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The null results in the search fox magnetic monopoles and the experimentation exhibiting
dipolar flux quantization as obtained during the last two decades mQdly invited a withdrawal
from the Dirac-Schwinger symmetry hypothesis to the earlier position of an essentially
asymmetric set of MaxweQ equations. In this paper we attempt to account for the null result
by a symmetry alternath e that accommodates the persistence of this Maxwellian asymmetry.
It is shown that a topological symmetry, more hierarchal in nature, can comply with the
absence of xnagnetic monopoles. This alternative then places the law of flux conservation on
the same fundamental footing as the law of conservation of electric charge. The ensuing law
statements are now global in nature and correspondingly stronger in content than the tradition-
al local statements. The physical implications of these global conservation statements are
examined in relation to the existing observational evidence of dipolar flux quantization.

I. INTRODUCTION

The search for magnetic monopoles has received
much attention in the past decade. Extensive ex-
perimental investigations have been made to put
the existence of monopoles in evidence. Although
these efforts had interesting instrumentational
spin-offs, they were not rewarded with the dis-
covery of what should be regarded as a new ele-
mentary particle with magnetic-monopole proper-
ties. Along with the theoretical publications elab-
orating the arguments supporting the existence of
the magnetic monopole, there has been no lack of
publications delineating conflict situations between
existing theory and the magnetic-monopole hypoth-
esis. Yet, the most eloquent contributions to this
problem are undoubtedly the experimental studies.
The efforts to generate magnetic monopoles in
large accelerators have not yielded:, any positive
results. ' Likewise, cosmic-ray observations
have failed to produce conclusive evidence that
magnetic monopoles do exist. ' Finally, the search
for magnetic monopoles that could be trapped in-
side magnetic materialss' only corroborates the
mentioned earlier experiences. (The test samples
that were used have ranged from ocean-bottom
samples' to moon rocks. ')

Summarizing the results of this extensive ex-
perimental search, it seems that nature conveys
to us a message suggesting that no magnetic mono-
poles manifest themselves in that part of the uni-
verse that is available to the probing of our pres-
ent detection gear.

So long as new disclosures to the contrary are
not forthcoming, we may, fox the pux"pose of this
article, extrapolate the preliminary conclusions
of these experimental investigations: Let us as-
sume that magnetic monopoles do not constitute a

realistic building block of nature. More specifical-
ly, let the nonexistence of magnetic monopoles be
taken as a global truth that should be expressed
by the appropriate mathematical criteria that are
to be imposed on the relevant Maxwell fields.

The gist of this assumption is tacitly subsexibed
to by a large number of physicists, and at first
sight there is hardly a dramatic element in this
statement. In fact, does not this statement imply
a retur'n to earlier values that already failed us in
the past by not yielding further insight? The main
point of the present paper is to show that the an-
swer to that question may well be "no." To sub-
stantiate the claim that the absence of magnetic
monopoles was never fully exploited in the past,
the monopole symmetry concept will be contrasted
with some topology-oriented considerations sup-
porting the older point of view.

In the sequel, different magnitudes of quantized
magnetic-monopole strength and quantized flux
units will be frequently mentioned and referred
to. As general background information, we may
recall that monopole strength g is measured in
terms of total flux P emanating through a closed
surface that contains the monopole; it follows that

g and P are related according to $=4wg (cgs) or
P= p, ,g (mks). Since the relations between hypoth-
esized, predicted, and observed quantized data
are replete with factors of 2, their mutual x ela-
tions are listed in Table I for easy reference.

II. AN ALTERNATIVE TO THE DIRAC-SCHVfINGER
SYMMETRY ARGUMENT

Let the 2-form E represent the Maxwell field
E, 8 (electric field and magnetic induction), let
the 2-form 6 represent the Maxwell field, H, D
(magnetic field and electric displacement), and
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TABLE I. The table gives the magnitudes for the hypothesized Dirac and Schwinger magnetic
monopoles, the predicted London flux unit, and the observed flux unit. The Dirac I equals the
Planck h divided by 2n, c =the light velocity, e =electronic charge. For comparison the last
column gives all values expressed in mks units of flux or equivalent flux, whereas the values
in the other columns are expressed in cgs units.

