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It is shown how finite-temperature effects in a renormalizable quantum field theory can
restore a symmetry which is broken at zero temperature. In general, for both gauge
symmetries and ordinary symmetries, such effects occur only through a temperature-depen-
dent change in the effective bare mass of the scalar bosons. The change in the boson bare
mass is calculated for general field theories, and the results are used to derive the critical
temperatures for a few special cases, including gauge and nongauge theories. In one case, it
is found that a symmetry which is unbroken at low temperature can be broken by raising the
temperature above a critical value. An appendix presents a general operator formalism for
dealing with higher-order effects, and it is observed that the one-loop diagrams of field
theory simply represent the contribution of zero-point energies to the free energy density.
The cosmological implications of this work are briefly discussed.

I. INTRODUCTION

The idea of broken symmetry was originally
brought into elementary-particle physics on the
basis of experience with many-body systems.!
Just as a piece of iron, although described by a
rotationally invariant Hamiltonian, may sponta-
neously develop a magnetic moment pointing in
any given direction, so also a quantum field the-
ory may imply physical states and S matrix ele-
ments which do not exhibit the symmetries of the
Lagrangian.

It is natural then to ask whether the broken
symmetries of elementary-particle physics would
be restored by heating the system to a sufficiently
high temperature, in the same way as the rota-
tional invariance of a ferromagnet is restored by
raising its temperature. A recent paper by

Kirzhnits and Linde? suggests that this is indeed
the case. However, although their title refers to
a gauge theory, their analysis deals only with
ordinary theories with broken global symmetries.
Also, they estimate but do not actually calculate
the critical temperature at which a broken sym-
metry is restored.

The purpose of this article is to extend the anal-
ysis of Kirzhnits and Linde to gauge theories,?
and to show how to calculate the critical tempera-
ture for general renormalizable field theories,
with either gauge or global symmetries. Our re-
sults completely confirm the more qualitative
conclusions of Kirzhnits and Linde.?

The diagrammatic formalism® used here is
described in Sec. II. Any finite-temperature
Green’s function is given by a sum of Feynman
diagrams, just as in field theory, except that en-
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ergy integrals are replaced with sums over a dis-
crete imaginary energy. The justification of the
use of this formalism in gauge theories is dis-
cussed briefly.

Section III lays the general foundation for cal-
culations of the critical temperature. Our work
here is based on the observation that a symmetry
which is broken or unbroken in the lowest order
of perturbation theory will remain broken or un-
broken to all orders, unless there is some cir-
cumstance which invalidates the perturbation ex-
pansion. We assume that the theory is character-
ized by a small dimensionless coupling constant
e<«<1, so it might be thought that the symmetries
of the theory are simply determined by the minima
of the scalar-field polynomial P(¢) in the Lagran-
gian, and therefore could not be affected by an in-
crease in temperature. However, at very high
temperatures, powers of the temperature 6 can
compensate for powers of e, leading to a break-
down of the perturbation expansion. The leading
effect of this sort arises from the ¢%6? terms
which accompany single-loop quadratic diver-
gences. Since the theory is renormalizable, and
we work in a renormalizable gauge, all such
terms can be absorbed into a redefinition of the
mass terms in P(¢). Once this is done, the valid-
ity of the perturbation expansion is restored. In
a general renormalizable theory involving scalar
fields ¢;, the change in the effective polynomial
is calculated here as

AP(¢)= &6 % fijue+6(6:0 )i,
+Tr[74ri74rj]}¢i¢j s (1.1)

where f,,, is the coefficient (of order e?) of the
quartic term in P(¢), 6, is the matrix (of order
e) representing the ath generator of the gauge
group on the scalar fields, and I'; is the Yukawa
coupling matrix (of order e) for the scalar-spinor
interaction. (This notation is the same as used in
Refs. 7 and 25, and is reviewed here in Sec. IIL.)
In general a critical temperature is reached at
values of § for which the symmetries of the mini-
mum of P(¢)+ AP(¢) are gained or lost; usually
this occurs when one of the eigenvalues of the bare
mass matrix in P + AP vanishes.

This general formalism is used in Sec. IV to
calculate critical temperatures in three special
cases. The first case is a scalar field theory with
an O(n) global symmetry group; it is found that
the spontaneous symmetry breakdown encountered
at low temperature disappears at a finite tempera-
ture 6., given by

0.= <—§—)V2<—‘M—(Q) s (1.2)

n+2 e

where the quadrilinear self-coupling is taken as
1e(¢,¢,)?, and M(0) is the mass of the single non-
Goldstone boson at zero temperature. The second
case is a gauge theory with a local O(rn) symmetry
group; it is found that there is again a critical
temperature 6, above which the gauge symmetry
is restored, now given by

0.=[ 5 (n+2)e®+ L (m-1)e?]"V2M(0), (1.3)

where e’ is the gauge coupling constant and €2 is
again the quadrilinear coupling constant. [In gauge
theories of the weak and electromagnetic interac-
tions,® we typically have M(0)/e of the order of

G F"/ 2, so these examples indicate that 6, will be
of the order of 300 GeV.] The third case is a
scalar field theory with a global O(z) x O(n) sym-
metry; it is found that for certain ranges of the
parameters in the theory it is possible for one of
the O(n)’s to be broken at low temperatures and
restored at high temperatures, while the other
O(n) is unbroken at low temperatures and broken
at high temperatures. This has the appearance of
a violation of the second law of thermodynamics,
but this is not the case: In fact, certain crystals,
such as the ferroelectric known as Rochelle or
Seignette salt, also have a smaller invariance
group above some critical temperature than be-
low it.®

Section V compares these results with those
that would be found by calculation in a non-re-
normalizable “unitarity” gauge.” In general, in
this gauge the introduction of an effective poly-
nomial would not eliminate the 62 terms which
accompany quadratic divergences, and therefore
would not restore perturbation theory at high
temperature. Incertainsimple cases the §*terms
which accompany tadpole graphs are eliminated
by introduction of an effective polynomial, but
the critical temperatures deduced in this way
disagree with those calculated in renormalizable
gauges, and are argued to be physically irrele-
vant.

The problem of calculating the critical tempera-
ture more accurately and of determining the na-
ture of the phase transition is discussed briefly
in Sec. VI. The difficulty here is that as we ap-
proach the critical temperature we encounter in-
frared divergences which invalidate perturbation
theory, even after introducing an effective poly-
nomial. It is estimated that the true critical tem-
perature differs from the critical temperature cal-
culated in Sec. IV by an amount at most of order
e%q,.

S:action VII deals with the question of the ob-
servability of phase transitions in gauge theories.
It is concluded that spontaneous symmetry break-
ing can be detected by measurement of Green’s
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functions for gauge-invariant operators carrying
zero energies and moderate momenta, Also, al-
though the pressure and energy and entropy den-
sities are continuous at the critical temperature,
the specific heat per unit volume has a discon-
tinuity of order ¢%6,_°.

An appendix deals with the problem of defining
and calculating a “potential” whose minimum will
be at the precise thermodynamic mean value of
the scalar field. The potential is defined, using
operator rather than diagram methods, as the
free energy per unit volume, and it is observed
that the corresponding potential calculated earlier
for field theories at zero temperature® simply
represents the contribution of zero-point ener-
gies to the free energy. The calculations go
through smoothly for scalar-field theories, with
the same results as found in Sec. III and IV. How-
ever, for gauge theories this operator formalism
requires canonical quantization in the unitarity
gauge, and in consequence divergences appear in
the potential which cannot be eliminated by re-
normalization of the scalar-field polynomial. Sug-
gestions are offered for further progress along
these lines.

This paper is mainly concerned with the study
of the phase transition itself, but the existence
of this phase transition has wider implications.
These are not discussed in the body of this paper,
but a word about them may be in order here.

One implication is philosophical. It has been
suggested® that all the complicated properties of
a theory that are usually derived from an assumed
broken gauge symmetry may also be derived from
the requirements either of perturbative unitarity
or of renormalizability. If this is so, then per-
haps the gauge symmetry is in some sense a
fiction, not representing any truly fundamental
invariance principle. It is not clear to me whether
this is a question of words or of substance. How-
ever, if a gauge symmetry becomes unbroken for
sufficiently high temperature, then it is difficult
to doubt its reality.

Another implication is cosmological. In “big-
bang” cosmologies the critical temperature was
presumably reached at some time in the past (un-
less the richness of hadron states imposes some
upper limit on the temperature).® In earlier
epochs the weak interactions would have produced
long-range forces similar to Coulomb forces,
with the difference that while the universe appears
to be electrically neutral, it may not be neutral
with respect to the conserved quantities to which
the intermediate vector bosons couple. Such long-
range forces would have had profound effects on
the evolution of the universe; in particular, as
noted by Kirzhnits and Linde,? the universe could

not have been isotropic and homogeneous if per-
meated by these lines of force. Long-range vec-
tor fields would also play an important role in
determining the nature of the initial singularity'!
(if any). Finally, the analogy with ferromagnetism
suggests a strange possibility that may occur as
the universe cools below the critical temperature.'®
Field theorists are used to the idea that whenever
a continuous or discrete symmetry is broken by
the appearance of a nonvanishing vacuum expecta-
tion value (¢,) of a scalar-field multiplet, it can
be broken in a variety of ways, represented by

the different directions of (¢,). Usually we re-
gard these different directions as entirely equiva-
lent, and ignore the multiplicity of broken-sym-
metry solutions. However, when a ferromagnet
cools below its critical temperature, it does not
acquire a single magnetization in some arbitrary
direction; rather it breaks up into domains, each
with its own direction of magnetization. Does the
universe consist of domains, in which symmetries
are broken in equivalent but different directions?
If so, what happens when a particle or an observer
travels from one domain to another?

