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We generalize the scale-invariant parton model to describe fixed-point and asymptoticaQy
free gauge and nongauge theories. Q2-dependent scaling laws for the moments of vW2 are
derived. In fixed-point theories the moments scale as powers of Q2, while in asymptoticaQy
fx'ee theories they scale as powers of lnQ . The behaviors of the elastic form factors, the
ratio Os/a+, and the mean-squared transverse momentum of hadron secondaries are dis-
cussed in the various theories. The experimental study of these quantities should distin-
guish clearly between the conventional parton-model and asymptotically free theories of
str ong interactions.

I. INTRODUCTION

It has become clear that the light-cone behavior
of renormalizable field theories must differ from
the light-cone behavior of free fields. This is due

to the infinite renormalizations necessary to de-

fine physical quantities in field theories with di-
mensionless coupling constants. Roughly speaking,
the resolving power of an external probe can never
be sufficient to uncover all the structure in the in-
teracting fields. To study the short-distance char-
acter of interacting fields one defines a coupling
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constant g(X) which determines the strength of in-
teractions between quanta of the field theory having
spacelike momenta Ap, where p is some arbitrary
spacelike reference momentum. ' g(g) is thus a
dimensionless measure of the deviations from
free-field behavior at length scales A. '. One pop-
ular assumption is that g (X) tends to a nonzero
constant for large X, i.e., g (A) tends to a fixed
point' g*. Then the interacting theory is scale-
invariant at short distances. However, recent
perturbative studies of the renormalization .group
have shown that in certain theories g(A. ) can vanish
as A, increases. ' This rate is, however, at most
logarithmic, like (1nA) '. The approach of g(A. ) to
zero is therefore so slow that interactions at short
distances in these "asymptotically free" renor-
malizable theories are not generally negligible.
This fact contrasts sharply with super-renormal-
izable theories (upon which parton models are
based) in which g(A. ) vanishes as a power of A. as A.

increases. It should be clear that an intuitive but
conceptually adequate approach to short-distance
behavior of renormalizable field theories must
account for the fact that these theories have sig-
nificant interactions on length scales ranging all
the way to zero. 4

We have recently formulated a parton model
which incorporates the subtleties of renormalizable
field theory. ' This approach has been used to
discuss the physics which accompanies a fixed
point of the renormalization group. It is the pur-
pose of this article to extend our previous con-
siderations to theories which are asymptotically
free at short distances. Most of the results ob-
tained in this article have been found by more for-
mal methods. ' Our approach is intended to expose
the simple physics behind the results. To begin
we review our general approach. A linear itera-
tive integral equation for vW, is obtained which
governs the function's Q' dependence as the re-
solving power of an external virtual photon in-
creases. The kernel function of the integral de-
scribes the short-distance structure in the theory
and controls the Q'-dependent scaling laws for the
moments of vW, . Four different types of short-
distance behavior are discussed: fixed-point short-
distance behavior in gauge and nongauge theories
and asymptotically free gauge and nongauge theo-
ries. In all cases the area under vW, is asymp-
totically independent of Q' while other moments of
vW, either fall as powers of Q' (fixed-point theo-
ries) or as powers of logarithms of Q (asymp-
totically free theories). Asymptotically free gauge
theories are discussed in some detail. Elastic
form factors are found to vanish slightly faster
than any power of Q' at truly asymptotic Q'. oz/or
should vanish in the deep-inelastic region roughly

as (lnQ ) '. The total mean-squared momentum,
of hadronic secondaries, transverse to the direc-
tion of the virtual photon, should grow as Q'/lnQ'.
These results are contrasted with the conventional
pointlike-parton model and scale invariance at a
fixed point.

II. REVIEW OF SCALE-INVARIANT PARTON MODEL

To begin, consider a deep-inelastic experiment'
performed with kinematic variables Q and Wv each
between the values 1 and X. Here A. denotes a mo-
mentum where renormalization effects become
important. We can describe the dynamics of the
hadron by a cutoff Hamiltonian II, whose degrees
of freedom are the transverse momenta and longi-
tudinal fractions of constituent partons. In the cut-
off theory partons cannot have relative transverse
momenta in excess of A, . In other words, partons
of the cutoff theory are not found closer than a
distance A.