Flux

Flux in terms
of equivalent
pole strength

Pole strength
in terms of

Pole strength equivalent flux
Equivalent

flux

Dirac 5

London 3

Schwinger
Observation 4

hc/e
~ ~ ~

hc/2e

I c/2e
~ ~ ~

K c/4e

hc/2e

I'c/e

hc/e

2hc/e

h/e
h/e
2h/e
h/2e

let the 3-form C be the four-current density. If
the symbol d is taken to be the exterior derivative,
the two sets of Maxwell equations can then be suc-
cinctly written as

dF=O,

dG=C.

The Dirac'-Schwinger' argument addresses itself
to the asymmetry of these equations. They tenta-
tively complement these equations by assuming the
existence of a magnetic four-current, say, C'.
The equations then become

dF=C',

dG=C . (2)

Since nature so far supports the equations (1)
rather than the equations (2) and since we make
this hypothesis the cornerstone of our present con-
siderations, let us examine more closely the sym-
metry alternatives that conceivably could support
the set (1).

Since dd=-0, it follows from both (1) and (2) that
dC=O: local conservation of electric charge. Con-
versely, the existence of dC=O does not yet
imply the existence of a field G such that dG=C.
Yet, if all cyclic integrals of C vanish, one may
infer according to de Rham's theorem' that indeed
a field G exists such that dG=C.

The stronger statements" that all cyclic inte-
grals of C vanish, gC= 0, may be called the global
conservation law for electric charge in contrast
to the local conservation law, dC=O; C is now
called exact.

Similarly, the local statement dF=O in (1) may
be taken as the local conservation law of flux. The
fact that dE=O, everywhere at all time, does not
yet imply the existence of a field A (say, vector
potential} such that dA=F. However, if all cyclic
integrals of F vanish (gF=O), one may infer,
again according to de Rham's theorem, that indeed
a field A. exists such that dA=F; E is now called
exact.

By making this mild but nontrivial distinction
between local and global conservation, and by
making the assumption that the conservation laws
of flux and electric charge are indeed (strong)
global conservation laws, one can uncover a sym-
metry underlying the equations (1) which is in
sharp contrast with the local-symmetry assump-
tion of the Dirac-Schwinger equations (2).

The new symmetry picture is one of an hierar-
chal nature as illustrated by the following diagram:

A= I-form, G= 2-form,

F= 2-form(exact), C= 3-form(exact).

The exactness of F and C expresses the fundamen-
tal physical observations known as flux conserva-
tion (specifically global conservation as inferred
from Faraday's induction law) and electric-charge
conservation. Note that the field G shares with
the field A that both are defined modulo an exact
contribution, a remarkable feature that- resolves
considerable controversy associated with the inter-
pretation of the fields D and H. 'Hence, A and G
exist by virtue of the special physical properties
attributed to the fields F and C. (See Ref. 9.)

In addition to the presented distinctions between
the 2-forms F and G, it should also be mentioned
that the forms F and G have opposite parity. " It
means that charge polarity can be related to en-
antiomorphism, either for electric or for mag-
netic charge, but not for both simultaneously.
Time reversal presents other difficulties (see,
e.g., Schiff, Ref. 11).

Finally, dF=O, everywhere and at all times,
does imply )F= 0 if the manifold over which F is
defined is compact and simply connected. [Simple
connectedness of space-time is meant to imply
1-connectedness (contractable circles), 2-connect-
edness (contractable spheres), and 3-connected-
ness (contractable 3-spheres}. ] An extrapolation
of the given statements in a cosmological and
microphysical sense thus implies far-reaching
commitments concerning the topological nature
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of space-time and the fields it carries (see Secs.
III, IV, and V}. We, therefore, retain this non-
trivial distinction between local (weak} and global
(strong) conservation laws because mathematics
permits us to be discerning for the useful purpose
of classification. In fact, only the use of these
distinctions enable us to make the otherwise hid-
den hierarchal symmetry (3) of the classical equa-
tions (1) clearly visible.

In the sequel, further topological features will
be discussed comparing the physical relevance and
merits of the motivation leading to (2) versus the
motivation leading to (1) and (3). For the histori-
cal perspective it is important to note that the
first suggestions of quantized magnetic monopoles
were made before de Rham's theorem had emerged
as a major milestone in modern mathematics.

III. GLOBAL ASPECTS OF QUANTIZATION

See. II. Its rationale is based on the point of view
that topology enters physics through the families
of integration manifolds that are generated by
physical fields believed to be physically relevant.
Space-time is the arena in mhich these integration
manifolds are embedded.

