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It is suggested that quark fields could be regarded as transverse octonionic fields. The resulting

scheme unifies the existing three-triplet quark models within an "exceptional" paraquark scheme. %e
give a new reason for the observability of singlet states of the exact SU(3) group of three-triplet quark
models and the nonobservability of quarks and diquarks.

I. INTRODUCTION

The unobservability of quark states has been
the subject of renewed speculations' since it was
noticed that quarks would act like partons in a
gauge field theory of strong interactions in which
the gauge vector bosons are associated with an
exact non-Abelian group. ' The candidates for such
a group would be the "color" SU(3) group of Gell-
Mann, ' the SU(3)" group of the Han-Nambu mod-
el" or the intrinsic invariance group SU(3) [or
SO(3)] of the paraquark model. ' ' These groups
not only provide the para-Fermi property of order
3 to quarks, ' ' a property required to account for
the experimentally observed SU(6) multiplets, ' but
they also explain the w - 2y decay in a quark-
parton model. "However, the present experi-
mental data on the total e'e annihilation ratio
8 [= o(e'e -hadrons}/o(e'e - p. 'p, )] seem to
favor the Han-Nambu model. The success of the
three-triplet models makes the unobservability
problem even more acute, since one has to account
not only for the unobservability of quarks and di-
quarks but also for that of their associated mass-
less color gauge bosons. Various dynamical rea-
sons have been invoked' to make the fundamental
constituents that appear in the gauge field theory
unobservable, but so far such considerations are
at a preliminary stage. In this note we would like
to suggest a supplementary solution to the quark
puzzle in the form of a mathematical model that
realizes the "fictitious Hilbert space" in which,
according to Gell-Mann, quarks and color bosons
should operate. ' The scheme we shall present
unifies the existing three-triplet models within a
general formalism.

Our proposal is to describe quarks (and their
associated color gauge bosons) in an octonionic
Hilbert space. "'" States in such a space will not
all be observable because the propositional cal.—

culus of observable states as developed by Birk-
hoff and von Neumann" can only have realizations
as projective geometries corresponding to Hilbert
spaces over associative composition algebras, "

while octonions are nonassociative. This can be
seen simply by considering the decomposition of
a unit matrix I into products of kets with octonion
elements with bras obtained from kets by octonion
conjugation. Iff =g ~n & & s[ is inserted in the
octonion amplitude &n] P& =&o. If I P&„where &a I is
an octonionic bra and ( P& is an octonionic ket,
then the equality of &a 1 [(Z ls& &s I ) I P&] with

P (& a ( n& )(&n[ P& ), which requires associativity,
will not be true in general in an octonionic Hilbert
space. Another theory of observables due to
Jordan, von Neumann, and VAgner'~ is based on
their algebraic properties. In that case octonion-
valued observables become admissible only in the
case of three degrees of freedom. " Octonion-
valued fields with an infinite number of degrees of
freedom can only operate in a nonobservable
Hilbert space. A field-theoretical dynamics, how-
ever, could well have a simpler formulation in
such a generalized (or fictitious) Hilbert space.
The octonion field equations would then imply
definite dynamical relations in the observable sub-
space (representable as an ordinary Hilbert space)
in which the postulates of quantum mechanics
become valid. In this octonionic approach to field
theory, the exactly conserved group which pro-
vides both the parafermion and the parton prop-
erties of quarks and the invariance of observable
states under this group follow naturally from the
theory.

In a previous publication' it was shown how an
octonionic Hilbert space with complex scalar
products incorporates an automorphism group
SU(3), which leaves the complex subspace and the
scalar product invariant. It would be tempting to
identify this group with the physical unitary-spin
group SU~(3) as suggested in Ref. 10 were it not
for the fact that such a group cannot be broken
without altering the underlying algebraic structure
and the scalar product defined over it. Therefore
we identify the exact SU(3) of the octonionic Hilbert
space with the exactly conserved SU(3) group of
three-triplet quark models. %e shall call this
exactly conserved SU(3) group the C-spin group
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and denote it as SUc(3), where C alludes to color,
charm, and Cayley (since in our formalism it
arises as the automorphisms of Cayley algebra).
The exactness of SU(3)c in the color-quark scheme
of Gell-Mann makes it equivalent to a theory of
para-Fermi quarks. "' However, the Han-Nambu
model is not equivalent to the usual para-Fermi
theory of quarks since the Green component fields
of a paraquark field operator are assigned dif-
ferent quantum numbers. ' Below we shall show
that it is possible to incorporate the Han-Ng. mbu
model as well as the other three-triplet models
within an "exceptional" realization of para-Fermi
field theory.