For reasons of simplicity, it is assumed in this
paper that we are interested in states of thermo-
dynamic equilibrium in which all conserved quan-
tum numbers have mean value zero, so that all
chemical potentials vanish. (For this reason, the
phase transition found here is quite unrelated to
the superfluid transition in liquid helium.) It
would not be at all difficult to include a chemical
potential y for an absolutely conserved quantity
like baryon number; in this case the baryonic
part of the term Tr[y,I';,T,] in Eq. (1.1) would
simply be multiplied with a factor

if” _1+__1__._> dx
72 Jy \&F+1 7 &P+ xax,

with no change in any other results. This is an
increasing function of the absolute value of the
chemical potential u, so the presence of a net
baryon number would lower the critical tempera-
ture. However, u appears to have a very small
cosmological value,'® of order 1079 in which case
such effects would be quite negligible.

A much more interesting and challenging problem
is presented by the possibility of a nonvanishing
net mean value for some quantum number carried
by bosons as well as fermions, which is exactly
conserved only above the critical temperature. In
this case we would have to consider not only the
effects of a chemical potential but also the pos-
sibility of a true superfluid condensate at suffi-
ciently high densities. Work on this problem is
being continued.
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II. GENERAL FORMALISM

We will consider a general renormalizable quan-
tum field theory, which can be either a simple
scalar theory, or a theory of scalar and spinor

fields, or a full-fledged gauge theory, with or with-

out spinor fields. For a simple scalar-field the-
ory we would take the Lagrangian to be

£=-%au¢iau¢i-P(¢) ’ (2.1)

where ¢, is a set of Hermitian spin-zero fields
and P(¢) is a quartic polynomial. In this case we
will assume £ and P(¢) to be invariant under a
group of global transformations with generators
9 .

a*

oP(¢) _
59, (60)1;0,;=0, (2.2)
6t=0,. (2.3)

For a gauge theory, we would take the Lagran-
gian as

£=-3(Dy¢),(D"¢); = iF v FY
— 97 Dy - ymoyp - P(p) = YT 0,  (2.4)

where ¢; is a set of Hermitian spin-zero fields,
(Dy¢); is their gauge-covariant derivative, A4,,

is a set of gauge fields, F,,, is their gauge-co-
variant curl, y,is a set of spin-3 fields, (D,y),
is their gauge-covariant derivative, m, is a
gauge-invariant bare mass matrix, I is a gauge-
covariant Yukawa coupling matrix, and P(¢)is a
gauge-invariant quartic polynomial. This notation
is explained more fully in Refs. 7 and 25; for our
present purposes it will suffice to note that if 6,
are the Hermitian matrices representing the
gauge generators on the scalar multiplet, then

(D) =8, = (84);;9 ;A0 5 (2.5)

and Eq. (2.2) now furnishes the necessary gauge-
invariance condition on P(¢). Almost all of our
discussion will apply equally well to theories
described by the Lagrangian (2.1) or (2.4) or any-
thing in between.

We shall need to impose some sort of weak-
coupling condition in order to justify the use of
perturbation theory. For the sake of both sim-
plicity and physical relevance, it will be assumed
that the orders of magnitude of the various pa-
rameters in the Lagrangian are characterized by
a mass parameter I and a small dimensionless
coupling parameter e« 1, with

coefficient of quartic term in P(¢)=¢é?,
coefficient of cubic term in P(¢)= €M,
coefficient of quadratic term in p(¢)=$m2 s

gauge couplings (6,)~e,

Yukawa couplings (T';)=e,

Fermion bare mass (m,) =9 .
(2.6)

[For simplicity we are assuming that the Lagran-
gian involves no gauge-invariant scalar fields, so
there are no linear terms in P(¢). Of course, we
do not rule out the possibility that some of the
parameters in the theory may be anomalously
small; in particular the symmetries of the theory
may require m, T';, and/or the cubic term in
P(¢) to vanish.] With this form of the weak-cou-
pling assumption, the expansion of any given S-
matrix element at zero temperature in powers of
€? is the same as an expansion in the number of
loops appearing in Feynman diagrams.

It will further be assumed that the symmetries
of the Lagrangian are spontaneously broken at
zero temperature. This symmetry breakdown is
manifested in the appearance of a nonvanishing
lowest-order vacuum expectation value A; of the
scalar fields ¢;, given by

8P(¢)
9¢;

The criterion for spontaneous symmetry breaking
in lowest order is

=0at¢p=2x. 2.7

(6a);;2;#0 . (2.8)

It follows from the weak-coupling assumptions
(2.6) that A is of order

A=IM/e . 2.9)

At this point, the reader may wonder how raising
the temperature can possibly restore a broken
symmetry. The effects of a finite temperature
appear only through diagrams of higher order in
€%, so it appears that at all temperatures the lead-
ing term in the mean value of ¢; will be the tem-
perature-independent term A, given by (2.7). The
answer, to be discussed in the next section, is
that the symmetries of the theory can only be af-
fected by a finite temperature when the tempera-
ture is so high that powers of temperature can
compensate for powers of e. However, before we
can discuss such matters, we need to review the
formalism for perturbative calculations at general
finite temperature.

In general, the physical quantities with which
we will be concerned here are the partition func-
tion

Q=Tr[e #/°] (2.10)

and its variational derivatives with respect to ex-
ternal perturbations, the temperature Green’s
functions*
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Q <T‘r {A(}?p 71)3(7?2, Tz)' * '}>

=Tr[T-{A®,, 7,)BR,, 7,)* *+}e #/°] , (2.11)

where H is the Hamiltonian, 6 is the temperature
(times Boltzmann’s constant), A(X, 7) is an oper-
ator defined in terms of the Schriodinger-repre-
sentation operators A(X) by

AR, )= AR)e™ " (2.12)

and 7, denotes ordering according to the values
of 7, with 7 values decreasing from left to right,
and with an extra minus sign for odd permutations
of fermion operators. The perturbation in @
caused by the addition of terms proportional to
the operators A(X,), B(X,), etc. is an integral in-
volving the temperature Green’s functions (2.11)

at 7 values in the range
0s<s7ts<1/6. (2.13)

It is therefore convenient to express these Green’s

J

functions as a Fourier integral over momenta and
a Fourier sum over discrete energies. However,
the Green’s functions satisfy a periodicity prop-
erty of having the same (opposite) values when
any one of the 7’s for a boson (fermion) operator
has the values 0 and 1/6; for instance

(T-{A&,, 1/0)B&,, 7,)-+-})
= QTr[A,, 1/6) T, { B&,, 7,)* * -} e #/9]
= Q' Tr[ T, { B&,, 7,): * *} e #/° A%, 1/6)]
=Q'Tr[T.{ B&,, 7,)* * - } AR, 0)e~47]
=( T, {A®,, 0)B&,, 7,)*** }) (2.14)

with a +(-) sign when A is a boson (fermion) op-
erator. The same periodicity property also ap-
plies to arbitrary 7 derivatives of the Green’s
function, and therefore requires that the Fourier
sums contain only even or only odd Fourier com-
ponents.'* We can therefore write

(TT{A(i].) 71)3(22’ Tz)' * '}) =f dapj,dapz' ° Z Z et G(ﬁv Wy, 52’ Wy, *° ')

wy Wy

where

even integer (bosons)
w=mfXx

odd integer (fermions) . (2.16)

(These integers can, of course, be positive or
negative.)

There is a well-known diagrammatic procedure?*
for calculating the G’s: Simply draw all Feynman
graphs (dropping vacuum fluctuations) with one ex-
ternal line for each operator A4, B, ..., and evalu-
ate as usual in field theory, except that every in-
ternal energy p° is replaced with a quantity iw
satisfying the “quantization” conditions (2.16),
and all energy integrals are replaced with w
sums:

po"iw ’

fd“p-—2i1r€fd3pzn: ,

6*(p —p')~ 2im6) 0, .6°® -D’) .

(2.17)

The same procedure gives In@ as the sum of con-
nected diagrams with no external lines.

In what follows this diagrammatic procedure
will be used to calculate Green’s functions of
gauge-invariant operators using the renormalizable
“t gauge” of Fujikawa, Lee, and Sanda.!® This
use of a “nonunitarity” gauge may be justified by
a three-step argument:

x expliP, X, —iw, T, +iD, X, ~tw,Ty+ 000 ]

(2.15)

(a) First quantize the theory in the unitarity
gauge,” and use the Hamiltonian in this gauge to
derive finite-temperature Feynman rules as in-
dicated above.

(b) In the same manner as in field theory,” show
that these Feynman rules are equivalent to the
Feynman rules for a £ gauge with £ =0.

(c) Either directly or by functional methods,
show that the results obtained for the partition
function or for the Green’s functions of gauge-in-

‘variant generators are £-independent, and there-

fore correctly given by renormalizable ¢ gauges?s
with £ #0.

The last two steps go through just as in field
theory,!® because none of the algebraic manipula-
tions depend on whether we integrate over real
energies or sum over complex energies. The
same result can also be obtained by a more direct
functional approach.!?

One important advantage of our use of a re-
normalizable perturbative formalism is that we
can check that the counterterms which remove
divergences in S matrix elements at zero tempera-
ture also remove the divergences in finite-tem-
perature Green’s functions. For the milder di-
vergences this can be seen from the classic for-
mula’®

+ (N+1/2)h —h3 +
h h) - dw = 2 "(E h),
,.an(n ) _(N+1/2),.f(w) @ 24 ,,inf (é,, )
(2.18)
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where f(w) is an arbitrary twice-differentiable
function, % is an arbitrary interval (in our case
taken as 276), and £, is for each » some definite
point in the range

n—§<§"$n+%.