It was necessary to delineate this point of view
because it is not the only choice one can make.
The Misner-Wheeler wormhole theory of electric
charge is a specific example of a different choice;
there space-time itself is endomed mith topological
structure relating to physics. The latter proce-
dure affects the embedding possibilities of inte-
gration manifolds by virtue of the topological
structure induced by a space-time so defined.
Dirac's unidentified singularity line connecting
magnetic monopoles of opposite polarity is another
example of topologically structuring space-time
itself for the purpose of physics (see Sec. IV).

Since flux conservation in conjunction with (the
observed phenomenon of) flux quantization is most
important for many applications, a few words are
in order concerning the nature of quantization.

The conditions of single-valuedness and square-
integrability of wave functions are typically global
conditions. The asymptotically equivalent render-
ing in terms of integrals over closed paths of in-
tegration has likewise very specifically global con-
notations. The procedure demands that the do-
mains of integration are specified with adequate
topological detail. In fact, wherever a field be-
comes, say, tmo-valued, one should branch the
integration chain in such a may so as to make the
process of integration well defined. A conspicuous
example of this procedure is provided by the two-
valued momentum field and the Bohr-Sommerfield
conditions of quantization (see Ref. 9). The asymp-
totic rendering of quantum mechanics does not
diffex in this respect from the more encompassing
renderings of Heisenberg and Schrodinger.

I et us nom further specify the situation mith

respect to See. II in view of applications in the do-
main of elementary particles. We assume that
fields exist over space-time; they are not part of
space-time. This means that notions such as
mormholes, "as a possible source of electric
charge, are thus excluded from the present con-
siderations. More specifically, in the miexophysi-
eal domain, space-time will be assumed to be
locally simply connected. Yet, fields, through the
properties with which they are endowed, may mell
define multiply connected manifolds of integration
embedded or immersed in the simply connected
space-time.

Please note that this specification constitutes a
choice over and above the stipulations made in

IV. DELINEATION OF CONFLICT SITUATIONS
THROUGH GLOBAL REQUIREMENTS

Most discussions of the magnetic-monopole hy-
pothesis start from a working premise that tradi-
tional electromagnetic theory can live in reason-
able coexistence with the new alien element of
magnetic charge. As soon as the magnetic mono-
pole is absent, the altered equations automatically
reduce to the familiar and proven set of Maxwell
equations. We buy this flexibility in treatment at
the expense of a certain global validity of our con-
clusions. Let us further illustrate this point.

In physics, the vector potential is traditionally
introduced as a local quantity; one infers that an

A. exists if d E=0. Globally, however, dE= 0 is a
necessary but not a sufficient condition to con-
clude on the existence of an A. The global condi-
tion for A, to exist is the stronger requirement
that all cyclic integrals of F vanish (fF=O). The
tmo requirements become identical, for instance,
if all integration domains are 1-, 2-, and 3- (i.e.,
simply) connected and compact.

For actual embeddings of physical structures in
space-time one can neither guarantee compact-
ness nor simple connectedness. The simple and

elementary example of a multiple-loop solenoid
vividly illustrates the practical need for multiply-
connected integration domains. Conclusion: It
seems we do well in retaining the distinction be-
tween the stronger ()F=O) and the weaker (dE=O)
condition.

At first sight there is no dramatic distinction in
actual practice. Although it is true that the Fara-
day-Maxwell law of nature is expressed by f F= 0
rather than dF=O, the latter is an only slightly
diluted version for convenience. Physicists have
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a, predilection for thinking in terms of differential
equations; the global problems usually return in
the form of boundary conditions.

Now going a step further, it follows that when-
ever one involves A in a quantization procedure,
one is committed to a globally defined A because
the global notion of quantization so requires. Let
us apply these notions to the phenomenon of flux
quantization in superconducting rings. London
(footnote, p. 152 of Ref. 13) predicted this effect
by requiring that $A equals a multiple of h/e.
Many years later the effect was experimentally
verified, "but the flux unit appeared to be h/2e
rather than h/e, a fact that Onsager" related to
the pair-forming in superconductors.