' in the transverse plane. ' Suppose now
that the momentum of the probe is increased
above X, so that distances shorter than A.

' can be
resolved. The bare partons of the Hamiltonian H,
are replaced by a distribution of the constituents
described by the Hamiltonian H, . A convenient
choice for the cutoff of H, is A,'. This formulation
of the field theory may be carried further' so that
scattering experiments involving (Q')'~' -

A.
"are

described by the constituents of a Hamiltonian HN

having a cutoff x". The partons of length scale
N-1 may be understood as dynamically bound
clusters of partons of the Hth scale. Knowing the
Hamiltonian H„we can always solve for the Ham-
iltonian H„, in the same way that intermolecular
forces can be derived from atomic forces. In the
usual renormalizable field theories the Hamil-
tonians are characterized by a set of dimension-
less coupling constants (g,.). The properties of
the theory at small distances are then determined
by the variation of the fg, j as we vary from one
scale to the next.

At every length scale we describe a deep-inelas-
tic scattering process using a parton model ap-
propriate to that length scale, i.e., (Q')'~'-x".
The matching between the scale N and the momen-
tum q reQects the fact that the parton model will
work only if the probing wavelengths are smaller
than the mean transverse separations between
partons but larger than the size of the parton.
Thus, in this picture, '

vW (q, Q ) = q—,q = Q /2p q
dn

0 l N=lnQ/hid

where ds/dq l„ is the longitudinal-momentum dis-
tribution of partons of transverse size X ".

The modern formulation of the renormalizatiqn
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(2)

It is often more convenient to analyze Eq. (2) when
it is written in terms of the rapidity variable

so that

&(&, &+() ff ~ (x —=x')F (s', .(((&w' (4)

The kernel function f„„„is constrained by longi-
tudinal-momentum conservation —the sum of the
longitudinal fractions of the (N+ 1) constituents in

a constituent of type N should be the longitudinal
fraction of the N constituent,

(5)

Equations (4) and (5) will play a central role in the
following.

group "' suggests that we do not attempt to com-
pute the distribution of partons of type N in the
hadron directly, but instead formulate a recursion
relation connecting the distributions of partons at
adjacent levels. To do this we must know the
makeup of constituents of type Kin terms of
those of type N+ 1. In particular, we must know
how the longitudinal fx'action of a constituent of
type N is shared by constituents of type N+ 1. We
introduce a function f„„„(P/q)/(P/q) which gives
the probability per unit P/q to find a parton of type
N + 1 snd longitudinal fraction P in a constituent of
type N and longitudinal fraction q. Then the dis-
tribution, E,(P, N+ 1), of constituents of type I(1+1
having longitudinal fraction P, satisfies the equa-
tion'

1

M,(g = q F,(q, X)dq/q
0

e""E,(y, N)dy

and the ath moment of f,

(8)

Substituting into Eq. (6) we have

M.(N+ 1) =m„M„(N} .
To solve this iterative equation we must supple-
ment it with boundary conditions at small N which
describe the large-scale character of hadronic
structure. Choose boundary conditions'

M„(iV=0) =M. ,

where M are the moments of vS'2 in the fix'st
scaling region {1&Q' & X'). The solution of Eq. {9)
then becomes

M„(yr}={m )"M .
Using the relation between the momentum transfer
Q and the scale N, N =Inq/Ink, allows the Q' de-
pendence in Eq. (11) to be made expbcit,

M (q') =(m )"""'M.
q)sfftfif /ln g ~ (12)

