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We paraquantize the classical massless relativistic-string action and find that the resulting
theory is Poincare-invariant in four space-time dimensions if we use para-Bose commutation
relations of order 12. More generally, we find that if the dimension D of the space-time
and the order q of parabosons are related by the expression D = 2+ 24/q, then the quantized
theory is Poincare-invariant. We also construct a fermionic parastring model which is the
analog of the Ramond-Neveu-Schwarz model and find that it is invariant in D dimensions if
D= 2+ 8/q, both the fermions and the bosons being of order q. We show by explicit Klein
transformations that these theories are equivalent to "color"-endowed canonically quantized
strings with SO(q -1) "color" symmetry. We obtain dual tree amplitudes by suitable choice
of vertices. Finally, we consider second-quantized parastring theories and show, by an
explicit example, that they can be Poincare-invariant in four space-time dimensions.

I. INTRODUCTION

The search for the understanding of the funda-
mental structure that underlies the dual resonance
models has been the subject of many interesting
investigations in recentyears. ' ~ From among var-
ious approaches, the one which has reached the
status of a bona fide theory is the gauge theory of

the relativistic string, ' which is based on a geo-
metrical description initiated by Nambu. ' In this
case the fundamental structure is a massless
relativistic string.

An important feature of the string model is that
all of its properties follow from a single action:
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F"{r,8) = string variable,

g = det(g. ,),
a' =the only dimensional parameter

of the theory (N=c=1).

This action can be arrived at
(a) by a generalization of the action of a free

point particle, ' or alternatively, "'"
(b) by requiring that as a function of 1'"(v, 8)

and its derivatives
(i) it be Poincard-invariant;
(ii) it be parametrization-invariant;
(iii) Euler-Lagrange equations involve deriva-

tives not higher than the second.
The equations of motion which follow from the

action (1.1) are fairly complicated

@dan

yJl qQ qj.

It is thus clear that because of the nonlinearities
involved a coordinate-invariant quantization of
such a theory is out of the question. It is possible,
however, to exploit the parametrization invariance
of the action (1.1) to cast the theory into a man-
ageable form. The simplest way of seeing this'
is to note that by a coordinate transformation it is
always possible to cast the differential quadratic
form of the woxld sheet

ds +goo(dfP) + gog dt's d'g +gag(cfg)'
into the fox'm

ds goo(dT d8, ) ~

which is invariant under conformal transforma-
tions. This amounts to imposing the coordinate
conditions:

aY" =0, u'=~(v+8).

It is then straightforward to show that the spectrum
as well as the ghost-eliminating conditions of the
dual resonance model follow from the action (1.1)
in the gauge specified by (1.5). One thus arrives
at the gauge theory of the relativistic string. '

In quantizing a gauge theory, one can either work
in a manifestly covariant gauge, in which case one
must explicitly prove the absence of ghosts, or
one can work in a manifestly ghost-free gauge, in
which case one must explicitly prove the Poincarb
invari3nce of the theory. The proof of the absence
of ghosts in the manifestly covariant gauge can be
carried out as far as showing that. the spectrum of

states is positive se-midefisite. To complete the
proof one would have to show, among other things,
that the generatox s of the Poincard group are well
defined in the positive defi-nite sector of the spec-
tx'um.

The quantization in one manifestly ghost-free
gauge has been studied in detail. '6 It is found that
such a quantized theory is Poincard-invariant
not in four but in 26 dimensions. To preserve
Poincard invariance even in a 26-dimensional
world, it is further necessary that the ground
state be a tachyon.

The free-string theory has also been extended to
an interacting theory"" in which the interaction
is-taken into account by studying the breaking and,

joining of the strings. This theory is again Poin-
card-invariant in 26 space-time dimensions and
has a tachyon in the ground state.

Although disappointing, the beauty and the inter-
nal consistency of a gauge theory of interacting
strings leads one to hope that a modified version
of this theory might be free from these difficulties.
Attempts at the modification of the theory could be
made in various ways. In one of these, '9 the funda-
mental dynamical variable F"(v, 8) is replaced by
a fermionic dynamical variable. It is found that
the resulting theory is tachyon-free, ghost-free,
and is Poincard-invariant in four space-time di-
mensions. However, since the model departs
from strict canonical formalism, the incorpora-
tion of interactions is not straightforwax'd. In an-
other recent modification, " ' attempts have been
made to make the relativistic string massive.
Here again strict canonical formalism can be
maintained only at 25 space-time dimensions. "
The purpose of the present work is to present Bn