Even if the sum and the integral on the left-hand
side diverge for N—- =, their difference is finite
in this limit, as long as the divergence is mild
enough so that the right-hand side converges.

This will in particular be the case for the linear
and logarithmic divergences encountered in phy-
sical theories, for which f(w) behaves like 1 or
1/w times powers of lnw as |w| -, so that f"(w)
behaves like 1/w? or 1/w?® times powers of lnw.

In these cases we can pass to the limit N— in
(2.18), and we see that the divergences in the tem-
perature-dependent sum on the left are removed
by whatever temperature-independent subtraction
renders the integral convergent. A similar result
is obtained for the quadratic divergences in the
next section,

III. CALCULATION OF THE EFFECTIVE POLYNOMIAL

We now begin our calculation of the temperature
at which a broken symmetry is restored. As al-
ready mentioned in the last section, this can only
happen in a weak-coupling theory at a temperature
so high that powers of the temperature can com-
pensate for powers of the coupling. The number
of factors of ¢ in a given graph is simply given by
the number of loops, increasing by two units for
each additional loop. Hence we must ask how
many powers of 6 are contributed by each loop.

Consider a single loop, with superficial diver-
gence D, determined by counting powers of mo-
menta as usual, including +4 for each loop. We
can rescale all internal momenta as well as en-
ergies by a factor 6, so that the whole loop takes
the form

epl(pcxt/gy wext/e’ mint/e)y (3-1)

where p.,, and wext represent the various external
momenta and energies, and m;,, represents the
various internal masses. Thus for 6 -, the loop
behaves like 6°, unless there are infrared diver-
gences when the arguments of the function / van-
ish. If D<1 there are such infrared-divergences,
but they occur only for a finite number of terms
in the energy sum, in which two or more of the
internal lines of the loop represent a boson carry-
ing zero energy. Such terms are convergent
three-dimensional integrals, and therefore can
increase no faster than 6 as 6 -« because aside
from the factor 6 in (2.17), the integrands are de-
creasing functions of 6. (Note that it is possible

to get a factor 6 even from a convergent loop with
D<0, in particular from the term in which all in-
ternal boson energies vanish.) On the other hand,
for D>1, there are no infrared divergences in
I(0, 0, 0), so the loop simply contributes a factor
6°. The leading terms for large 6 therefore come
from those loops with D>1 which are as divergent
as possible.

Now, aside from an uninteresting quartic diver-
gence in In@, the worst divergences in any re-
normalizable field theory are quadratic. We there-
fore conclude that ke leading terms for e small
and 0 large are those in which all loops beyond the
lowest order are quadratically divergent. The
convergent part of such a loop contributes a fac-
tor 6%¢%, so we can anticipate that the critical
temperature is reached when #*¢? is of order M?,
i.e.,

6.~M/e . (3.2)

At temperatures of this order of magnitude, the
contribution of other loops is suppressed either by
a factor €6/9l~e or by a factor 2.

Further, we know that in any renormalizable
field theory, including renormalizable gauge the-
ories, all quadratic divergences can be eliminated
by a renormalization of the quadratic term in the
polynomial P(¢). [We are assuming here that
there are no gauge-invariant scalar fields in the
Lagrangian, in which case the quadratic terms in
P(¢) are the only terms in the Lagrangian with
the correct dimensionality needed to cancel quad-
ratic divergences.] We therefore expect that at
finite temperature, all leading terms contributed
by multiloop graphs, which survive when e<<1
with 6=M/e, as well as all quadratic divergences,
are canceled by a redefinition of the polynomial
part of the Lagrangian,

Pui (9)=P(¢) +3Q;,(0)¢,0, , (3.3)

and the compensating introduction of a counter-
term in the interaction

0L =3Q,,;,(0)¢;0, , (3.4)

where Q,; is some gauge-invariant quadratically
divergent matrix. Since the nonleading terms are
suppressed by factors €26/ ~e or ¢ for each
loop, we conclude that any Green’s function is
given to a lowest approximation for e <1 and

0< M/e by just the lowest-ovder graphs, but cal-
culated using Pe(¢) in place of P(¢). In partic-
ular, we must define the perturbation expansion
by using a shifted field

Pi=¢i-2i , (3.5)

with A; a minimum of the new polynomial
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8Pur(®) | . (3.6)

99, ®=x

Thus the presence or absence of spontaneous sym-
metry breaking at any given temperature can be
determined by an examination of the minimum of
P eff(¢ )-

In order to calculate @;,, we note that the only
graphs that contain quadratic divergences in any
renormalizable theory are the tadpole T; and the
boson self-energy I1,;. After we perform the
shift (3.5), the interaction term (3.4) provides
counterterms for both of these:

6L'=3Q;;0{0;+ QAP +3Q N, - @.7
Hence we can determine @,; by requiring that the
divergences and 6%¢® terms in II;; and T; are can-
celed by the divergences and #%¢® terms in (3.7).
(To the order in e that concerns us here, we do
not need to worry about other divergences.)

The one-loop tadpole graphs were calculated in
a renormalizable { gauge at zero temperature in
Ref. 25 (see Fig. 1). The result was

T ==} [ d'fi e+ M)
+ fd"kTr[I"i(iy)‘k)Wm)"]

—3(059a)\),-fd4k(k2+;12)'1a5
+3(M26,60),
x fd*k(kz)'1(§k2+u2)"aﬁ. (3.8)

(A —ie term is understood in all denominators.)
Here f;;, is the trilinear coupling

a°P(¢)

fim= 96:00 50, (3.9)

s
¢ =)

FIG. 1. Feynman graphs for the tadpole T'. (Here
dashed lines refer to scalar fields, solid lines refer to
spinor fields, wavy lines refer to gauge fields, and
looped lines refer to Faddeev-Popov ‘“ghost” fields.)

and M, m, and p are the lowest-order scalar,
spinor, and vector mass matrices:

3%P(¢)

M? ;= ——== 3.10)
AR YCT-M P (
m=my+T;X, , (3.11)
“2a8=}‘ixj(9a95){j . (3.12)

Also recall that 6, is the Hermitian matrix (of
order e) which appears in the gauge-covariant
derivative of the scalar fields

Dy ¢)i=0u0; = (05)i;0;A0n - (3.13)

We can easily extract the quadratically divergent
part, and note that for £ #0 it is £-independent:

T 7 ={=%fire+Tr[Tyyamy,] -3(6,0.2);}
% fd4k(k2)'1 . (3.14)

[Note that T'; may contain terms proportional to
ys, Which anticommute with both (y,%*) and v,.]
Under our assumption that the Lagrangian con-
tains no gauge-invariant scalar fields, the first
two terms are purely of first order in A:

fien=Fijmmj > (3.15)
Tr[T jygmy,] = Tr[ri74rj7’4])\j ’ (3.16)

where f; ;,; is the coefficient of the quadrilinear
term in P(¢)

___9°P(¢)
Jimi= 5556 06200,

Therefore, T is also of first order in x:

T = { -3fi irrt Tr[rihrj)’.;] -3 (eaea)ij}

. (3.17)

xa [ ateEn) (3.18)

In accordance with the finite-temperature Feynman
rules discussed in the last section, the leading
terms in the tadpole are obtained by replacing the
energy integral with a sum over the discrete en-
ergies (2.16):

T;= —i(277)4[_é‘fijkk + 3(9a6a)uhi18(6)
+i@a)*Tr [T,y Ty ) ;1:(6) . (3.19)
where
1,0)=@n=@r0) Y, [ dHE +anre]
" (3.20)

140)=@n@r0) 3 [ aHE®+ @+ 1Pwe?]

(3.21)

The counterterm (3.7) supplies an additional con-
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tribution
8T =i(2m)*Q A, (3.22)
so in order to cancel the leading terms in the one-
loop tadpole we must choose @;; as the matrix
Q,;(0) =[5/ 0 +3(6,84);;115(6)
= Tr[Ty,Tya)1(6) . (3.23)

—

-3

Before discussing the calculation of I and I,
let us check that the counterterms in (3.7) now
also cancel the leading terms in the scalar-boson
self-energy. The one-loop self-energy graphs at
zero boson momentum and zero temperature were
also calculated in Ref. 25 (see Fig. 2). The result
was

I (0) = 575m5z {0 5E A0y 6510, fd“le(kzﬂn;ﬁ)-lay(kzJr,f)-lﬂ‘S

i = -
- 2(21r)4f"“fjﬁaf d*k(k?+M?) 1”(k2+M2) L

(2 @

fd"k(kz)'l(gkz+p2)"uB[M29 (B2 +M?)™0 M2 + M20 (k% + M?) ™M %0,

+ 0, M3 (RE+M?) M 2],

(2 )‘l

2(2

j d*kTr[T; (i +m)™'T (anx+ m)™]

S 76,8, 00,01%0,00); [ d%e(e®) M€k 4 u2) a6k + )5

+2?2in)‘4 ({05 GOJ).-ffd4k(k2+u2)"as +%ﬁ‘fuktfd4k(kz+Mz)"“

i
- 2(27T)Zfijk

3
-TZ:I_)‘f“k

M -Zntflnf d4k(k2+M2)-1pq +(T;)TfinM -zkl f d‘kTr[I",(iy)\k)‘-p.m)"]

kl({ew GB}A)I f d4k(k2+u2)-1aﬂ ¢

The quadratically divergent part for £ #0 is £ -independent:

w i
I = W{ _Tr[ri74r174] + 3(9a9a)i,~ + %fijkk

—3fiieM i froptfigM
Replacing energy integrals by energy sums and

using (3.15), (3.16), and (3.23), the leading term
at finite temperature may be written

I;==Q; +fijeM
The first term here is immediately canceled by
the first term in (3.7), while the second is can-
celed by the tadpole (3.22) produced by the second
term in (3.7).