From the definition of M„(A) in Eq. (7) we have
finally

1
q"-'vW, (q, Q')dq =(q')-'-M. ,

0

III. FIXED-POINT AND ASYMPTOTICALLY FREE
THEORIES

A. Fixed-point theories

In this case the dimensionless coupling constants

(g,.}tend to finite nonzero values as N grows, and
the dynamics becomes identical at every length
scale (apart from a rescaling of lengths and times}.
In particular the kernel function f„„„describing
N-type constituents in terms of (N+ 1)-type con-
stituents becomes independent of N. Then Eq. (4)
simplifies to

This equation can be solved by Laplace transforms.
Define the ath moment of E,(g, N),

vW, (q, Q') dq =const . (14)

Furthermore, the positivity of f insures that the
sequence (d„}is nondecreasing. So, aside from
the possibility that d =0 for all a, all the moments
of vW, except the first vanish as powers of Q'.
Therefore, at truly asymptotic values of Q', v S;
becomes a 5 function at q =0 with a weight given
by Eq. (14}.

Two examples of fixed- point theories will now

d =-Inm„/Ink .
In other words, the moments of vR', are power-
behaved in Q with a-dependent powers. The a =1
moment —the area under vW, —is special, however.
It follows from Eq. (5) thatm, =l, so that di»
=0. Therefore, the area under vS; does not
change as Q' varies,



f(y) =Z5(y)+smooth function of y, (15)

where the 5 function represents the possibility that
only one parton of type N+ 1 carries the total lon-
gitudinal fraction of the constituent of type g.
From Eqs. (8) and (15) it follows that the high mo-
ments of f(y) behave as

as a -~. From Eq. (12}this means that the high
moments of pg2 behave as

q" 'vW dq ((III )

From this result and Eq. (14}we see that the quan-
tities d„begin at d&, )

= 0 and increase to di„
= 1nZ/ink. Other consequences and a more de-
tailed analysis of these theories. can be found in
Ref. 5.

¹n-Abeliais gauge theories. To see one of
the new features in gauge theories consider cal-
culating the wave function of a charged particle
to first order in perturbation theory. In zeroth
order the charged particle consists of a bare quan-
turn and the first-order correction consists of a
bare charged quantum and a bare vector meson,

be discussed.
¹ngauge theories. Typically when H„+~ is

solved there is a nonzero probability that a con-
stituent of type N consists of just one constituent
of type M+1. This probability we call Z. The con-
stant Z is similar to the wave-function renormal-
ization constant in a finite field theory. Since the
field theory has been eut off in transverse mo-
mentum, the wave-function renormalization con-
stant Z is generally expected to be a finite num-
ber. However, if the transverse cutoff theory is
still divergent due to integrations over longitudi-
nal momenta, the probability Z may in fact be
zero. In field theories involving spin-0 and spin--,'

quanta there are no divergences associated with
longitudinal momenta in the infinite-momentum
frame. Then f h'as the form

for q =1, where 4 and B have the perturbation-
theory expansions,

g(xg + 0 ~ 0

jgQg + see
(21)

We will incorporate this straggling idea by using
it as a model for the solution of the Hamiltonians
II„. That is to say, we shall assume that the
structure of the charged partons of type N lare-
described by a sea of low-q vector partons of type
N. Equation (20) is expected to be accurate for
g near unity. The graphs producing the kernel
f(q) are shown in Fig. 1. The moments of f(q)
read

m =A(v')fv '( q)
"('"'dn

, f(n)r(a)
1"(o.+8}

which for large ~ become

m„- X(g')r(a(g')) o-"~'
so the d behave for large a as

(22)

mesons) the integral in Eq. (19) diverges as q-0.
Thus, even whenthe transverse momentum of the
wave function is cut off from above and below, the
probability to find a single bare charged quantum
vanishes. In fact the only states which occur with
finite probability contain an infinite number of low-)i
vector mesons. Therefore the 5 function of Eq. (15)
does not occur in this ease. This phenomenon is
formally analogous to the straggling of relativistic
charged particles passing through a medium. Here
the energy spectrum of the initial charged particle
is smeared due to the emission of infrared photons. '
The straggling formula giving the probability that
the charged particle retains a fraction q of its longi-
tudinal momentum while emitting soft vector me-
sons becomes'

f(rI) =A(g')(1-)i) "+~'