alternative quantization of the massless relativ-
istic string which is Poincarb-invariant in four
space-time dimensions. This we do by making an
essential use of the nonuniqueness of the passage
from a classical to a quantum theory. It was shown

by Green" some time ago that the ordinary canon-
ical quantization is the simplest of a large class
of quantization schemes which are now known as
paraquantizations. The motivation for the para-
quantization of the classical massless relativistic
string is manifold. First, as we shall see, it will
restore the Poincard invariance in four space-time
dimensions. Second, by leaving the classical the-
ory intact and altering the quantization scheme,
one may hope to learn the manner in which the for-
malism perfected by Mandelstam'8 ought to be al
tered so as to obtain an interacting theory of para-
stxings. Moreover, in recent years a number of
equivalence theorems have been proved23' 4 con-
necting parastatistics with internal-symmetry
groups. It would then be interesting to see what
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internal-symmetry groups could emerge from the
study of the parastrings. Our approach is to be
compared with another recent attempt" in which
nem models are constructed by introducing extra
"colored" Fermi and Bose oscillators while leav-
ing the string variable intact. Finally, the results
which emerge from a first-quantized parastring
theory show hom a second-quantized parastring
theory could be constructed, which is Poincarb-
invariant in four space-time dimensions.

The study of parastatistics in the literature has
been to a large extent confined to the second-quan-
tized theories. In applying it to the first quantiza-
tion of the classical string, we encounter a number
of novel features which do not show up in the sec-
ond-quantized theories. The most important of
these is the manner in which the center-of-mass
variables of the string are to be handled. On the
one hand, the consistent paraquantization of the
string variable x equires relative ParacommutaNon
relations between the e.m. variables and the ex-
citation modes; on the other hand, since the c.m.
position and momentum operators are conjugate
physical operators regardless of the nature of
quantization, me must require that they satisfy the
usual canonical commutation relations. To make
these tmo requirements compatible, it is neces-
sary to fix a direction in the paraspace of the
Green components (see Sec. II) and specify the
momenta along this direction. In the language of
internal symmetry this amounts to reducing the
over-all color symmetry from, say, SO(q) to
SO(q- I}where q is the order of parastatistics.
It is interesting to note that Gunaydin and Gursey, 26

in their construction of the repxesentations of the
Polncar6 group in an oetonlonic Hllbex't space,
mere also led to specify a direction in that space
to ensure that space-time and internal-symmetry
transformations commute. Then the internal sym-
metry is reduced from G, to SU(3).

The remaining sections of this work are arranged
as follows: In See. II me discuss the nonuniqueness
of the quantization of a classical theory and review
paraquantization from a point of view relevant to
the subsequent sections. In Sec. III me paraquan-
tize the classical string and find that the resulting
theory is Poincarh-invariant in D =2+24/q space-
time dimensions, where q is the ox der of para-
Bose statistics. The intercept remains at a, = j.,
as in the conventional theory, so that the ground
state is still a tachyon. In Sec. IV we demonstrate,
via a Klein transformation, the equivalence of the
parastring model to a color-endowed canonically
quantized string theory and show hom dual tree
amplitudes ean be obtained by a suitable choice
of vertex. In Sec. V we discuss second-quantized
parastring theories which are Poincard-invariant

in four space-time dimensions. In See. VI we
similarly construct a fermionie parastring theory
which is Poincarb-invariant in D = 2+ 8/g space-
time dimensions, where q is the commoe order
of the parafermions and parabosons in the theory.
Section VII is devoted to concluding remarks. A
number of methematical details are relegated to
the Appendix.

II. NONUNIQUENESS OF QUANTIZATION
AND PARASTATISTICS~'~4 2' 2S

[P",a~] =}t"at, (2.1)

P"=-QP"[at a]

with plus (minus) sign corresponding to bosons
(fermions). Substituting (2.2) into (2.1) we find

(2.2}

(2.3)

(2 4)

Other xelations ean be obtained from these by
Hermitian conjugation and the use of the Jacobi
identity.

To recover the ordinary canonical quantization,
one must impose tmo further requirements:

(v) The commutator or the anticommutator of
two field operators is a c number.

(vi} All the physical operators such as P" must
be written in normal-ordered form.

From (v) and (2.4) it follows that

[~k~si]~ =0 ~

Then (2.3) reduces to

To demonstrate the nonuniqueness of the quanti-
zation procedure, consider how starting from a
elassieal Lagrangian for a free field one arrives
at a quantized theory 9:

(i) Independent dynamical variables and their
canonical momenta are specified.