Returning now to the functions (3.20) and (3.21),
we note that the sums may be turned back into in-
tegrals,

15(9)='2‘(_—2iﬁ fd3k£ dw(k? + w?) 'cot (.2%> ,

Ip(6)= 2(2 TG fd%f dw(k2+w2)"tan(29>

The contour C runs from +« to —= just above the
real axis and then back from -« to +% just below
the real axis. By closing the two halves of this
contour with large semicircles in the upper and

-2
lelmxm .

e Tr[T iy my] -3f; ik

M2,(8,6,0),} fd“k(k"’)" )

’ \
1 \
\
Nt = -
RN
/ \
\ /
\\,'//
] ] 1 |
1 \ | 1
Y GE - ——- Q. o———

FIG. 2. Feynman graphs for the scalar self-energy
II. (Conventions same as in Fig. 1.)
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lower half-planes, we pick up the poles at w=x |K|,

1= [ Sbeom b

1(8)= (27r)‘3f 2[E] tanh o 'kl

These integrals are of course divergent, but their
divergences can be separated out by extracting
their values at 6=0:

15(0)=14(0)+ & &,

[(6)=1,(0) - 62 . (3.24)

This is important because it shows that the same
infinite counterterm which removes divergences
at zero temperature continues to remove them at
all temperatures; in fact, we may recognize the
divergences here as just the same ones we en-
counter in field theory:

IB(O) =IF(0)
d3k

= @™ m

(27r)4 f kz—ze
Using (3.24) in (3.23), we have finally
Q:;(0)=Q;;(0)+ 25 6% 1 e +6(6,6,);
+Tr[Tv Tval} - (3.25)

[We note that f,,,; is of order ¢*, while 6, and T
are of order e, so Q- Q(0) is of order &, as
anticipated.] The term @,,(0) in (3.25) just serves
to provide a temperature-independent quadratically
divergent renormalization of the mass parameters
in the polynomial, so we may write (3.3) as

Poi(®) =Pen(®) + 35 6™ fijae+6(6,04);;
+Tr[1"iy41",74] }¢i¢j ’
(3.26)

where Pe,(¢) is just the original polynomial P(¢),
but with masses replaced by renormalized values.
This formula will be used in the next section to
determine the critical temperature.

Even though this has so far been a one-loop cal-
culation, it is actually valid to lowest order in e
but to all orders in e¢f. We could insert another
loop in the single-loop diagram used to calculate
the tadpoles or scalar self-energies, and if this
new loop were quadratically divergent it would
contribute a non-negligible factor ¢26% but the
old loop would then not be quadratically divergent,
and therefore would be suppressed at least by
a factor e (see Fig. 3). More generally, we ex-
pect multiloop as well as single-loop diagrams

/ \
/ \
| ]
\

\\ /

——~ S>e< -9~
/7 N 4 ™\ RN
{ \ / \ I | \
\ ! ! | \ | ]
\ / \ / Y

\\',/ \\‘,// \\."I_/
| | |
| 1 1
1 | '
| | H
e282m e'e? e*62m

FIG. 3. One- and two-loop graphs for the tadpole T
in a scalar field theory. The order of magnitude of the
various contributions is indicated below each graph.

for T; to involve only a single factor of 6, so it
is only the one-loop diagram that survives when
e« 1 and 6=9M/e.

IV. THE CRITICAL TEMPERATURES

We have learned in the last section that the lead-
ing effect of multiloop graphs at temperatures 6
of order 9M/e is to change the polynomial P(¢) in
the Lagrangian to the effective polynomial given
by Eq. (3.26). The symmetry group of the Green’s
functions at a given temperature consists simply
of that subgroup of the invariance group of the
Lagrangian which leaves invariant the point A; at
which Petr (¢) has its minimum. We can therefore
locate the various critical temperatures of the
theory by asking at what temperature the sym-
metries of A; are gained or lost.

In particular, we note that if the temperature-
dependent part of P (¢) is a positive-definite
function of ¢, then at sufficiently high tempera-
tures the minimum of Pei(¢) must be at ¢ =0.
This is because the quartic part of Pr(¢) is in
any case positive-definite (otherwise the energy
would be unbounded below for large ¢), while for
sufficiently large 6 the total quadratic term in
P.(¢) will also be positive-definite (and large
enough to overwhelm any cubic term that is not
overwhelmed by the quartic terms). Thus we
conclude that if the 6° term in P is positive-de-
finite then there is always a highest critical tem-
perature, above which the Green’s functions ex-
hibit the full symmetry group of the theory.

The 6,6, and T';T; in (3.26) are indeed positive
matrices, because the 6 and I" matrices satisfy
Hermiticity conditions,

92: 6 1“3 =valiva .

In fact, these terms are positive-definite, unless
there are no gauge couplings or Yukawa couplings
in the theory at all. However, the f term in (3.26),
while usually positive-definite, is not always so.'®
We shall take a look at two examples where sym-
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metry is restored at high temperature, and one
example where it is not.

Example 1: Global O(n) with one n-vector

Let us consider a nongauge theory, invariant
under a global group O(n), involving a single n-
vector multiplet of scalar fields ¢;. The poly-
nomial P will be of the form

P(p)=3M’p;0; +5€%(¢;0,) ,
where 9,2 and ¢? are real quantities, with ¢>0

but 9,2 of arbitrary sign. The quadrilinear cou-
pling coefficient here is

Fiin1 =2€%(8;8,+0,,8,,+06;,05) ,
s0 (3.25) gives

Ru(¢)=39M%(60)¢,¢; + €00,
where

M3(6) =9M>3(0) + & (n+2)e*¢* ,

and 91%(0) is M, plus renormalization counter-
terms (see Fig. 4). If 9M>(0) is negative then for
sufficiently low temperatures I 3(6) will also be
negative, and P.s(¢) will have an O(n)-noninvari-
ant minimum at ¢; =21;, with

e, ==9F(6)>0 .

The full O(z) symmetry is therefore restored at a
temperature 6, such that

m36,)=0,

or20

c

(12 )‘/lem_(o)_l'

n+2 e

In order to express this in terms of observables,

Peff(¢) Peff(¢)

(i )2 (bi )2

—

(a) 6<6, (b) 8>8,

FIG. 4. Schematic representation of the effective
polynomial in Examples 1 and 2 of Sec. IV, below and
above the critical temperature. The dark dot indicates
the state of thermal equilibrium.

we may note that the physical zeroth-order mass
matrix of the scalar fields is

8%Pes(¢)
99;9¢; |p=n
=9M2(6)5;,;+€®(B; ;A4 Ay +20; 1)

Mzij(e)z

=2eA. N,

i
so for 6< 6. the excitation spectrum consists of
n —1 Goldstone bosons of zero mass and one boson
of mass

M32(6)=26%\; 1, = =29M%(6) .

We can therefore rewrite the critical temperature
in terms of the single nonzero boson mass at zero
temperature:

0 _(6 ‘/2<M(0))
" \n+2 e | °
Above the critical temperature the excitation spec-

trum consists of » degenerate bosons with mass
m(6).

Example 2: Local O(n) with one n-vector

Next, let us consider a gauge theory based on
the group O(n), again with a single n-vector
multiplet of scalar fields. The generators of the
gauge group may be represented by matrices,

(641);;=7€"(8,30,; = 04;0;) , 1<k<lsn

with a prime on the gauge coupling constant to
distinguish it from the boson self-coupling con-
stant e. The Casimir operator here is

Z (641041);;=(n=1)e"%5,; .
k<1

We take the polynomial in the Lagrangian again
of the form
P(¢)=3M>p;0; +3€*(¢;0,)° .
Equation (3.26) now gives, as in case (a),
Pur(¢)=3M%(0)p;0; +3€°(9;9,) ,
where
M2(0) = M2(0) + & (n+2)e? +1(n—-1)e?6? .

For M 2(0) <0 there is again a critical temperature
6. , determined by the condition that 91%(6,) should
vanish?°:

0.=[H(n+2)e® +i(n —1)e”}2m(0)] .

We see here an example of the general phenom-

enon, that adding gauge fields lowers the critical
temperature. For 6<6,, this theory has an ex-
citation spectrum consisting of one scalar boson
of mass
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M?2(6)=-29m3(6)

(the remaining n - 1 massless scalars are now un-
physical) plus n -1 vector bosons with mass given
by Eq. (3.12):

p2(9)=e'2)\,~(9)k;(9)
_ (e 2
- <e) m2(6)|

plus (n -1)(n -2)/2 vector bosons of zero mass,
corresponding to the unbroken O(n - 1) subgroup.
For 6> 0, the theory has » scalar bosons of mass
I (6) plus n(n -1)/2 vector bosons of zero mass.
At 6 there is evidently a transmutation of the
zero-helicity states of » -1 vector bosons into

n -1 scalar bosons, with the mass of all these bosons
vanishing at 6, to make the transmutation possible
(see Fig. 5).