In the octonion approach, the split octonion
algebra provides us with a new version of the
Klein factors in the Green decomposition of a para-
Fermi field of order 3." The three Klein factors
are replaced by the three "transverse" split
octonion units Q, discussed previously. "'" They
are defined by fixing a longitudinal" imaginary
unit e, for the purpose of representing translations
in an octonionic Hilbert space. Thus, a transverse
sylit octonionic field ean be regarded as a para-
fermion of oxder 3. Because of the nonassocia-
tivity of the underlying composition algebra, the
states created by such a field mill not be observ-
able. This follows not only from the postulates
satisfied by observables" "but also from the
absence of a satisfactory method for defining ten-
sor product states among nonassociative state
vectors to represent composite systems in such a
way that the observables associated with different
constituents commute with each other. This dif-
ficulty even arises for which associativity holds. "
On the other hand, if quarks are described as
parafermions in the normal complex Hilbert space
with the usual Klein operators, they will obey the
cluster property7 and be observable, barring very
special dynamical conditions. '"

Let us now see how an observable subspaee a-
rises. W'ithin the Fock space spanned by vectors
that are obtained by repeated applications of the
octonionie parafield, there will be states which
are longitudinal (linear combinations of 1 and e,).
Those form a longitudinal subspace H~ of the
octonionic Hilbert space H . Now, since the
ground field for the longitudinal states is asso-
ciative, we expect H~ to be spanned by observable
states. It turns out that states in H~ are singlets
with respect to SUc(3) if the para-Fermi fields
are taken as quark fields. Nonsinglet multiplets
of SUc(3) occur in Hr =H H~ and are desc—ribed
by state vectors that have oetonionic transverse
components, hence they are unobservable by our
criterion. The Green decomposition of a quark
field can now be understood as a decomposition in

the 3-dimensional C-spin space with the octonionic
split units Q„Q„Q, referring to three C-spin
directions (or to the color directions in the color
space of Gell-Mann). With the substitution of uq

for the Klein operators the C-spin space becomes
identical with transverse octonion space which
admits SUc(3) as a group of automorphism. "'"

II. OCTONIONIC QUARK FIELDS

From the octonion units e„.. . , e, we form' '"
the split octonionie units

s, =-2(1+ie,),
s„=-', (e„+ie„„) (n=1, 2, 3),

which together with their complex conjugates
(obtained by changing the sign of i) satisfy

Qo =Qo~ QoQo=02= A

Qo Q~ = Q~ Q(~) = Qg y

Qg Qm =

&gran

Qn ~

Q~ Qo = Qo Q~ = 0,

(~a)

(3b)

(3c)

Rg =KoQo+Ko+Q(~)~

W'r =g (m„u„+ Se„*up)
(3b)

where cu (n =0, 1, 2, 3) are complex numbers. We
have

QoS'=m Q =ZV, Qo~S'=te~~Q~=aV~.

Note that with respect to SUc(3) which act on u„,
longitudinal octonions are C-spin singlets, while
u„and u„* belong respectively to the (3) and (3)
representations. W'e shall introduce field op-
erators that act on the vacuum

a=u, [o)

represented by a longitudinal octonion, with (0)
the ordinary vacuum acted upon by complex fields
and Q, the octonionie vacuum on which Q' operate.
Now consider three Fermi fields q', q', q3 as-
sociated with three C-spin quarks. The nine
quarks will be represented by the complex spinors

and the complex-conjugate equations. Thus, the
transverse elements of the octonion algebra can
be regarded as three Fermi annihilation operators
Qy Q2 Qs and creation operators Q,*, Q,*, Q,* which
cannot be represented by matrices as they are not
associative. The vacuum state for this finite-
dimensional system is the longitudinal idemyotent
octonion Q, . A general real oetonion W can be
decomposed into a longitudinal and transverse part
according to

(3a)

with
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q,"(x), where the upper and lower indices refer to
C-spin and quark indices, respectively (q, =6', q,
=X, q, = X}. We have, at equal times,

[q,""'(x),q';"l(V)) = 6""6;6(x-y),

(qI '(x), q';"'(y)3=0.
(6)