(ii) Via Noether's theorem conservation laws
are derived. In particular, the generators P" and
M"' of the Poincarb group are specified.

(iii) The c-number fields are made into opera-
tors satisfying the same field equations.

(iv) The expressions for the generators P",
M"', etc. , in terms of the field operators are
taken to be the same as the corresponding classi-
cal expx'essions, except for the symmetrization
with respect to noncommuting operators.

From these requirements, it then follows that,
e.g. , for a single free field in momentum space,
we have
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[:[ao, ai]. :,a.l = -»a. ai

or

These are just the ordinary canonical commutation
rules. It thus follows that the main difference be-
tween the ordinary quantization and the more gen-
eral paraquantization conditions (2.3) and (2.4) is
the requirement (v). Since this requirement does
not follow from any general physical principles,
it need not be imposed. It is therefore cleat that
there are other inequivalent representations of
paracommutation relations (PCR) (2.3) and (2.4)
which may be adopted as a basis for quantization,
that- is, the quantization procedure is not unique.

Of the many inequivalent unitary irreducible
representations of the paracommutation relations
(2.3) and (2.4), the ones relevant to our work are
the Fock-type irreducible representations realized
on a Hilbert space with a unique vacuum state an-
nihilated by all a, :

a~ I0) =o.

These representations can be most conveniently
characterized by specifying the order of the para-
fields through the Green's ansatz

where q is the order of the parafield. The Green
components a„satisfy the anomalous commutation
relations

[a„,a t],= 6„

[a„,a ],=0,

[a„,as ],= [a„",as~], =0, nap

+ j. for parabosons,

—1 for parafermions.

It has been shown by Greenberg and Messiah" that
all the irreducible Fock representations of Eqs.
(2.3)-(2.5) are given by the Green's ansatz (2.6).

Recently, a number of theorems concerning the
equivalence of a single parafield of order q with
an ordinary field with q additional degrees of free-
dom have been established. ' 4'28 Qne version of
these theorems given by Qhnuki and Kamefuchi'4
is based on the requirement of strong locality

X, F & VI. Then, Klein transformations3' are
utilized to study the nature of the equivalence be-
tween a parafield (PF-field) of order q with a
single ordinary field with a hidden variable which
takes on q values (F-field). For a parafield, one
sets

y"(x) =z„4 '(x),
with K~ such that

Z„io) =io), Z.'=Z„-'

[K~, p (X)] = 0, for n & p

{E,$8(x)}= 0, for a ~ P .

(2.9)

(2.10)

Then if, for example, P(x) is a parafermion, it
can be seen immediately that

(2.11)

[4(x),4(F)] =g [0"(X),4 (8],
O=&

e

[g'(x},4'(F}]=g[y (x), 4 '(y)],
0(=g

[0(x), I('(F)] = g [4"'(X),4"'(F)1.
Ct =g

(2.12)

. The expressions on the right-hand side are invar-
iant under the gauge transformations SO(q) of the
form

4' (X)=g g Sp (X), g ~ So(q).
B=j.

(2. 13)

The relation [$(x), g (y)] alone is invariant under
SU(q) transformations of the form (2.13) with

g & SU(q). Then two types of equivalence between
the PF-fields and the F-fields can be stated as
follows":

(a) If the observables are functionals of all the
[g, P], [g~, g ], [f, ft), then PF-field F-field for
all possible physical consequences, but the con-
verse is not true.

(b) If the observables are restricted to be func-
tionals of [g, Qt] only, then PF-field —F-field for
all possible physical consequences.

The bilinear operators mentioned above can be
expressed in terms of the Klein-transformed fields
4 +(x)24.

[+(Vs), 4(x)1 =o &4 Vs (2.8) III. THE RELATIVISTIC PARASTRING MODEL

where F(VI) is a Hermitian functional of P(x} and
P (X) representing an observable. They are then
able to show that E(Vz} must be a functional of the
bilinears [$(x),Q(Y)], [$(X),g~(F}], [rp~(x), g~ (F}),