Example 3: Global O(n) X O(n) with two n-vectors

As an example with a very different behavior,
let us consider an Q(n) XO(n)-invariant theory
with two independent scalar multiplets x, and 7,
transforming according to the representations
(n,1) and (1, ). The polynomial in the Lagran-
gian must take the form

P(X7 77) = %mXZXAXA + %mnzna na + %ex XZ(XAXA)Z
=28y 0" (XaXa)MaN,) + 1€ MM,

with parameters subject to the positivity con-
straints

2 2 2
ey >>0, e,.2>0, ey ?<legyeqn,l -

(We use capital indices A, B, ... for the x’s and
lower-case indices a, b, ... for the 7’s but all

t|me

6 —

FIG. 5. Schematic representation of the excitation
spectrum as a function of temperature for the gauge
field theory discussed in Example 2 of Sec. IV. The
gauge group here is taken as O(3). Wavy lines indicate
particles of spin 1; dashed lines particles of spin 0.
Note the continuity in the total numbers of helicity states
at the critical temperature.
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these indices run from 1 to n.) The nonvanishing
elements of the quadrilinear coupling coefficient
fijp1 2re NOW

fascp=2ey xz(bABécD +8 400pp+06,4p050) 5
SfaBas=—2€y 7725A86ab s
Savca=2e, nz(éabocd +0,60pq+04405c) 5

together with other:elements obtained by permuta-
tion of indices. The effective polynomial (3.26)
therefore has the form

P(x,m) =3, *(0)x x4+ 3 I, 2(O), 7,
+5eyy " (XaXa)
—zyn (X aXa)M371,) + 3€qy” M7,
where
M, 2(0) =M, 2(0) + &5 6°[(n+2)ey,* — ney °] ,
M, 2(60) =M, *(0)+ & 6%[(n+2)e, > —ney 2] .

For e, ,,2 positive, which as we shall see is the
interesting case, there are four possible phases
(see Fig. 6):

2
c My
O(n-1)®0(n)

A
0(n)®0(n)

-

O(n-1®0(n-1)

0(n)®0(n-1)

FIG. 6. Phase diagram for the theory described in
Example 3 of Sec. IV. Phase boundaries are indicated
by double lines. The values of M2 and M ,2 at zero
temperature are indicated by open circles; the arrows
indicate the behavior of 9,? and M2 for large tempera-
ture. Critical temperatures are indicated by dark
circles. The numbers in circles refer to the cases
listed in the text.
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(A) 9 ,2(6)>0, 9M,%(8)>0.

In this case the only minimum of P.;(x, ) is at X4
=1,=0, so the symmetry O(n) XO(z) is unbroken.

(B) m,2(6)>0,
0> ,*(8)> = (eny?/ ey 1" WM, 2(6) .

In this case the only minimum of P.(y, 1) is at
Xa=0, n,#0, so the symmetry is broken down to
O(n)x O(n=1).

(C) m ,*(6)>0,
0>mxz(9)> '—(exxz/ex nz)m n2(9) .

In this case the only minimum of Py (y, 1) is at
1,=0, x,#0, so the symmetry is broken down to
O(n - 1) X O(n).

(D) For all other values of 9 ,*(6) and 91 ,%(6)
the deepest minimum is at x, #0, 7,#0, so the
symmetry is broken down to O(z -1)x O(n —1).

The phase for 6 -« is always (A), (B), or (C),
depending on the relative values of the coupling
constants. If for example we choose

2 2 2
(n+2)ey 2 >ne, ,°>(n+2)e,,

[which is consistent with the positivity require-
ments on P(x, n) for large fields] then for 6 -
the system is necessarily in phase (B). We see
that with this choice of coupling constants, the
symmetry is necessarily broken down to O(n)

X O - 1) at high temperature. (The same is true
if we introduce gauge fields, providing that the
gauge coupling constant is sufficiently small com-
pared with Iex,,[.) The critical points encountered
at lower temperature depend on the signs and rel-
ative magnitude of 9 ,*(6) and M *(6) at zero tem-
perature. We may distinguish the following cases
(see Fig. 6):

(1) 9m,2(0)>0, 9m,%(0)>0.

There is a single critical temperature, at which
the phase changes from type (A) at low tempera-
ture to type (B) at high temperature.

(2) 9 ,2(0)> 0,
0>9M,2(0) > (e 4,2/ ey /)M 2(0) .

There are no critical temperatures; the phase is
of type (B) at all temperatures.

(3) 9 ,%(0)>0 ,
0>mX2(0) > '—(ex Xz/ex nzm nz(o) .

There are fwo critical temperatures, at which the
phase changes from type (C) at low temperature
to type (A) at medium temperature to type (B) at

high temperature.
(4) m ,%(0)>0,
= (eyy?/ex )M ,2(0)> 9 ,2(0)

e ((n+22)e“2 —ney n:)
ney . —(n+2)e,

X 9M ,2(0) .

There are three critical temperatures, at which
the phase changes from type (D) at low tempera-
ture, to type (C) and then to type (A) at medium
temperature, and finally to type (B) at high tem-
perature.

(5) For other values of 91,*(0) and 9 ,*(0), there
is a single critical temperature, at which the
phase changes from type (D) at low temperature
to type (B) at high temperature.

The existence of an (A) - (B) critical point, at
which the symmetry shifts with increasing tem-
perature from the group O(z) x O(x) to a smaller
group O(n) X O(n - 1), runs counter to most of our
experience with macroscopic systems. For in-
stance, heating a superconductor restores gauge
invariance; heating a ferromagnet restores rota-
tional invariance; heating a crystal restores
translational invariance. However, the example
of Rochelle salt® reassures us that there is noth-
ing impossible about a loss of symmetry with in-
creasing temperature.

V. COMPARISON WITH UNITARITY
GAUGE CALCULATIONS

It is instructive to compare the results we have
obtained by calculating in the renormalizable £
gauges with the corresponding results that would
be obtained in the unitarity gauge, for which £=0.
In this case, we would have had no reason to ex-
pect that the counterterm (3.7) would cancel all
the e26? terms. In particular, the quadratically
divergent part of the tadpole (3.8) would have con-
tained an additional term,

T =T7 +5(1)as (M 26,65)), fd“k(kz)",

(6.1)

(A subscript U denotes the use of the unitarity
gauge; quantities without this subscript are cal-
culated in the renormalizable gauges with £#0.)
This implies a new temperature-dependent term,

Ty =Ty +3i(@mPL5(0)(12) s (M26,650),. (5.2)

This cannot in general be canceled by a counter-
term of the form (3.7), because

8Ty , 3Ty
ax, | ax,
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The counterterm (3.7) does in general cancel the
quadratic divergences and ¢26? terms even for £=0
in a general gauge invariant Green’s function, but
this cancellation occurs because for £=0 there

are quadratic divergences and ¢?>¢* terms con-
tributed by a wide variety of diagrams besides
tadpoles and scalar self-energies. Thus it is not
possible to determine the matrix Q,; in (3.7) by
inspection of tadpole graphs evaluated in the uni-
tarity gauge.

The inadequacy of the unitarity gauge for our
purposes may be obscured by the fact that in cer-
tain specially simple gauge theories®! T}, does
take the form of a A gradient. These theories are
characterized by the condition that the scalar
fields belong to a representation of the gauge group
which is “transitive on the sphere,” i.e., for which
any direction in the representation space of the
scalar fields may be rotated into any other direc-
tion by a gauge transformation. In this case
P_.(¢) must be of the same form as in an O(n)-
invariant theory,

Peff,U((p):%mUz(g)(pid)i +%ez(¢e¢{)2, (5.3)
so we can take over the results of examples 1 and
2 of the last section. In particular, we again have

M2, =2e*\ 1,
so (5.2) gives

Ty =T, +i*@uyI4(6) 2, . (5.4)

The new term here can be canceled by a new term
in the matrix Q,; in (3.7):

Q;ju(e):Qij(g)_9215(8)5”- (5.5)

This new term in Q,,(6) leads to a decrease in the
temperature-dependent mass term in P,;, and
hence to an increase in the critical temperature.
For instance, the mass term calculated in example
2 of the last section using the renormalizable
gauges was

IM2(6) =M2(0) + 35 (2 + 2)e26* 4 1 (n —1)e’2¢?,  (5.6)
so the new term in (5.5) changes this to
IM,2(6) =IM,2(0) ++5 (2 +1)e2 P + 1 (n - 1)e’26?,
(5.7)

and the critical temperature for 9,?(0)<0 is?°
8,=[M,0)|[5 (m+1)e? +5(n —1)e2]"1/2.  (5.8)

Since unitarity-gauge calculations give different
results from renormalizable-gauge calculations,
which should we believe? The answer is provided
by our discussion in Sec. III: It is only in the re-
normalizable gauge that a change in the scalar-
field polynomial restores the validity of perturba-

tion theory at high temperatures, and therefore
only in the renormalizable gauges can we use the
effective polynomial to study the pattern of sym-
metry breaking. When the scalar field representa-
tion is transitive on a sphere, the introduction of
an effective polynomial does eliminate the ¢26?
terms found in the unitarity gauge in tadpole
graphs, but there are plenty of other quadratic
divergences and e?# terms in this gauge which
are not thereby eliminated, and there is no reason
to regard the effective polynomial as being of any
special importance.

V1. HIGHER-ORDER EFFECTS

As frequently emphasized, these calculations
of the effective polynomial are valid to all orders
in €26 but only to lowest order in e2. Suppose we
wish to locate the critical temperature more
exactly, or try to determine the precise nature
of the phase transition. How would we go about
it?

The introduction of the counterterm (3.7) had
the purpose of restoring the validity of perturba-
tion theory for ¢?<1 at temperatures of order
JM/e. As long as perturbation theory is valid, we
can infer the symmetry properties of the theory by
a study of its lowest-order terms, i.e., of P,;(¢).
However, even with the counterterm (3.7) working
to cancel the ¢26? terms, the perturbation theory
still breaks down when 6 is very near 6., because
in this case one or more of the mass terms in
P, (¢) becomes very small, and so powers of e
can be canceled by factors which become infrared-
divergent for 6=6,.