I )=~z(l~.& vg»K, v)18,v.&),

where g is the coupling constant, ( eo) and
~ V,}

represent the bare quanta, and g is the wave func-
tion containing spin and momentum dependence.
K and q are the relative transverse momentum and
longitudinal fraction of the bare vector meson.
The constant g is necessary to normalize the
state (e). Clearly Z is given by

d„-a(g')inn/inz' .
As opposed to the nongauge theories at a fixed

(24)

Z = 1+g dKdg 'g

For gauge theories (unlike theories without vector
FIG. 1. Graphs controlling the q~ 1 region of f~+& z

in gauge theories.
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point, the higher moments of these theories suffer
a more and more rapid Q' variation.

1. Nongauge theories

In this case the kernel function f is the sum of a
5 function and a smooth function. For small val-
ues of the coupling constant f can be computed in

perturbation theory, "
f„,«(y) = (1—g»')6(y) +g» h(y)+ O(g„'), (26)

where h(y} is a smooth function which is given by
the two-particle contributions to f. Longitudinal
momentum conservation constrains h,

1

h g dg=1.
0

(26)

In this case the iteration formula for the moments
of vW, has explicit scale dependence,

M (N+1) =m (N+1, N)M (N) .

The moments of f„+„„read
(27)

m (N+1, N) =g„'h(a)+(1 —g»')+

where

(2s)

B. Asymptotically free theories

Of special interest are renormalizable field theo-
ries which are asymptotically free, i.e., H~ tends
to a free-field Hamiltonian as N-~. Such field
theories include P' in four dimensions with a
small negative coupling constant, "P' in six dimen-
sions, and, more interesting, a large class of
Yang-Mills theories with fermions in four dimen-
sions. ' In all of these theories the dimensionless
coupling constant g~' goes to zero as N ' as N
grows.

m = exp[- c(a)g„']

so the iteration procedure Eq. (31) generates

M~(N+ I) =[e ~")z~( ]M~
—[ -c(&)z I /k]M

[ e-c(a)g h(«]M

—
(lnQ ) ~ ~ )M~ .

Therefore,
1

)) 'vW, d)) -(lnQ') ' " M
0

(33}

(34)

(36)

where c(1)=0. As in the fixed-point theories, the
positivity of f ensures that c(a) is a monotonically
increasing function. This implies that all the mo-
ments for a &1 tend to zero as Q' grows. The vio-
lation of canonical scaling occurs via slowly vary-
ing logarithms. At a logarithmic rate vW, becomes
a 5 function at g = 0 with a weight given by its area
fvW, ()) Q )d)).

Gauge theories

It has recently been shown that Yang-Mills theo-
ries with fermions can also be asymptotically free
if the number of fermion types is not too large. '
As an example suppose that only the fermions car-
ry electric charge as would be the case in a
colored-quark model with color being a gauge sym-
metry. " In this case the kernel function is given
by the perturbative form of the straggling formula"

f«+,«())) =g«'(I - ))) '"" (36)

for )) near unity. Note again that as g„' g'/N-O-,
f »»(y) tends to a Ei function at y=0. The mo-
ments of f»+, „are

a(a) = Jq 's(q)dn (29)
m (v+1, v) =g„', r(a)r(g, '

I'(a +g„') (37)

and

g» ~ g /N, (30)

Consider the large- v behavior of m (v+ 1, v). Then
Eq. (37) becomes

m (v+1, v)-a (3s)

where g is a combinatoric factor dependent on the
number and types of fields in the theory. The iter-
ation formula Eq. (27) is solved by

So, in this case Eq. (31) becomes

M~(N+1) =a ~ z " M~
—2g ill E~a

M~(N+ I)= m (v+1, v)M~ .
V—

(31)
=(lnQ ) ~ M~ . (39)

As usual m, =1, sothe a =1 moment of vW, is Q'

independent. It is convenient to write Eq. (28) in
the form

So, the moments of vW, have the form

(40)

m = 1 —c(a)g„', (32)

where c(1)=0 and c(a) -1 as a -~. For large N,
Eq. (32) can be approximated by

where d, =0 and d grows monotonically and ap-
proaches the curve g' 1na asymptotically. Again
the violations of canonical scaling are logarithm'
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and, contrary to the nongauge asymptotically free
theories, the d grow without bound.