We now proceed to the paraquantization of the
massless classical string. As mentioned in Sec. I,
it is always possible" to work in a gauge in which
the differential quadratic form of the world sheet
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has the form

ds'=g00(d7 -d8'). (3.1)

g00+ gll =

gol=0,
(3.2)

g00

Then in the notation of Ref. 14 the gauge conditions
(1.5) can be written as

r"(v, 8) =AX" +BP"7

+ C (a" e '"'+a" e'"')'cosn8.
n n

n=l

In the conventional quantization, the coefficients
A, B, and C are fixed by requiring that canonical
commutation relations on a„" and a„"~ lead to the
corresponding relations between Y'" (v, 8) and its
conjugate variable, and tha, t the independent com-
ponents of P" follow canonically from the I agran-
gian. It turns out that in paraquantization the same
requirements determine the coefficients A, 8, and
C uniquely. Anticipating this result, we write

gll 8g

8F" 8'gol-87 88

(3.3)
Y"(~, 8') =X~+2n'P~~

+ (2o.")"'Q~ (a„"e '"'+a/ e'"') cosn8,
n=l

In this gauge the equation of motion (1.3) for
reduces to

v~ v, e =0. (3.4}

where, by (3.5)

X+ =0, a~ =0.

(3.7)

(3.8}

A. Noncovariant paraquantization

The coordinate constraints (3.2) do not com-
pletely specify a gauge. This is because the dif-
ferential tluadratic form (3.1) specifies a confox-
mally fla& manifold, so that under conformal trans-
formations

v- v'(8, ~), 8- 8'(v', 8),

F00(&, 8)-goo(&' 8'}

This means that the momentum P conjugate to X'
as well as the modes a are not independent dy-
namical variables. In fact, from the constraint
equations (3.2), we find

P dg +P 2 3 9

i T
( a2')' 12'PMm '

and the form (3.1) is left invariant. As a result,
v' and 8' must satisfy the Cauchy-Biemann con-
ditions

88' 8 v' 88' 87'
88 87'' 8& 88

Moreover,

T de +Y' cosine

dY
+ d8 —~ Y' sinm8,

271 of 0 dT
(3.10)

(3.11)
82 82

r'(8, v) =0.
8v 88

7' = 2~'P+7', (3.5)

whex'e P' is the string momentum conjugate to the
coordinate X

Vfith the boundary conditions

a general solution of Etl. (3.4) has the form

Since v' satisfies the same differential equation
as F" and can be made to satisfy the same bound-

ary conditions, the suggestion has been made" to
make one component of F" proportional to v. Then
using Dirae's null-plane dynamics, "we set

Before we carry out the paraquantization of the
classical string, we state a number of require-
ments which such a quantization must satisfy: (1)
Paraquantization of the string variable must lead
to the paraquantization of the Fourier coefficients
in its normal-mode expansion, and vice versa.
(2) The space-time properties of the string must
not be affected by paraquantization. In particular,
since momenta are observables, the center-of-
mass variables must satisfy the ordinary canonical
commutation relations. (3) Since for each value
of the index p. , F" is a. single dynamical variable,
the independent components of X", P", and a„"'s
must satisfy parastatistics of the same ordex'.
Moreover, they must satisfy relative paracommu-
tation relations with each other and for different



3346 F ARH AD ARDAL AN AND FRE YDOON MANSOURI

values of the index p.. This last requirement is
crucial to even maintaining three-dimensional ro-
tational invariance in any paraquantized theory,
not just the string. '

With these requirements in mind, we will ex-
press our independent dynamical variables in
terms of their Green's ansatz:

it is easy to check that such a procedure will vio-
late one or more of the requirements stated above.
In fact, to satisfy these requirements one must
specify a direction in the paraspace of the Green's
ansatz, say P = 1, and demand that the c.m. coordi-
nates have a component in that direction only.
That is,

Y (v, 8)=Q Y' (T, 8), i=1, 2 (3.12)
X' =X'6g, , P' =P'5g, ,

X ~=X 58, , P' =P'58, .
(3.15)

x- =gx-' (3.13)

where

Y'~(r, 8) =X'8+ 2a'P's7
OO

+ (2 +')~~2 V' (a~8 e ™T+ a'~t e~" ) coss8

(3.14)

It may appear at first that one can simply apply the
paraquantization (2.7) to the independent Green
components X', P', a„', a„' t, X 8, P' Howev. er,

In the language of internal symmetry this means
that from the Klein-transformed analogs of our
dynamical variables, one can construct observ-
ables which are invariant under those transforma-
tions which leave the direction P = 1 invariant. As
we mentioned in the Introduction, this way of dis-
entangling the space-time and internal-symmetry
tranformations is reminiscent of the work by
Gunaydin and Qursey on the octonionic repre-
sentations of the Poincarb group.

