreducible, we
mean that they cannot be divided into two parts by
cutting one pion line. From the substitution (28)
it is clear that all contributions purely from 2»
are given by —gwMw 'aD, '(s), where D,(s) is
the pion propagator. The only remaining contribu-
tions contain S„as 5 is of the order gI,M~ '.
Hence, we can write the total contribution as

' aD, '(s)+ibd(s), (29)

where the last term comes from Z~. On the mass
shell, this quantity is x elated to the matrix ele-
ment of the weak current between a pion and the
vacuum through the first-order divergence equa-
tions (24). This leads to the result

where Z,(s) is the hadronic matrix element of the
pion source. VYhen g~ is directly coupled to the
blob, thus without exhibiting a pole at s=-m, ',
by using the previous arguments the result can be
written as

i w aJ„(s)+ibj(s) .

The first term represents the contributions purely

(30)
W

where the current matrix element was defined as
iq„f„with q„ the pion momentum. Using this
relation and the propagators given in the Appendix,
one can show that f„corresponds to the conven-
tional pion decay constant.

Consider now the diagrams where an external
gs line is connected to a blob with an arbitrary
number of external hadrons. In first order of the
weak 3nd electromagnetic interactions, the blob
contains only strong-interaction effects. In the
case that Qs proceeds through a pion which inter-
acts with the blob, the corresponding contribution
is given by

P

i — w aD„'(s) +ibd(s) D„(s)Z„(s),
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from Z~, whereas the second one is the remaining
contribution from Z, . Hence we find the result
that diagrams with one external g~ line and an
arbitrary number of external hadrons, are given
by

" m„'f, D,(s)Z„(s)

+b {[d(-m„2) —d(s)]D„(s)J', (s) +ij(s)],
where we have used Eq. (30). The first term of
this result represents the usual PCAC term. The
second term has no pole at 8 =-m, ' and is of order
b.

The analysis for weakly irreducible diagrams
with two lines, corresponding to Ps and gs, goes
completely analogously. They can be expressed as

2

+ ~b„Z,(f ) +O(b),

where we have used the definitions 8, = q, ', 8, = q, ',
and f =(q, + q, )', with q, and q„ the incoming mo-
menta of Ps and gs. Again, the first term reflects
the PCAC result, and the terms of order b are
less singular than the first one, having at least
one propagator less. However, there is an addi-
tional term, which comes from the part of the
Lagrangian (27) proportional to A.. This term
has a simple structure: It is symmetric in a and
b and depends only on t. Moreover, in the diver-
gence equations (26) this term does not contribute
in fact. This is because T'~(P, q), to which it
contributes, is always accompanied by ——,'i(g„jM~)
xb,~Z (p+q). The contribution to J', proportional
to X cancels exactly the term M„Zz in T"(P, q).
Hence, in the divergence equations these terms
of order A. can simply be ignored. This implies
that Z (b) is effectively of order b, since its re
maining contributions, in this order, can only
come from Z~.

Hence, we have found that the hadronic, weakly
irreducible amplitudes with one or two Ps fields,
are related to the corresponding matrix elements
of the pion field as prescribed by PCAC, up to

orders of the parameter b." J,(b), which in the
current-algebra approach corresponds to the v
term, is effectively of first order in b. This, to-
gether with the divergence equations of the previ-
ous section, is sufficient to derive many of the
important results that were found by current-alge-
bra methods. To be more specific: %hat we have
shown is that certain gauge field theories confirm
results as the Qoldberger-Treiman relation, the
Adler-%eisberger relation, and the Adler con-
sistency relation" in zeroth order (g„'M„b), the
parameter which causes the nonvanishing pion
mass. Vfe stress that these results are not con-
fined to the model of Sec. II, since we made al-
most no reference to the specific structure of that
model. It turns out, that in a large class of models
the gauge invariance of the weak and electromag-
netic interactions is sufficient to ensure the va-
lidity of these results in the appropriate (chiral)
limit, in all orders of the strong interactions.

Finally, let us discuss the case where b =0. Be-
cause Zg, as it was defined in EQ. (6d), was the
only term of the total Lagrangian that is linear in
the various spinless fields, b will remain zero in
every order of perturbation theory. This implies
that the pion will be a pseudo-Goldstone boson,
which picks up its mass from closed-loop con-
tributions of the weak and electromagnetic inter-
actions. This possibility was recently put forward
by steinberg, ' Numerically, this is not included
a priori, since the mass ratio m '/I»', where
m& is the mass of the A, axial-vector meson, is
close to the fine-structure constant. It is cer-
tainly an appealing possibility, which allows the
calculation of the pion mass, and moreover tends
to explain the good experimental confirmation of
the previously mentioned current-algebra results.

APPENDIX

In this appendix we will give the various prop-
agators that were used in Secs. V and VI. The
pertinent part of the Lagrangian, in lowest order
of weak and electromagnetic interactions, is given
by

(s„&v —s~&„)(s„ii'v —s. ii'„) —2(s„g,) M~rp s„-W„--,M~'(W„)' —p»s„y+s y» —p~s y~s @'.
A.n explicit calculation of the propagators gives the following results:

W'': 5, (q ™—'
) ' {~b„~q„qp (q ') [M (1 P )q ])

if": (1-«') '(q'+M, '-ie) '{b,.+q„q, p, (q' —ie) '[M,'+(1-p„' —«')q']j,
where «=eg~ ' andM, '=(1- «') 'M~',

&: ( -«') '(q'-ie) '(q'+M ieo) '(q'+Mw')[beau-q, qu(q'-ie) ']+p» qpq. (q'-ie) '
1
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W'-A transition: —«(&-«') '(q' —i~) '(q'+~, ' —i~) '(q'6»-q„q, ),
y: ~.&(q'-~~) (q'+M~'p~ ')

W-gz transition: —iMI, p~ (q' —ie) '
q„(q& is the outgoing g~ momentum),

(paq —&&)

4w: &as(pwq -&&)
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