The fact that the high moments of vW, have the
fastest Q dependence suggests investigating the
short-distance modifications of form factors in
asymptotically free gauge theories; According to
arguments given in Ref. 5, the form factor for
absorption of a photon of momentum squared Q' is
given by

Gdq'} = Go(q')gI. 2 K a'x, 2 K

EN, N-1 (41)

8j+1,j K $+1,j (42)

In Sec. IV we shall argue that K, KX'/-i. For our
estimates here the approximation K, -KX' is suf-
ficient. Roughly speaking, the Q' dependence corn-
ing from the N factors originates in the fact that
more and more structure is uncovered by a virtual
photon of greater and greater Q'. The presence of
this additional structure suppresses the elastic
process more and more as Q' grows. Substituting
the straggling formula into Eq. (42) gives

where G,(Q') is the form factor applicable to the
N=0 scale (quarks inside hadrons) and K, is the
transverse momentum fluctuation of the wave func-
tion of type-i constituents. The N=lnq/Ink, factors
g, , I in Eq. (41) are

Q' falloff once lnQ' becomes a sizable number.
Since g' is a small number for most theories
(about 2 for color qu-ark schemes} this effect may
be small in practice. It is surprising, however,
that the influence on the form factor is even this
significant in an asymptotically free theory. The
reason for this behavior can be traced to the ab-
sence of a Z5(y) term in the kernel function f which
which in turn can be understood as the effect of
elementary vector fields in the theory.

Since the formula for G(Q') is somewhat unusual,
we shall also obtain it in another more pragmatic
fashion. To do this recall the Bloom-Gilman
threshold relation'

1

vW g, dg- G
1-sP/Q

(45)

Q =
m (46)

which states that the area under the resonance re-
gion of the inclusive quantity I W, should match the
strength of the exclusive (resonant) channels them-
selves. The integral of vW, over the resonance
region is isolated by the high moments of vW2. In
detail, it is easy to see that a moment

1
'g 'vW2dg

0

receives all of its contribution from the region be-
tween q=1-m'/Q' and II=1, if one chooses the
moment a to be

g,.„, , =g,' J (( —q)
'"

dq
x-XIr/O

(X~K) &

Then the form factor of the hadron becomes

&(Q*) = n.(Q') ff( 2 )

-..(e*)." '(2)" '""

K~@
G (qn)~g Ing/Ink

0
Q

-G (Q')—0

(43)

(44)

However, the high moments of vW, are

Ii I)W2dI} -(Inq ) g "hl„.

Taking o. = Q'/m' and matching with the Bloom-
Gilman relation gives

G(Q2) —G (Q2)(inq2)-&I/»g'I &o'/~'&

(47)

which is the same asymptotic form factor obtained
by the more detailed theoretical argument.

Similar arguments may be given for fixed-point
theories and asymptotically free nongauge theo-
ries. For the fixed-point nongauge theories re-
normalization effects contribute a power to the
asymptotic form factor. '

Therefore, barring peculiar behavior for Gn(qn),
the short-distance structural terms in Eq. (41)
force the form factor to vanish faster than any
power of Q for truly asymptotic values of Q . If
one identifies G,(Q') with present fits to the nucle-
on form factor (a dipole, say}, then asymptotically
free gauge theories predict a measurably faster

G (Q') = G (q')(q)"/"".
in fixed-point gauge theories,

G (q2) G (Q2)q-B(gn)lno/Ink

and in asymptotically free nongauge theories,

G„(Q') = G()(Q')(lnq') '
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IV. TRANSVERSE-MOMENTUM FLUCTUATIONS
OF CONSTITUENTS