Thus, for the transverse components Y' (7, 8)
we have, instead of (3.14)

Y (7, 8) =X'5q, +2a'P'5~, v+(2a')" (a„' e '"'+a„' e'"') c osn 8, i=1,2. (3.16)

The independent Green components which are to be
par aquantized are

yC+ y C8

X', P', X,P' a' a' ~. i =1,2.
For these we have

[x',p'] = i5", [x-,p'] = i, -
[a„',a ] =5' 5 „, [a„',a ] =0, i=1, 2

(3.17)
yrm ~ ( yvEa YPIB]

2 a, 8=1

y if'' yi CB

fIT 2

(3.20)

(a„'~, a~ t] =(a' S, a~ ) =0 o, up (3.18)

(3.19)

where II'~(8) is the momentum canonically con-
jugate to Y'8(8).

Next, we shall express the null-plane Hamilton-
ian P and the constraints T in terms of the
transverse normal modes. In evaluating quadratic
expressions such as (dY/dr)' and Y" we must use
symmetrized expressions because the Green com-
ponent fields satisfy anomalous commutation rela-
tions. Thus we write

[X' a '] = [X a '] = [P' a '] = [P' a ') =0

(X,a~ )=( X, )a~=( Pa j=(P', a„' ]=0, Pal.
Using these relations we then find

gif
[ Y' (8), II (8')]. .. =i —[58, —I+v5(8 —8')],

(3.21)

where

T g
= e' P 5g O5gi+ Q [n(s+I)]' a .a, g

n=l

l'—;g[(I- )]'*a„' a', „
n=l

—i(2a')'"vl P a, 5g, —(n,/q)5, , (3.22)

Moreover,

T
g

T J p T
g Tg ~

6 8$ t' (3.23)

The following relations can be easily verified:

Then using (3.18), it is straightforward to show
that



QUANTUM THEORY OF DUAL RELATIVISTIC PARASTRING. . . 3347

—i (2 o')'~ Wl 5 58,P' 5~, , (3.24)

[ T, , a,' ] = —5 [k(k+ l )]'"a'„g,

[ T' a"]= 5"[k(k -i)]'"a"'- 5"'[k(l -k)]'&'a'"

P 1
2 ip+ P

q

e'p'+ na „'f ~ a'„—~, .
8=1 n=1

[ T'„P'] =O, [ T'„P'] = [ T'„X ]=O-,

[ T„X']=-2ia'P'5„58, -(2a')"'v l a' s5~ .
From these it follows that

[ Ti, a'a] = -[k(i+k)l'"aa. i,

[ T„a~ ] = [k(k —l)]'~2a~t, -[k(l —k)]'~~a~,

—i (2a')'~2 &i P'5„,

[ T„P'] = [ T„P']= [ T„X-]= O,

[ T„X] = —2i a'P 5, —(2 a')'~2 Wl a"

where

jBag'=a', ~, ,

Finally, we have for fixed P

(3.25)

(3.26)

na8f. aa
8=1 n=1

(3.31)

To check the consistency of the quantum para-
string model, we must now construct the Lorentz
generators and check their commutation relations.
The generators which follow from the classical
action are

M""=y de Y",II' — Y. , II" (3.32)

Then, as was outlined in Sec. II, the quantum-
mechanical generators are obtained by replacing
Y" and II" by the corresponding paraoperators.
We then find that the various components of M""
are (see the Appendix for details)

(3.30)

This means that the (mass)' operator must have the
form

M'-=2P'P- —P'

[T„,T ] =(n —m)T„, ~»+(D -2)5„, ,( 'n-n).

(3.27)
M' =X'P -XP'+i a' a'n f -aj a„'

8=1 n=l

Therefore,

[ T„,T ] = (n —m)T„,

+~q(D -2) (n'-n)5„,.„
where, explicitly,

(3.28)

M'+ =X'P+,

M 2(PX +XP ),

M =, , (X To+TOX')-X P4(y'P'

(3.33)

T =u'p'e + nn+m '&a'f ~ a'
8=1 n=l

q m-1
i(2 a~ 8

8=1 n=l

—i(2a')'" vm P a' —o.,5, .