At first sight, this problem appears very similar
to that studied by Coleman and E. Weinberg.® In-
stead of adjusting the temperature so that the mass
term in an effective polynomial vanishes, they
considered a relativistic quantum field theory at
zero temperature, with the bare scalar masses
adjusted so that the renormalized scalar masses
vanish. In order to decide whether the symmetries
of the theory were spontaneously broken, they
searched for the minima of an effective potential,
the first term of which is just P(¢), using re-
normalization-group methods to sum up the loga-
rithms associated with infrared divergences.

The difference here is that the infrared diver-
gences are profoundly affected by a finite tem-
perature.?® According to the Feynman rules dis-
cussed in Sec. II, the only denominators which
can ever vanish are those in boson propagators
carrying zero energy. Since the energy is a dis-
crete variable, the degree of infrared diver-
gence must be determined counting th7ee rather
than four powers of momentum for each loop.
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Hence the infrared divergences are those expected
in a superrenormalizable rather than an ordinary
renormalizable theory, and the appropriate meth-
ods needed here are those of Wilson?? rather than
those of Coleman and Weinberg.? The difference
between our problem and that studied by Wilson

is that we do not have a cutoff; ultraviolet diver-
gences are eliminated by the renormalization pro-
cedure.

Without pursuing this problem too far, we can
at least estimate how close the actual critical
temperature, at which a broken symmetry is
restored, is to the approximate critical tempera-
ture 6, calculated in Sec. IV. For temperatures
well below or well above 6, (say, |6-6,>36,)
perturbation theory is presumably valid [with the
counterterm (3.7) canceling the ¢26* terms], so
the symmetry of the theory must be just that of
the lowest-order terms. On the other hand, when
6 - 6, is small, the mass terms JM(6) in P, (¢)
vanish, with

fm(é))z[ez(ez _ ecz)] 1/2 z‘39"‘1/2(9 - ec)1/z'

Our order-of-magnitude analysis at the beginning
of Sec. III is then valid only if we replace the
characteristic mass 9, which is roughly 91(0),
with the much smaller quantity J(6). In particu-
lar, if we consider a Green’s function all of whose
external lines are zero-energy bosons with mo-
menta of order M (6), and allow as internal lines
only zero-energy bosons with masses of order
(), then each loop contributes a factor 2, a
factor 6, from Eq. (2.17), and, since the dimen-
sionality of all graphs must be the same, also

a factor M~1(9). The condition for the validity

of perturbation theory is therefore that

0
2 —¢ |\«
¢ (sm(e)>< L
or in other words
|6 - 6,> e?6,.

The true critical temperature is therefore ex-
pected to lie somewhere in the range

|6-6,=s e?6,.

However, to locate it more precisely in this range,
or to determine whether the phase transition is of
first or second order,?* we would need to carry

out a renormalization-group analysis beyond the
scope of the present article.

VII. OBSERVABILITY OF THE PHASE TRANSITION
IN GAUGE THEORIES

In gauge theories, the mean value of the field
¢; is not an observable, because it is not gauge-

invariant. Indeed, we saw in Sec. V that even the
quadratically divergent and e2¢* terms in (¢;) are
different in the unitarity gauge and the renormal-
izable £ gauges, though they are the same in all
the renormalizable £ gauges. A suspicion may
therefore arise as to the reality of the phase tran-
sition, which seems to occur when the invariance
group of the lowest-order term A, in (¢,;) suddenly
expands or contracts. Could physical measure-
ments really reveal a different symmetry group
just above the critical temperature than just below
it?

To some extent, this question already arises in
gauge field theories at zero temperature. There,
also, one cannot rely on the properties of Green’s
functions of gauge-noninvariant operators to tell
us which symmetries are broken and which are
not. However, at zero temperature these Green’s
functions have poles whose residues, the S-matrix
elements, are gauge-invariant, and can be used to
diagnose the symmetries of the theory. At finite
temperature there is no such thing as a single
collision (particles interact with the thermal back-
ground on their way into and out of any encounter),
so there are no S-matrix elements as such, and
this approach fails us. In particular, we cannot
directly measure the particle masses discussed
in Sec. IV.

We can, however, presumably measure the
partition function in the presence of various gauge-
invariant perturbing operators of the form ¢,¢,,
Fopv E ., Py, etc., and.from these measurements
we can infer values for the temperature Green’s
functions (2.11) for these operators. It is not
immediately obvious, though, that we can use
such Green’s functions to learn about A values
and masses, because the gauge-invariant opera-
tors are necessarily at least bilinear, and so the
lowest-order graphs for their Green’s functions
are not trees but loops, and we cannot adjust the
four-momenta carried by internal lines of such
loops to arbitrary values. In particular, if the
typical energy or momentum carried by the inter-
nal lines of the loop is of order 6, then the inser-
tion of a quadratically divergent subgraph of order
€*@ in an internal line of the loop produces two
more powers of 6 in the denominator, so the over-
all effect is to introduce a factor e?. From this
standpoint, it does not seem that the “failure” of
perturbation theory, which forced us to introduce
the effective polynomial in Sec. III, is real at all.

The answer is that we must consider not the
Green’s functions of arbitrary gauge-invariant
operators, but the Green’s functions of gauge-
invariant operators carrying moderate momenta
(P =M rather than P ~6) and zero energy. As long
as there are enough operators so that the over-all
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dimensionality D of the Green’s function is less
than 1, the leading lowest-order terms for 6>
will be the graphs in which all internal lines have
zero energy and moderate momenta. (As dis-
cussed in Sec. III, the temperature dependence

of such terms in entirely contained in the single
multiplicative factor 6; all other terms are then
suppressed by factors of order 6/9.) These
leading graphs will be sensitive functions of the
masses of their internal lines, and can be used

to study the symmetries of the theory. In particu-
lar, if we did not introduce our effective poly-
nomial, then the insertion of quadratically diver-
gent subgraphs in the zero-energy internal lines
of such leading graphs would introduce factors of
€26?/M? rather than ¢?, and hence would lead to a
breakdown of perturbation theory for 6=9/e. The
masses and A values which can be inferred from a
study of zero-energy gauge-invariant Green’s
functions are therefore the ones derived from our
temperature-dependent effective polynomial, and
these are the ones which show the phase transi-
tion.

Of course, all we can ever measure in this way
are invariant quantities, such as A, \,, Tr[M?],
Tr[u?], etc. However, these can easily be used
to tell whether the symmetries of the theory are
broken. For instance, if a symmetry requires
that A; or p vanish, or that M 2 be proportion-
al to the unit matrix, and our measurements
reveal that A, A, or Tr[p?] is not zero, or that
Tr[aM*] is not equal to (Tr[M2])? then we know the
symmetry is broken, although of course we never
find out in which direction the symmetry breaking
occurs.

- It is also possible to infer the existence of a
phase transition by studying the partition function
itself. The lowest-order graph is the “no-loop”
term

[an]no loop= - % Peff(x)’ (7-1)

with Q the volume of the system, and P, evaluated
at its minimum. The one-loop corrections involve
A-dependent terms which are canceled by the last
term in Eq. (3.7), plus A-independent terms of
order & and M26?. The latter terms are quite
large, and in a sense represent a breakdown of
perturbation theory which has so far been ignored
because it occurs only in InQ rather than in the
Green’s functions. [These terms are calculated
for scalar field theories in the Appendix, and in-
cluded there in P,;; see Eq. (A36).] However,

Eq. (7.1) correctly represents the leading terms
in the part of 1InQ which is A-dependent and hence
nonanalytic at the critical temperature. We will
therefore rewrite Eq. (7.1) as

{nQ} =~ 2P, ), (1.2)

with the subscript NA denoting the nonanalytic
part. Familiar thermodynamic arguments then
give the nonanalytic part of the pressure

{P}NA= —Peff (A')’ (7-3)
the entropy density
3P (A)
- [
{sha=-—%5 > (7.4)

and the energy density

oy =P () - 0 22 (1.5)

To see how this works in practice, let us return
to example 2 of Sec. IV. The effective polynomial
was

P (¢)=3IM2(6)9; ¢, +1€%(9; ¢, ),
where
IM2(0) =IM2(0) + 55 (n +2)e® P+ (n — 1)e’2 62,

For 6< 6., the value of the polynomial at its mini-
mum is

P (0) = = T04(6)

-z [F (e 2)e? 1k - De)2 (6 - 0,21

On the other hand, for 6>6,, the minimum of the
polynomial is at ¢, =0, where

P (0)=0.

Thus the pressure and the energy and entropy
densities are continuous at 6=46,, but their deriva-
tives are not. In particular, the specific heat
shows a discontinuity:

du ou
...
V" \80/g=g+e \80/6=g.-¢

o [azagm]
i 892 6=6,~€

3
—% [&m+2)e+i(n-1)er2]2,

This certainly reveals the presence of a phase
transition, though we need to go beyond thermo-
dynamics to determine what symmetries are re-
stored in this transition.

APPENDIX: OPERATOR APPROACH
TO THE POTENTIAL

In order to take account of the higher-order
effects discussed in Sec. VI, we need to generalize
the effective polynomial by defining a potential,®
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the symmetries of whose minima will truly deter-
mine the symmetries of the theory. In this ap-
pendix, Iwill describe an operator approach to this
problem, which incidentally leads to an interesting
interpretation of the radiative corrections in field
theories at zero temperature in terms of the zero-
point energies of the various degrees of freedom.
Unfortunately, it will be seen that this operator
approach breaks down badly in gauge theories.