In the vein of the present discussion, one should
thus conclude that since the London-Onsager quan-
tization condition requires a global A and since a
global A exists only if f F= 0, it follows that flux
quantization is formally incompatible with the mag-
netic-monopole hypothesis. " Let us hang on to this
as a preliminary conclusion and see how it com-
pares to Dirac's procedure for the quantization of
magnetic pole strength.

Dirac postulates the existence of magnetic mono-
poles, and since this hypothesis defies the state-
ment f F=0, he permits a singularity line (not
physically identified) to pierce through the surface
enclosing a magnetic monopole. The "enclosing"
surface is now no longer topologically equivalent
to a (closed) sphere, but rather to an open sphere
plus a point that is caused by the singularity line
"hole" in space. The integral over the open sphere
is taken as the magnetic pole strength and its mag-
nitude is oppositely equal to the contribution of the
point singularity. Wave-function uniqueness gives
the quantization.

It thus follows that the Dirac procedure still
honors the basic relation $F=O; therefore, a
gobally defined A still exists, provided A is
equipped to account for the assumed singularity of
F (that can be done by filling up the singularity
line with space and an intense flux). The loop in-
tegral of A taken over a small circle around the
singularity line now equals the magnitude of the
total flux emanating from the pole. An identifica-
tion of the singularity line thus means that the gA
is physically the flux return through the singular-
ity line. Note that according to Table I, the pole
strength so quantized precisely corresponds to
London's quantized flux, because the two proce-
dures become identical after the Dirac singularity
line is so identified. Of course, an important phys-
ical distinction remains: London's flux confine-
ment can be physically substantiated (Meissner
effect), whereas the flux confinement in Dirac's
singularity line has to be postulated.

Hence, a Dirac magnetic-monopole pair may
be interpreted as an anomolously shaped magnetic'
dipole. In this form, the hypothesis does not vio-
late any of the traditional classical statements
[Eqs. (1}, (2)] as discussed in Sec. II. It follows
that the symmetrized equations (2) of Sec. II are
not even necessary to obtain this result. Some
essentially equivalent remarks can be found in the
literature (see, for instance, Goldhaber, Ref. 16,
Sec. IIIC}.

After the first magnetic-monopole experiments
yielded a negative result, Schwinger' suggested a
different quantization procedure leading to twice
the Dirac pole strength. Schwinger's approach
rests on the equations (2) of Sec. II. However,
Peres" showed that the same result can be ob-
tained with a double-singularity line. The surface
enclosing a magnetic monopole now is pierced by
two lines and there are two excepted points. In
fact, by admitting more singularity lines, one can
make magnetic monopoles arbitrarily strong; they
then become gradually unobservable by virtue of
their extremely high binding energy.

The essence of all this may be succinctly sum-
marized as follows: The observed London flux
quantization demands the existence of a globally
defined A. The existence of a global A is formally
incompatible with the existence of isolated mag-
netic monopoles. Through the artifact of singular-
ity lines one may still introduce monopoles (with
strings attached) that are compatible with a global
A. A physical identification of the singularity line
equates a Dirac monopole pair to an anomolously
shaped London dipole. The Schwinger monopole,
on the other hand, may depend on either the sym-
metrization (2) of Sec. II (thus questioning the fun-
damental significance of the London flux quantiza-
tion), or in the sense of Peres" the enclosing sur-
face needs to be pierced by two singularity lines
so that the two singular points add up to twice the
Dirac pole strength. One can thus, if one wants
to, increase the Dirac pole strength by an arbi. -
trary integral factor.

This conflict situation now precipitates a ques-
tion of principle: To what extent may we proceed
in physics using the somewhat arbitrary notion
of physically unidentified singularity lines, and
more seriously, can we permit such procedures
to interfere with the presently rather firm body
of knowledge relating to flux quantization and quan-
tum interf erometry?

This painful contrast is raised not merely for
rhetoric. It involves a major point of current phys. -
ical philosophy. Unidentified singularity lines re-
late to magnetic charge as wormholes" relate to
electric charge; both notions make space-time
itself multiply connected.
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It is now instructive to compare corresponding
policies in mathematics. Singularities are math-
ematical obscurities unless properly identified.
The oldest examples are residues and Riemann
surfaces in complex analysis. The natural gen-
eralization of these concepts for space-time fields
are periods and Betti numbers of integration do-
mains.

The residue relates to an integration domain of
a given complex function; it is not an a priori
topological feature of the complex plane. The
Riemann surface, on the other hand, is an exten-
sion of the complex-plane concept to accommodate
multivalued functions.