The Hamiltonian P may now be written as

(3.29)

It is to be emphasized that these generators are
not obtained by simply attaching an extra index
to the creation and destruction operators. For
q=1, these expressions will, of course, reduce to
those of the canonical quantization. ' We have
checked various commutators of the above algebra.
We find in particular, for ij,

[M'- M'] =
&fP+2 ~% n n n n 1 24 24 P

n=l

(3.34)

In order that this commutator vanish we must
have

ap=1,
24D=2+—.
q

(3.35)

In particular, for q= 12 the theory is Lorentz-in-

variant in four space-time dimensions. Generally,
the space-time dimensions for which a Lorentz-
invariant theory can be constructed are 26, 14, 10,
8, 6, 5, 4, 3, 2. These correspond, respectively,
to q values of 1, 2, 3, 4, 6, 8, 12, 24, ~. W'e note
that for q=~ the para-Bose statistics become or-
dinary Fez mi statistics.
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The above procedure can be repeated for the
closed string boundary conditions, with the result
that again D =2+24/q. We also expect that in a
massive parastring model constructed in this fash-
ion, the dimension of space-time is related to the
order of paraquantization according to D = 1+24/q.

r„=—u'p'8„, —p g [fi(Z+M)]'~'est. a„',„
6=1 N=l

q N-j.

+ — N JI/I-N '~2' a~ „
8=& N=z

B. Covariant paraquantization

+(2o,')"' MMP a„'+ a,e„«.

The algebra of T„'s has the form

(3.41)

Y«(v, e)=g Y«'(~, e), (3.36)

Y«&(v 8) =X«es~+2a'P«es,

eo |
(2 iyym ~ ( «8& is~ «s-telÃ~)

with

x.cosN6I, (3.37)

The eovariant paraquantization can be carried
out essentially along the same lines as the ordinary
canonical quantization. " The main difference is
that the quantization must be compatible with the
requirements set forth in Sec. III A.

Thus we again write

[r„,r„]=(fi M)r-„,„+&qa(s*-s)e„,.,
(3.42)

Thus the weak operator conditions on quantum
states are

rs~f)=0, M~O.

It is easy to check that these conditions are com-
patible. Because of these constraints, the spec-
trum of states

~ g) is positive semid-efinite
To show the consistency of the covariant para-

quantized theory, it is necessary to show that the
matrix elements of all physical operators are well
defined in the positive definite -sector of the states
~P). In particular, one must show that the Lorentz
generators have support in this sector only. This
is at present an open question, just as in the con-
ventional string formalism.

e

II«(v, e)=, Y"
2FQ

(3.3S)
IV. CONNECTION WITH INTERNAL SYMMETRY

AND DUAL TREE AMPLITUDES

[Y«'(~, 8), ll"'(~, 8')] =-i [8„-1+wi)(e-8')],

[ Y« (8) Y" (8')] = [Il" (8) II" (8')] = 0

(Y«'(e), Y""(8'))=(Y«'(8), 11" (8')]

=(11»(e),11-(e ))

(3.39)

=Q, eWP.

The various paracommutators between X", P",
a"„, a"„~ follow from these in the usual manner.
They are similar in structure to those given in
(3.18). The constraints (3.2) are now imposed as
creak operator conditions on states. " Defining the
Fourier coefficients

We require equal-time paracommutation relations
of the Green components: In this section we will discuss the problem of

constructing an interacting theory of parastrings.
A complete solution to this problem would be the
analog of Mandelstam's solution" to the conven-
tional interacting string theory. We shall not un-
dertake that task in this paper. Instead, we will
discuss how by suitable choice of vertices the con-
ventional dual tree amplitudes can be obtained from
a parastring theory which is Poincare-invariant in
four (as well as a number of other) space-time di-
mensions. Since the duality properties are more
transparent in a canonically quantized version of
our theory with internal symmetry than it is in our
paraquantized theory, we will first show, by a
Klein transformation, that a free parastring model
of order q can be recast into a canonically quan-
tized colored string theory with internal SO(q —1)
symmetry.

r,„=, de [(Y«)'+ (Y'")'] cosMe
0

dg ~ ~~ slnM
m'+ 0

we find, with%"B„=A B,

(3.40)

A. Connection with internal symmetry

To show the equivalence of the parastring model
with an ordinary colored string with SO(q —1) sym-
metry, we must implement the Klein transforma-
tions (2.9) and (2. 10) for our independent dynamicai.
variables. We first write for the normal modes
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with K such that

K. i 0& =
i 0), K.' =K-'

[K,Ag] =0, for a&P

fK, A~ f =0, for n(P.
Then it is easy to check that

[A.'",A'„"]= 5"6.„6".