We will consider a system with a large but finite
volume 2, and define the spatial average of the
Schrédinger representation operator ¢(X) as

[ % fgdsx ¢y(%). (A1)

In order to allow us to vary the thermodynamic
mean value of ¢;, we include in the Hamiltonian

a perturbation QJ;¢,, with J; a variable c-number
“current.” The mean value of §; is then

n;(J)E<$¢>J
_ Trl 3 exp{-(1/6)(H+2J,5:)}]
" Trlexp{-(1/0)(H+QJ;p;)}]

This may be expressed in terms of the Helmholtz
free energy per unit volume

(A2)

AWD=-F nTrlexp{-(/)H+2I BN (A3)

as

i (J) = 3%(,—‘_]1. (A4)

(Of course, in addition to its dependence on J,,
the free energy also depends on 6 and £ and on
any other parameters appearing in H.) Our poten-
tial is defined as a function of n rather than J,
using a Legendre transformation to introduce the
analog of the Gibbs free energy:

Vim=A(J) - J;n;. (A5)

Using (A4), we may now define J as a function of
n by the condition

av(n)
Bn‘

In particular, the possible mean values of 51 when
the current vanishes are given by the points where
V(n) is stationary,

av (n)
an,

so V(n) is a suitable potential for our purposes.

In fact, the actual mean value of ¢; for J =0 must
be at a point where V() is not only stationary but
also a local minimum, because we can easily show
that

=—J¢(17)- (a8)

=0 if J, =0, (A7)

|©

VM) _ 6 -
am,om, ) A ”(Tl),

with A the positive matrix

Au(n)E ( (—i -Th)@, -77,-)),-

The function V (n) must be defined by analytic con-
tinuation at n values where BZV/Bnian, is not posi-
tive, because no current J can produce such 7
values in a state of thermal equilibrium.

So far, this has been quite general. Let us now
consider the simple scalar field theory described
by the Lagrangian (2.1). The Hamiltonian here is

H= dex (47,7, +49 0, - Vo, +P(0)], (A8)

where m; is the canonical conjugate to ¢;. As in
Sec. II, we assume the parameters in P(¢) to be
characterized by a typical mass I and a typical
dimensionless coupling e<<1, in the sense of Eq.
(2.6). We will construct a perturbative expansion
for V(n) in powers of e, for temperatures 0
ranging from 0 to order M/e.

First, in order to cancel the divergences and
the attendant temperature-dependent terms in
V(n), we must again introduce a polynomial
counterterm, writing

H= fdsx [3m, m, +%3¢, . _V’¢>¢+P,ff(¢) -aP(9)],

(A9)
where

P (¢)=P(¢)+AP(¢), (A10)

with AP a quartic temperature-dependent poly-
nomial to be constructed as we go along. To the
order we will be studying here, it will be suffi-
cient to treat AP(¢) as a quantity of zeroth order
in e for ¢ =n; in higher order we would need to
include other renormalization counterterms, in-
cluding higher terms in AP.

Next, since we are interested in values of the
variable 7, of order M/e [compare Eq. (2.9)] we
must shift ¢, , defining a new field ¢; by

Gy =i +m; . (A11)

The Hamiltonian may now be written as a sum of
terms H™ of order » in e:

H=H"2 L g« L g L g +H(2), (A12)
where
H™® =P (1), (A13)
- 9P (1) f
(=1) _ = eff\I7 3 ’
BV =00 Kot (A14)
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.. 1 3%°Py(n) ]
) _ 3, | L 196/ Vo' + — eff o
H jﬂd x [z T M +2Vo; Vo + 2 onom, i 95

-QaP(n), (A15)

1 83%P(n) 3AP(n)
Hu):__e{f_____fdsx IV /____stx ,.’
6 on,on,0m, Jo oM an, . oy

(A16)
1 8%P.¢ (n)
2) _ = 9 Leff\ll] 3, IPYPYIN;
== 24 5m;9m,0m0M,y fodxd)‘d’j%(p’
BZAP(n)f
- ———1= | d% ¢’ . Al7
nane |4 9i9) (a17)

We shall attempt to calculate V() as a sum of
terms V™ (n) of order % in e:

V)=, vm), (A18)

using the formula

V(n)=—--%ln Tr[exp %—%<H+ J; Ld"xq:;)}]
‘ .(A19)

[see Eqs. (A5) and (A3)]. The current here is
given by Eq. (A6), so it may also be expanded as
a sum of terms J; of order = in e:

Jim) =2 J, "), (420)
with
J, M) = on, (a21)

(Recall that 7 is of order M /e.) Our calculation
will therefore be recursive: Given V™ (), we
use (A21) to calculate J,*V(n), and then insert
the result back in Eq. (A19) to determine V**1(p).

To start this recursive calculation, we tenta-
tively assume that J™ vanishes for n< -2, so
(A19) gives the leading term in V(1) as

1
@)

GM?) = fdak(%(E2+Mz)‘/2+91n{1 —exp[-(1/6)(k? + M2} /2]}).

Before carrying out our renormalization, it is
useful to compare our results so far with those
of relativistic field theory. At zero temperature,
Eqs. (A22), (A24), (A27), and (A30) give

V) ~Pm)+ ﬁ-wr[ fd3k(l’(2+M2(n))‘/2}.

If P(n) has a minimum at =X, then the true mean

— -2
vER@m) = —% In Tr[exp(—He——) :l

=P, (). (A22)

This can be used as in Sec. IV to study the sym-
metries of the theory to lowest order in e, but
we do not yet know Q,,(6).

To go to the next order, we use Eq. (A21) to
determine

- 8Pesc (1)
J, D () = = S2er\D)
i (77) o7,
Thus in first order the current term (A23) cancels
the Hamiltonian (A14) in (A19), and therefore

(A23)

veED(m)=0. (A24)
In the next order, Eq. (A21) gives
J,9(n) =0, (A25)
so from Eq. (A19)
)
V@ n)=- -% InTr [exp( I’; )] ) (A26)

Aside from the c-number term in (A15), this is
nothing but the free energy per unit volume of a
noninteracting mixture of ideal Bose gases. It

may therefore be written as a sum,
V@) =-aP M)+ Trlc (M2@))], (a2m)

where G(Mz)'is the free energy per unit volume of
an ideal Bose gas with mass M,

G(M?)= -% In H NZ: expl - (N + ) (&2 + M2)/%/6]
% =0

(A28)
and M?,,(n) is the mass matrix in (A15)
82Pesr (1)
M3, ()= — A29
s am,om, (A29)

[Note that we are keeping the zero-point energy in
the exponential in Eq. (A28), a point that will be of
some importance later on.] Passing to the limit of
infinite volume and performing the sum over N in
(A28), we find

(A30)

—

value of ¢, for J =0 is determined by the condi-
tion

PRAAC)
371; 'n=($)

'xMz(j[($,>_)~j]

1 -
* 4@y Sin fdak(ﬁz Mo,
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where
82P (1) 3P (1)
2 _Z 2\ AT Wl
M= ax0x, Tism ERVEPNE W
Therefore,

(=X —2@2m)M ™%, fin fd3k(E2 M2

On the other hand, Eq. (3.8) shows that the mean
value of the scalar field calculated by Feynman-
diagram methods is

(P)=x _,i(27’)_4M-2u T,
=X +31RM) M7, fr

X fd“k(kth-ie)“,.,,.

By performing the k° integration, we easily see that
this agrees with the result obtained by operator
methods above. Thus the one-loop diagrams sim-
Dly vepresent the contribution of zevo-point ener-
gies to the total free enevrgy.

Returning now to the main line of our calcula-
tion, we note that the first term of the free-energy
function (A30) may be written

1

Wfd%(ﬁz FMOM? = Go(M?) 4 ——y M*InM?,

6472
(A31)

where G.(M?2) is a quadratic polynomial in M2
with divergent coefficients. Then TrG., ( M3(¢))
is a quartic polynomial in ¢ which satisfies all
the symmetry requirements imposed on P(¢), so
we can adjust the parameters in P(¢) to cancel
this term, leaving over a finite-temperature-
independent renormalized polynomial

P, ($)=P(¢)+TrlG. (M2(p))]. (A32)

For “moderate” temperatures, say <9, the
only counterterm we need is just the term Tr[G.]
in (A32), and we can take P, as our effective
polynomial. Equations (A22), (A24), (A27), and
(A30)—-(A32) then give the potential as

V(1) Py () + Trl G, (M), (A33)
with the function G, defined by
G,(M?*)=G6M?) - G.(M?)

= _6—4111_2M4 InM 2
: ° 2 2)1/2
* @0 fd kIn{l - exp[ - (1/6)(K? + M 2)/2]},

(A34)

For 6=JN the correction term Tr[G,] is of order
M, while P, (n) is of order MYe?, so it is the

ren

|©

temperature-independent polynomial P, that

governs the pattern of broken symmetries.
On the other hand, for “high” temperatures,

say 6=IM/e, the free energy (A30) becomes

G(M?) =~ Gu(M?) - 35126% +5; 6°M 2
(for 6> M). (A35)

All these terms are at least as large as P, (),
so they all must be included in the effective poly-
nomial, which now becomes

Peff (¢) =Pren(¢) _'sl_oB"rzg4 +ﬁ92 Tr[M2(¢)] ]
(A36)

where B is the number of boson fields. By ex-
panding in powers of ¢, we find

Tr(M2(¢)) =1 f, jus®; ¢, + constant, (A37)

so Eq. (A36) is the same as our previous result
(3.26), except for a constant (the Stefan-Boltzmann
term), which of course has no effect on the loca-
tion of the minima of P,.. We might try to improve
this calculation by including the terms of order
M* in (A36), but this improvement would be il-
lusory; the “second-order” term V(n) in the
potential includes n-dependent contributions of
order ¢*0®M2~IM*, which are just as large as the
corrections to Eq. (A36). In any case, even if

we took these effects into account and correctly
calculated all terms in V of order M*, we still
would not be able to calculate the behavior of the
minimum of the potential near the critical tem-
peratures, where one of the eigenvalues of M2(n)
vanishes.