Physics is confronted with the additional com-
plication that space-time has to serve a wider ac-
commodation than the complex plane. It thus
seems undesirable to prejudicially equip space-
time with an a priori topological structure that
may fit one physical feature while interfering with

another. It is not unreasonable to suggest that the
properties of space-time can only be known to us
through what really exists in space-time. In the
sequel, it will be attempted to honor this philoso-
phy.

A viewpoint that is rather opposite to the philoso-
phy that was just outlined has been very eloquently
described in a (German) monograph by Wheeler. "
In this booklet Wheeler examines the status of the
alleged Einstein view to interpret much of basic
physics in terms of geometry. Wheeler and his
school have added topological considerations as a
necessary ingredient to complement the older
local-geometric investigations of the late twenties
and the early thirties. This geometric approach
when carried to the extreme is sometimes re-
ferred to as "geometric monism. " The accept-
ance of singularity lines, which are really holes
in space, is not normally categorized as a mani-
festation of geometric monism, yet it cannot be
denied that there exists a close family tie. These
methods do stand in sharp contrast to the more
epistemologically oriented approach attempted in
this paper.

However, reading Wheeler one need not fear of
undue prejudice towards geometric monism. The
two viewpoints are well delineated. In support of
this opinion, let me cite Wheeler's own words
where he characterizes the approach that seems
closer to a strict epistemological procedure:
"Space is to be regarded as the carrier, not as the
structural substance of events. Fields in this less
ambitious conception have their own degrees of
freedom over and beyond those of geometry. "
(Translation from p. 64 of Ref. 18.)

Note that the adoption of this point of view shifts
the topological emphasis from space itself to the

fields that are assumed to exist in space. The
latter feature constitutes a basic distinction of this
presentation with respect to the Wheeler school.

V. ON THE NATURE OF FLUX CONSERVATION

The assumptions underlying the approach pre-
sented here resemble in many ways the well-es-
tablished traditional point of view. There is only
one, on the surface minor, distinction: The global
aspects of the electromagnetic laws are taken far
more seriously than is customary in traditional
theory. These extensions, beyond the regular
scope of the theory, demanded distinctions be-
tween local and. global aspects of conservation and
subsequent decisions as to whether or not the laws
at hand should be regarded as local or global.
Then it appeared that the substantiation of any such
extension requires a specification of the topologi-
cal features we normally attribute to space-time
and the fields therein. The working premise
adopted here was one of a locally simply connected
space-time. The fields defined over this space-
time generate, through their properties, topolog-
ically well-specified manifolds of integration. It
was also noted that there exists a trend, as ex-
emplified by the Dirac singularity lines and the
Misner-Wheeler" wormholes, to endow space-
time itself with an a priori multiple connectedness.
The London procedure for flux quantization, how-

ever, may be categorized as one that subsumes a
locally simply connected space-time. The Dirac
approach becomes the London approach as soon as
the singularity line ("hole" ) in space is filled up
with space plus a flux return.

In the course of action adopted in this paper, we
have biased our thinking towards the London-type
procedure. As an upshot we find that the law of
flux conservation, which always enjoyed a great
de facto recognition, now su'ddenly emerges as a
law of equal fundamental significance as the law
of conservation of electric charge. Since this is
a result of our perhaps subjective line of reason-
ing, let us examine more closely what conserva-
tion of flux means in the sense of the integral state-
ment )F=O for all cyclic space-time domains of
integration.

First of all, it should be noted that $ E= 0 not
only covers purely spatial domains of integration
but it also covers space-time domains of integra-
tion, thus directly relating to the Faraday-Maxwell
induction law.

For the purely spatial domains, Faraday envi-
sioned for magnetic flux the ingenious model of
tubes of force, which in the case of conservation
are closed onto themselves. These tubes of force
can be oriented in the sense of aligning their cir-
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culation directions. It follows that we can orient
and assemble tubes of force by tying a "string"
around them. Conservation of'magnetic flux, in a
more specific sense, now means that we cannot
pull tubes of force out of the string, neither can
we add new ones. The superconducting ring pro-
vides a physical realization of such a string by
virtue of the Meissner effect.