In this section we discuss the behavior of the
transverse-momentum fluctuations of constituents
of type N as N increases. Picture a constituent of
type N as a dynamical solution of the Hamiltonian
H„„. This Hamiltonian is a cutoff field-theoretic
Hamiltonian characterized by a dimensionless
coupling constant g„. Assuming that N is chosen
so large that the mass scales of the theory become
unimportant, the Hamiltonian H~ contains no mass
terms. If we compute the bound states of scale N
and compute the transverse momentum of their
constituents the result must be proportional to the
cutoff X" since no other scale is present. Thus

(48)

For theories at a fixed point g„ is independent of
N, so (Pr')» simply grows as X». For asymptot-
ically free theories one can calculate f(g»2) per-
turbatively. For example, we can write an N-type
constituent of total transverse momentum zero as
a superposition of one and two (N+ 1)-type consti-
tuents in first-order perturbation theory. The
single (N+ 1)-type constituent piece of the wave
function does not contribute to transverse-momen-
tum fluctuations. Therefore,

j(g»') -g»'

for small g„'. It follows that in asymptotically
free theories

( P 2) @2g2»/~

Two important phenomenological consequences
follow from these considerations. In the conven-
tional pointlike-parton model the ratio os/ar (the
ratio of the longitudinal-photon absorption cross
section to the transverse-photon cross section)
behaves as'4

if the fundamental charge-carrying fields have
spin —,'. In the fixed-point theories j(g»2) =j(g*)
and os/&rr becomes a constant. If the coupling con-
stant g„were small, then

2cs /~r (55)

Therefore, in asymptotically free theories the
ratio cs/cr should approach zero as Q2 grows at
an asymptotic rate,

os/or -g'/In@' . (56)

Strictly speaking, this formula applies only to the
quantity os/cr averaged over 71. The logarithmic
dependence of cs/cr should be contrasted with the
naive parton model Eq. (51) and the scale-invari-
ant fixed-point results.

The increase of the transverse-momentum fluc-
tuations of constituents of smaller scales should
influence the momentum distribution of final-state
hadrons. To see this we work in the virtual-
photon-struck-parton Breit frame in which the
photon has momentum

~, =(~., q. , ~„e.) =(o, o, 0, -2nP)

and the proton momentum is (P+m2/P, 0, 0, P).
The mean-square transverse momentum of the
struck parton (of type ht'=lug/Ink) is j(g»2)X2».
After absorbing the photon momentum the parton
recoils with z momentum =@I' and mean-square
transverse-momentum j(g»2)Q2. By transverse-
momentum conservation the remnant of the target
also has a mean-square transverse momentum
which grows as j(g»2)Q'. Therefore, the total
transverse momentum squared of both the target
and virtual-photon fragments will grow as

(57)

in a fixed-point theory, and as

g'Q'/in@ (58)
(51)

where K' is the average transverse-momentum
fluctuations of the spin--,' partons. From Eq. (48)
the generalization of this result to interacting
field theories becomes

(52)

(P 2) j(g 2)g2 Inc/lax j(g 2)q2 (58)

and one then expects, roughly,

Where (Pr2)» ia the mean-Square tranSVerSe-mO-
mentum fluctuations of the partons of type ¹

Since N-In@/Ink

in asymptotically free theories.
If the multiplicity of hadrons is not too great,

then the average momentum of individuaL secondary
hadrons transverse to the direction of the virtual
photon should also grow as a power of Q . Only if
the multiplicity grows at a rate comparable to the
kinematic limit [n(s) = v s] will the transverse mo-
mentum of the struck constituent then not result
in a growth of the mean transverse momentum of
individual hadrons. Most views of final states of
deep-inelastic processes suggest that the multi-
plicity grows logarithmically" with Q2 or as a
small power" of Q', so the average transverse
momentum of individual fragments of the virtual
photon should grow roughly as a power of Q,
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vW (qQ ) Q: I-IO

where 0 & p &1. This result applies to both scale-
invariant and asymptotically free theories.