There is no problem in including fermions in this
sort of calculation. Rather than go into such in-
essential complications here, let us turn imme-
diately to the more challenging problem of a gauge
theory described by the Lagrangian (2.4), leaving
fermions aside for simplicity.

We need first to construct a Hamiltonian for this
theory. To the best of my knowledge, this has so
far been possible only in the “unitarity” gauges,
defined by the condition that ¢ should have no
components along the directions 6,1

(Pi(ea)‘)i =0, (A38)

where A is some fixed vector. It is usual to choose
A to be a vector at which P(¢) is stationary,

3P ()
9

because then the directions (6,)) define the eigen-
vectors of the mass matrix with eigenvalue zero,

32P (¢) l
a¢{a¢j ¢=A

’

¢=2

(6,2),=0,
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and the condition (A38) just amounts to the ex-
clusion of Goldstone bosons from the theory. How-
ever, we shall leave X arbitrary here.

The dynamical variables in the gauge (A38) are
the spatial components Ka of the gauge fields and
the scalar field components

qba =nai¢i ’ (A39)

—_—

—

where n,; forms a complete orthonormal set of
vectors orthogonal to all 6 A:

TaiMp; =84y, 143(00); =0. (A40)

The Hamiltonian in this gauge is given by the un-
pleasant-looking formula’

H= [@x{307 s 0T+ Ba=CapsPs Ky +i (0 0] [ 7By - Coc B Ko +1(65). 7 6]

+

- -—

D= W=

+

where P and 7, are the “momenta” canonically
conjugate to A, and ¢,, and

(Be)ap="0i735(6cr)i 5 5 (A42)
Ws 5(¢)E (98 ¢)i(Qa)‘)i(V_z)ay(ey)\)j(gé‘b)j ’ (A43)
V-zotﬁ = _(ea)\){(eﬂ 7\){ . (A44)

At this point we face a problem. If we identify
A with the argument 7 of the potential V, then
changes in A will change V not only directly,
through changes in the current J(A), but also
through changes in the choice of gauge. The X
dependence of the Hamiltonian would invalidate the
general formalism used here; indeed we already
know?® that the vacuum expectation value of ¢, at
zero temperature in the one-loop approximation
is not given by the minimum of any potential de-
pending on the single variable A. To avoid this

J

f)oc'i;a'*”%”a"a‘*% (-V>><Ka -Cus 1KBXK1)' (_V.Xch —CaBCKBXKG)
$¢a * v(;ba + iAct ° $¢a(9d)ab¢b +%_A.ot ° KB[""otB ((P) - (ea)ac(eﬂ )bc¢a¢b] +P(¢)} ) (A41)

-

problem, we fix A; and our choice of gauge once
and for all,?® and use as the independent variables
in the potential the thermodynamic mean values
7, of the fields ¢, in this gauge.

With this understanding, our general formalism
becomes applicable again. We define a shifted
scalar field

Gq= 04—, (A45)

with 7, of order 3M/e. The Hamiltonian can then
be written as a sum of terms H™ of order e":

H=H"2 4 gD g©@ L g +H(2), (A46)
where, up to zeroth order,
H"® =QP, (n), (A47)
HY = —a%;;(—") fde’x o!, (A48)
i

HO = fd3x{%w_laa(n)[ —V.‘ ?a—f- i(Ba)a,,nanb][ 6' _I;B + i(eg)cdﬂ'cnd]'i-éﬁa' _P’a+%‘nqﬂa +§(€X_A.a)' (axxa)

+3V 0L Vs + iR Vou(0.)uM, +302as MAyr Ky +3M %, (105} — QAP M) (A49)

with
P (¢)=P(¢)+2P(¢), (A50)
lJ'zctB (n)EwaB (71) - (Ba),,c(%)bcna My s (A51)
2 _ aZPe (11)
M) = 5 L (A52)

[In evaluating w(n) and P(n) and its derivatives, we
set n; equal to ",,;71;-] For future reference, we
note that since the n,; span the space orthogonal to
the 6,1, they satisfy the sum rule

gyt =0y, + (0,2); V24 (6p0);
[see (A44)]. Contracting this with (6,n);(657);,
we find

(Bc)ap(06)acmpne = (9171);(9511); +w76(n)a

and therefore

pzaﬂ (n)= -(9007)4(9571){ .

Following precisely the same reasoning as for
the scalar field theory discussed above, we find
here for the potential up to zeroth order in e:

V() =P, n) - (6/2)InTrlexp(-H/6)]. (A53)

The calculation of the second term is now not
entirely straightforward, because H'® is not in the
familiar form of a free-particle Hamiltonian. In
order to bring it to this form, we must first per-
form a canonical transformation to a new set of
ganonical variables &, ¢, and their conjugates
L |

Ao =Bo+ 5 (W2(0) s (88)as M,V 04, (A54)
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50{ = isou (A55)
®,=(57 )05, (A56)

Ha =(S(n))¢b [ﬂb +1 (P-z(n))aﬂ (QB )bcnc—€ ° —ﬁu] ’
(A57)

where S(n) is any matrix such that

Sba(n)sca(n) = Gbc - (Ga)ba na(eﬂ)cd 714“’-1018 (71)-
(A58)
It is straightforward, though tedious, to check

that this is a canonical transformation, and that
it brings H'® to the diagonalized form:

H® = [ %[22 s )V B)(V + Bp) + 2B * s

+311, 01, +3(VX3,) - (VXF,)

+%_€¢a ‘ -€§a +%u'2a6 (ﬂ) Eu : EB

+3M2,,(n) &,2,] - QAP (), (A59)
where
it = 2B (s, (s (460)
a b

We can now immediately write down the free ener-
gy:

V() =P, () +3 TrlG(uw* )] + Tr[G(12 )]
-AP(n), (A1)

where G is the function (A30).

At this point our calculation breaks down. The
divergent part of the function G(M?) is a quadratic
polynomial in M2, so if M2(n) and p*(n) are qua-
dratic polynomials in 7 the divergent parts of
Tr[G(12())] and Tr[G(312(n))] will be quartic
polynomials in 7, and hence can be removed by
the counterterm AP. However, although u?(n) is a
quadratic polynomial in 7, M2(n) is not [because
of the matrices S() in (A60)], and therefore the
infinite part of TrlG(M2M))] is not a quartic poly-
nomial in M and cannot be removed by renormal -
ization.

The reason for this difficulty is not hard to find.
In general, the only reason that we would have to
believe that renormalization should work in a
calculation based on the unitarity gauge is that
the results must be equivalent to those obtained
in one of the renormalizable gauges, such as the
& gauges used here in Secs. II-IV. However, in-
defining the potential, we have perturbed the

Hamiltonian by a term linear in the scalar fields
in the unitarity gauge, and these scalar fields

are nonpolynomial functions of the scalar fields
of the renormalizable gauge. [For instance, in
an O(2) gauge theory with one 2-vector scalar
field multiplet, the single U-gauge scalar field

¢ is related to the two R-gauge scalar fields

by, d, by ¢ =(d,% +,2)'/2.] From the point of
view of the R gauge, the perturbed Hamiltonian
corresponds to a manifestly nonrenormalizable
interaction, so of course renormalization theory
does not work, whether we use the R gauge or the
U gauge. [Actually the divergent part of
TrG(M2(n)) is a quartic polynomial in 7 in the
special case where ¢, furnishes a representation
transitive on the sphere, because in this case the
matrix S,, is the unit matrix. However, as dis-
cussed in Sec. V, even though we can calculate an
effective potential in unitarity gauge in such sim-
ple theories, it is not particularly useful to do so.]

This analysis suggests two possible directions
for construction of a suitable potential in gauge
theories:

(a) Instead of perturbing the Hamiltonian by a
linear function of the U-gauge scalar fields, we
could use a quadratic or higher-order function
which can be written as a gauge-invariant poly-
nomial function of the R-gauge scalar fields. A
preliminary analysis indicates that this would
cure the nonrenormalizability we have found here,
but the formalism needs further development.

(b) We could give up the operator methods al-
together, and return to a diagrammatic R-gauge
analysis along the lines of Secs. II-V. The diffi-
culty here is in defining a suitable potential; it is
known?® that even at zero temperature, the tadpoles
and other boson Green’s functions with zero exter-
nal four-momenta are not given by derivatives of
any potential in any of the £ gauges except the
Landau (£ =«) gauge. The solution would be to
use either the Landau gauge or one of the £ gauges
defined by a fixed vector A; different from the
argument 7, of the potential,?® as in this appendix.
The potential defined in this way would be gauge-
dependent, because the perturbation J,¢; is a
gauge-dependent operator. However, the values
of the potential at its local minima or maxima are
gauge-independent, because J; vanishes at these
stationary points. Hence if there is a minimum
of V(n) with a value lower than V(0) in one gauge,
then there will be such a minimum in any gauge
(although its position will generally be different),
and the symmetries will definitely be broken.?”

At any rate, the definition of a suitable potential
is only a first step toward a solution of the real
problem, the summation to all orders of the in-
frared divergences at the critical temperature.
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