Since flux enclosed by a superconducting ring
-is known to be quantized, one may further con-
clude for the given conditions that all tubes of
force have equal magnitude of ~h/2e~; similarly,
all charges inside an enclosure are thought to
have equal magnitude ~e~.

It is seen that this somewhat extended Faraday
picture covers rather nicely the case of static
magnetic flux. The picture is also compatible for
the case of a normally conducting solenoid with
constant current, provided we take the complete
current circuit plus source as the loop that con-
fines tubes of force. Note that the current is now
much more spatially dispersed than in the case of
a superconductor; the feature of dramatically con-
fining an integral number of tubes of force inside
a single "string" is not now apparent.

Magnetic flux is just one, and perhaps the most
frequently recognized, manifestation of flux. The
cyclic integral )F=O can also involve surface
parts of a space-time nature that require an inte-
gration of the electric field component E of I .
The Sosephson" a.c. effect intriguingly suggests
that the notion of a flux unit h/2e retains a validity
for the space-time domain, also. The expression

r
1/v

df E ~ dr=h/2e,
0 1

with v=frequency and f,'E ~ dr=junction potential
V, is an integral over an open space-time surface
part, yieMing the relation

which has provided very accurate h/e values. '0

In other words, the Josephson junction may be
seen as a device for slipping quantized tubes of
force in and out of a superconducting ring so that
the cyclic condition )I"=0 is always met.

A normally conducting ring (unlike a supercon-
ducting ring without Josephson junction) permits a
continuous change of tubes of force it encloses.
The dynamics of the quantized tubes of force can
now be seen as governed by the following conser-
vation condition: The change in the number of
quantized tubes of force enclosed by the ring
equals the number of quantized tubes of force trav-

cling through the ring confinement. This state-
ment is an almost exact replica of conservation of
charge, except for the nature of the objects being
conserved. Since both statements relate to count-
ing procedures, they may be expected to be topo-
logical in nature; it also means that they are met-
ric-independent. '

In the more traditional mathematical language,
the conservation of flux may be thus fox mulated:
Let the vector density n denote the number of
tubes of force per unit area, and let the motion of
the tubes of force be given by the velocity vector
field u. The change in the number of tubes of
force through the surface o with boundary 8 g is

d n~dg .
dt

The number of tubes of force traveling through the
boundary eo ts

n uxor= nxu dr.
80 80

Conservation means that the sum of these expres-
sions is zero. After multiplication with h/2e, the
statement is simply Faraday's law of induction.

The presented arguments are meant to illustrate
(not to prove) the universal connotation of flux con-
servation. In discussions with many physicists, I
have found that one can think of situations which ar e
not easily reduced to a universal statement $E= 0.
For instance, consider a collection of electrically
charged plastic spheres. The spheres collide and
exchange angular momentum. How is flux con-
served'P

The problem fs one of identifying the electric
field relating to changes in rotation resulting from
angular momentum exchange. The changes in con-
vection current are due to mechanical forces.
Yet, in microscopic detail, electric forces, among
other forces, do play a role in communicating an
acceleration to the convected charges. Do all
these forces add up so that the conditions of Fara-
day's law are metV This puzzle suggests a ma-
terial-independent feature.

I.et us leave this problem unresolved at this
time; it is good to know that something can be
done to improve our understanding of a law about
which we thought we knew everything.

VI. CONCLUSION

The absence of magnetic monopoles generates
intriguing physical perspectives, provided this
absence is taken to be truly fundamental in nature.
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This negation of a suspected property can be more
fully appreciated as a constructive element in the-
ory if in physics, as in geometry, the global view-
point finds more general acceptance.

Since flux conservation emerges as a law of
equal fundamental importance as charge conser-
vation, one may now think of applications in the
microphysical domain. The conservation of quan-
tized flux in elementary-particle events conceiv-
ably could be related to the empirical conservation
laws of lepton, muon, or baryon numbers. The
process of P decay then requires an evaluation of
the neutrino concept from a point of view of flux
conservation. The existence of two neutrino types
(muonic and electronic), with a same spin ~,
strongly suggests the need for an additional criter-
ion to characterize their distinction. The separa-
tion of angular momentum and flux conservation
in the microphysical domain will, however, re-
quire more detailed topological specifications of
their associated fields.

It was judged wiser to refrain from these more
speculative aspects so as to have flux conserva-
tion stand on its own as an independent fundamen-
tal law of nature.
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