Construct the transverse octonionic fields

q, (x) = q", (x)u„+ [q", (x)]cu+,

[q", (x)]c=cq,"(x)C '. (Va)

uo@g qf un i

gc, =ups, =q," u„*= Ce,[e-,(e,f, )]C '. (6)

The quark field operators g, are assumed to sat-
isfy Dirac equations of '.he form

~„s„b =~ 0 g~„(M-„"g,) .*
=~)A &&pB (urn@)un ~

where M„" are transverse octonion gauge vector-
meson operators" related to the C-spin octet
gauge mesons B„"by

M&=B„""u„, M„"u~=0 (or B„""=0). (10)

The massless color mesons also obey a Yang-
Mills-type equation. Note that we take I3„"as
boson operators that are singlets with respect to
SU+(8). Then M„" become parabosons of order 3.
The model has the structure of a renormalizable
gauge field theory and the relations (6) remain
valid. The fields q,

" are then fermions, while the
fields g, become parafermions of order 3 because
Eq. (6) can be interpreted as a Green decompo-
sition, "

g = Q!+ Q~ + Q3 Q" = q" u (n = 1 2 3)

where, because of Eqs. (2c) and (6), the fields P,"
commute among themselves at equal times. The
same considexations apply to the three components
of a given M„", namely B„'"u„B„'"u„B3"u, which
anticommute. Since q", and B„are normal fer-
mion and boson operators, respectively, the
octonion factors u, play the role of Klein operators
which convert fermions and bosons with normal
commutation relations into anomalous ones. '"

Now the Green decomposition of a field P, makes
sense only if the Green component fields P,

"

Here C is a unitary operator that operates on the
fields only and superscript C denotes charge con-
jugation which reduces to Hermitian conjugation in
the Majorana representation of y matrices. 4,. is
then a real octonion with coefficients that are
Hermitian fermion operators, so that

CQ=u, Ct0) =&, C4', C '= e, [ e(-e,%', )J. (Vb)

Introduce the operators

(n = 1, 2, 3) carry the same (observable) quantum
numbers such as spin, charge, hypercharge, etc.
Since we want the spinor fields $, (i= 1, 2, 3) to
transform like a unitary-spin triplet, we shall
assign them the respective quantum numbers of
6, ~ and A. quarks of Gell-Mann. Therefore the
Green component fields g must have the same
quantum numbers as g, . However, the Green
component fields g have the form Q,

"= q,"u„
(n = 1, 2, 3) and hence the generator of a symmetry
transformation acting on Q,

" will have two parts,
one part acting on the complex component fields
g and the other acting on the units u„. Hence
the generators of hypercharge and the third com-
ponent of isospin acting on P, (or Q,"}will decom-
pose as

where I, and I," s,ct on the fields qf (x) and the units
u„, respectively. Note that since we want the
automorphism group SUc(3) of our Hilbert space
to be exact, the quantum-number assignment to
the units u„must be compatible with exact SU&(3).
Since we want the fields P„P„and P, to have the
same quantum numbers as O', X, and A. quarks,
Ig =Diag(~@~-2q 0) and Y =Diag(g, s~-g). However~
for this choice of(I3' and Y' there axe several
choices for I„Yand I,", F" consistent with
SU, (3):

(1) Choose I,'=I„Y",= Y,', i.e. I"=Y"=0. In
this choice the fields g and q,

" (u=1, 2, 3) are
assigned the same quantum numbers as the field

Then one can interpret the indices n in q,
"u„

=P" as the color indices of Gell-Mann, i.e.,
SUc(3) becomes equivalent to the color SU(3).

(2) Choose I,"=I, [I,=(—'„-2,0)] and Y,"=Y
[Y = (~, 3, -3)]; then the fields q", are assigned the
same quantum numbers as Han-Nambu quarks,
l.e.,

I =I"+ I3 Y= Fu+ Yc
3 3 (18a)

@=Is+a Y=Q'+0" =0"+0', (13b)

where operators with superscripts u and C act on
the un1tary-sp1n indices and C-sp1n 1nd1ces~ re-
spectively. Therefore with this choice SUc(8}
becomes equivalent to the SU(3)" group of Han
and Nambu. 4'

(3) Choose I,"=I, + 2 Yc, Y"= 0. Then Q = Q"+I.ec

[I ~~=I~+ —', Y = (1, 0, -1)], and the charge assign-
ment scheme becomes equivalent to the 3-triplet
model with SU(3)'SO(3} symmetry, "'where the
SO(3) group corresponds to an SO(3}subgroup of
SU (8) with I.,= I., =I, + ',Y-

Thus we see that there is a large degree of free-
dom in choosing the generators I,"and Y" such
that the observed unitary-spin multiplets have the
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right quantum numbers. However, if we impose
the condition that the complex component fields
q", (x) all have integer charges (0, +I) then the Han-
Nambu scheme is uniquely selected.