(4 1)

(4.2)

It is interesting to note that the motivation for the
choice of a direction, e.g. , P = 1, which appeared
quite naturally from the paraquantization point of
view, would not have been as clear if we had start-
ed from the internal-symmetry point of view. In-
sisting, nevertheless, that the direction P =1, re-
main invariant, we consider color transformations
of the type

Y "(T,8)=Q g~B F (T, 8),
B=2

It now remains to construct the operator K ex-
plicitly. Consider the operator 11'"(T,8) =g g„BII "(T,8).

B=2

(4.11)

K' =exp -im A„" ~ A&

n=1

(4.4)
Since both F' and II'" are Hermitian we must have

Then, in addition to (4.2) we have

[K., A', ] = [K.,A.] =0, n&1

(K„A',)=(K„A,) = 0. (4 8)

Denoting the Klein-transformed string variable and

the c.m. operators by the same symbols 1" (T, 8),
X's, and P's, we get

Y' (T, 8) =X'5 B, + 2n'P'6 B,

(2 l)1/2 (Ai 8 -htlT AIBT I/IT)1
n n

where now

x cosne, i=1,2 (4.9)

which has basically the sa,me fox m a.s the Klein
operator of Nambu and Han. It clearly satisfies
the conditions (4.2).

We must now modify K so as to have the corxect
behavior with respect to the c.m. operators X, P,
X, P'. One way to do this is to express the latter
in terms of zero-mode creation and destruction
operators:

X' =-'(a'+a'T)
0 0 j=1,2,

I' = —2f (ao -ao )
(4 5)

X = —,'(a, +a, ),
I"=+ 2'f (ao-ao).

As in (4.1) we set

0 KlA0
(4.6

0 K1A0 ~

i

We now construct our Klein operators as follows:

K, =K', exp( -v[ Aot A, +ADTA,]),
(4.7)

K =Km,

(4.12)gaB =gaB ~

I

Since the functional dependence of the observables
on operators which carxy the index 0., 0. =2, . . . , q,
are of the form

(Y )', (Il )', Y ~ II

If, =exp —iw Ark, „+Q Q A»~A&„)
n=l

(4.13)
APg TAg

n=l y= a

Then with

P, c( Pat=K,A

ao =KlAo

one finds

[K,A"B] =0, n&P

(K.,A&B)=0, ~ P

[K.,A~] = 0,

{K„A;)=0.
In this form

(4.14)

(4.15)

then the color group is SO(q- 1). Thus under the
transformations of this gauge group, we can dis-
tinguish two types of excitations: the color-inde-
pendent excitations, P=1, which are invariant un-
der SO(q —1) transformations and the cofoT'-depen-
dent excitations, P =2, . . . ,q, which transform as
the fundamental representation of SO(q —1).

The Klein-transformed operators and their cor-
responding gauge group for the covariant formal-
ism can be obtained in a similar manner. Consider
the Klein operators K, with

[F (T, 8),11"(T, 8 )] = —' 5"5 [5B, —1+w5(8 —8')] .

(4.10)

[A"" A" "]=-g"'6 „6"' (4.16)
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= —g""0" [es, —1+van(8 —8')], (4.17)

where

Y"8(v, 8) =X"eq, +2a'P"58,7

1
+ (2&1)~&& g (gP8 e-in~ +~PS)'einT )

xcosne. (4.18)

All the paraoperators such as T 's, P, M', M""
which we obtained in Sec. III may now be Klein-
transformed by replacing the small a's with capi-
tal A' s. We will leave it to the reader to verify
that the algebraic relations among the Klein-trans-
formed operators are the same as those of the cor-
responding paraoperator s.

oo 12

tl=1 8=1

(4.20)

The form of the vertices V(k) depends on the spe-
cific properties that the scattering amplitude is
expected to have. Here we want to show that the
ordinary dual ghost-free amplitudes with u, = 1 can
be obtained from the interaction of four-dimen-
sional Poincare-invariant parastrings with exter-
nal fields. To be explicit, we consider the ground-
state vertex V,(k). Moreover, we require that the
dual vertices be color-invariant, i.e. , invariant
under SO(ll) transformations The si.mplest such
possibility is to construct V,(k) from the color-
independent operators. Thus we take

V (k) .elk Y(0) . '

This amounts to assuming that external momenta
excite only the color -independent operators. The
dual n-point amplitudes are then given by

( 0, k„~ Vo(k„,)D ~ ~ ~ Vo(km) ) 0, k,) . (4.21)

Although the propagator D involves oscillators with

P = 1, . . . , 12, because of the choice of vertices only

B. The dual tree amplitudes

The dual tree amplitudes can be written down

from the knowledge of the dual vertices V(k) and

the propagators D. The propagator D is given by

(4.19)

where by (3.31)

oscillators with P = 1 contribute to the scattering
amplitude. So at the tree level dual amplitudes can
be obtained from the parastring model which is
relativistic in four space-time dimensions.