In the naive parton model one expects the frag-
ments of the virtual photon to have finite trans-
verse momentum. Hence, Eq. (59}represents a
potentially strong deviation from naive-parton-
model" expectations and emphasizes the fact that
much of the physics of asymptotically free theo-
ries is almost identical to a scale-invariant theo-
ry having a small fixed-point coupling constant.

Q: IO- IOO

Q: IOO-IOOO2.

FIG. 2. General behavior of vW2 as Q increases.

V. CONCLUDING REMARKS

The general way in which canonical scaling
breaks down is similar in the various theories
discussed here. Consider the area under vW, in
the interval between g and @+de. This represents
the longitudinal momentum of partons in that ele-
ment of phase space. Increasing Q' resolves each
of these partons into smaller structures each car-
rying less longitudinal fraction than the parent.
Therefore, this element of area is shifted towards
lower values of g. However, momentum conserva-
tion ensures that the total area under pW, is pre-
served. Therefore, the Q' dependence of vW,
should roughly resemble that shown in Fig. 2. It
is clear that vW, near q = 1 will fall as Q' grows
while near g =0 it must rise. Eventually, at truly
asymptotic values of Q', vS', will become a 5 func-
tion at g =0 with a weight given by its area at
large but not necessarily infinite Q'.

The details of the breakdown of canonical scaling
depend in detail on the nature of the short-distance
interactions in the various theories. We summa-
rize here the behaviors for the four cases studied.

1. Nongauge fixed point:

vW2dq -(Q ) M

d, =0, d ~ InZ/Ink' .

In Ref. 5 it was shown that the constant InZ/Ink'
is twice the anomalous dimension of the charge-
carrying field.

2. Gauge fixed point:
1
q" 'vW, (Q', n-)dq (Q') ' M-. ,

dy = 0 d const xlne

3. Asymptotically free nongauge theories:

l
1

g vW2dq -(lnQ ) ~M~,
0

d, =0, d ~ const.

4. Asymptotically free gauge theories:

f
1

q 'vW, d71-(lnQ') ~&M„,
0

d, =0, d const xln~.

In particular these scaling laws agree with more
formal renormalization group derivations. '

In the case of asymptotically free gauge theories
we have, roughly,

o, /or -(InQ') '

and that the total transverse momentum of the
fragments of the virtual photon (or remnants of
the target proton) grow as

Q'/lnQ'.

At finite values of Q' where (lnQ') ' cannot be ig-
nored, these last two results are more similar to
fixed-point physics than to naive pointlike-parton
physics. This is due to the fact that the coupling
constant tends to zero very slowly at smaller and
smaller distances. Results such as Eq. (56) and

Eq. (58}should provide clear distinctions between
the conventional parton picture of deep-inelastic
scattering and asymptotically free gauge theories.
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The current-algebra properties of gauge field theories are investigated. First, we consider
a unified gauge field model of strong, weak, and electromagnetic interactions, which is a
natural extension of the cr model combined with the Weinberg-Salam model. The violation of
CP invariance is forbidden, and isospin is only broken by electromagnetic interactions. The
pion is possibly a pseudo-Goldstone boson, which picks up its mass from weak and electro-
magnetic interactions. In the physical gauge the weak axial-vector currents are not of the
canonical form, thus invalidating the current-algebra hypothesis. However, further analysis
based on generalized Ward-Takahashi identities shows that the divergence equations are not
affected. Furthermore, we discuss in which case the partially conserved axial-vector current
approximation can be justified.

I. INTRODUCTION

The current-algebra hypothesis has been one of
the most fruitful ideas in the theory of weak and
electromagnetic interactions. ' According to this

hypothesis, the weak and electromagnetic currents
can be expressed in terms of currents that are
directly related to the internal symmetry of the
hadronic system. The latter are the so-called can-
onical, or Noether, currents, which can be gen-