III. MULTIQUARK STATES, OBSERVABLE SUBSPACE

and

0 ( )[4 ( )g, ( )] = 0-~ ( ) „
where the complex fields g,» are given by

P,» (x) = q,"(x)q~ (x)q~~(x) e

(19)

(20)

Having discussed the possible quantum-number
assignment schemes, let us now discuss the Fock-
space properties of our transverse octonionic
field operators g, . The states $, Q and gQ lie in
the space Hr, as do the diquark states (P, $, )Q and
(rgb)Q. Note that the operators [g, (x)]' no longer
vanish as they would for a normal fermion oper-
ator. On the other hand, the boson operators

V„(x)= y, (x)y,'. (x)

create quark-antiquark states that are longitudinal
octonions, hence SUc(3) singlets, since we have
in the Majorana representation

VU(x) =Q Q q,
" (x)q, +(x)u„u„*

&
X ~+ XNO (15)

V„(x)Q = -y„(x)Q,
where

(16)

[g, (x)yl(x)] P» (x) = q, i~ (x)ug- (16)

P„(x)=Q q,"(x)q",*(x) (17)
n

are ordinary complex boson operators belonging
to the singlet representation of SUc(3) and the
(octet+ singlet) representations of the physical
SU„(3). If the suppressed quark spin indices are
also added, the states (16) can be resolved into
C-even, spin-zero states and C-odd, spin-one
states in H~.

We can also form fermion states in H~ by apply-
ing the paraquark field g (or g*) three times on the
vacuum at the same point. We find

so that we obtain the nonzero longitudinal states

and

Q-&(x)[g, (x)p, (x)] IQ =&&~a (x) Q

-([0*( )t*( )I C( 6Q =4*.( ) Q.

(21a)

(21b)
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The states (21) are SUc(3) singlets and contain
octets and decuplets with respect to the physical
SU„(3), since the q,

" are normal Fermi operators
corresponding to color quarks or Han-Nambu

quarks depending on the charge assignment scheme
and g,» is symmetric with respect to the com-
bined quark and spin indices. Hence these states
which lie in the observable H~ belong to the
correct 56-dimensional representation of SU(6).
Now any combination of Q,z of Eq. (17) and P,»,
gf» of Eq. (20) will create states in Hz„, and hence
will create other observable states, by acting on

the vacuum Q of Eq. (5). All such states will be
SUc(3) singlets, while q, qq, and qqqq types of
states will all be in the unobservable H~. We
should also note that while in the paraquark
scheme' ' it is possible to create, by repeated
applications of the paraquark field operators,
bosonic and fermionic states with noninteger
charges, the observable fermionic or bosonic
states in our scheme all carry integral charges
for the various charge assignment schemes dis-
cussed above.
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We generalize the scale-invariant parton model to describe fixed-point and asymptoticaQy
free gauge and nongauge theories. Q2-dependent scaling laws for the moments of vW2 are
derived. In fixed-point theories the moments scale as powers of Q2, while in asymptoticaQy
fx'ee theories they scale as powers of lnQ . The behaviors of the elastic form factors, the
ratio Os/a+, and the mean-squared transverse momentum of hadron secondaries are dis-
cussed in the various theories. The experimental study of these quantities should distin-
guish clearly between the conventional parton-model and asymptotically free theories of
str ong interactions.

I. INTRODUCTION

It has become clear that the light-cone behavior
of renormalizable field theories must differ from
the light-cone behavior of free fields. This is due

to the infinite renormalizations necessary to de-

fine physical quantities in field theories with di-
mensionless coupling constants. Roughly speaking,
the resolving power of an external probe can never
be sufficient to uncover all the structure in the in-
teracting fields. To study the short-distance char-
acter of interacting fields one defines a coupling