The possibility of exciting the color oscillators
opens up the way for writing down other vertex
operators. They may be useful in particular for
the inclusion of the electromagnetic interactions in
a manner which avoids Gaussian form factors. In
the spirit of our work, the new vertices must still
be color-invariant functions of the color-dependent
oscillators.

V. SECOND-QUANTIZED PARASTRINGS

Recently, attempts have been made" to construct
second-quantized theories of the string model. It
is again found that the free theory, classical or
quantum, is Poincard-invariant only in 26 space-
time dimensions. We do not wish to give a detailed
discussion of such a theory. We only want to point
out how a Poincarb-invariant second~uantized
parastring theory can be constructed.

In a second-quantized theory the Poincarb gen-
erators are constructed" by sandwiching the first-
quantized generators between canonical field vari-
ables. Therefore, if one merely paraquantizes the
field variables and attempts to construct the gen-
erators by sandwiching the first-quantized genera-
tors of the conventional string model between the
parafields, one finds that the dimension problem
remains unsolved. This is not surprising, because
the lesson to be learned from the preceding sec-
tions is that to obtain a relativistic theory in four
space-time dimensions, the number of internal
coordinates must be increased.

We thus introduce the field functional

4[Ye]=C[Yu Yv Yv ]
where

Yg8(8) (Y+8 Y-8 y8)

As in the previous sections, we fix a direction in
the internal P space, so that only for P = 1 does
Y"~(8) have zero-frequency modes (X',X,X).
Now we identify Y"with ~ and let the Fourier
transform with respect to X be 4&+ [Y, 7']= 4++(Y )
As an example of how a relativistic field theory
can be constructed, we generalize a recently pro-
posed Lagrangian' by writing

g+

&4~ [Y],xg4'~ [Y]-2~.Q ~s-, -s
8

-+~'[Y]&"(8)4~ [Y] (5 2)

Then following the works of Refs. 33 and 34, the Poincard generators can be obtained by sandwiching our
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first-quantized generators given by (3.33) between the canonical field variables as follows:

P'
dP+ DP 8

0 8 0

8

6 v'(e)

1 ~8&
2 Q sp(e)2 +& (e)

dec, , l Y], (5.3)

r ~rr" —r"II~

where M"" are the coordinate-space analogs of
(3.33). It can be checked directly that the genera-
tors satisfy the correct commutation relations in
four space-time dimensions if q= 12 and if the
fields are quantized canonically.

The significance of the eleven extra internal or
relative coordinates in the parastring theory is not
transparent. However, as we shall see in the fer-
mionic color string theory, where the color sym-
metry is 80(3), there are only three extra internal
coordinates which can be interpreted as the rela-
tive coordinates of the three constituent quarks.

We have singled out the Lagrangian (5.2) purely
for illustrative purposes and for comparison with
that constructed from a field functional of the con-
ventional string. Clearly, to any field functional
of the string, there corresponds a field functional
of the color string.

(Y+ P) ~ S,+8, ~ (Y+ Y') =0,

(Y —Y') 8,+8, ~ (Y- Y') =0.
We set, just as in the classical string model,

a=1, 2.
The boundary conditions

Y'" le=.,.=0,

(6.5)

(6.6)

(6.7)

(6.6)

(6.9)

+ (2ai) "2 —(a"e ' '+2a "te'"') cosne
1

n m

(6.11)

(6.10)

lead to the following expansions for Y" and 8", :

VI. A FERMIONIC PARASTRING MODEL

A. The model

oo

f'yP+ -fk(7'+8) +yfP&4A(7'+8)q (6.12)

In this section we mill pxesent a fermionic para-
string model in which the dynamical variables are
partly parafermions and partly parabosons. This
model bears the same relation to the Ramond-
Neveu-Schwarz" model as the parastring of Sec.
V does to the conventional string model. Because
we want to obtain a paraquantized theory, it is
convenient to use the Hamiltonian formalism devel-
oped by Iwasaki and Kikkawa. " Thus, in addition
to the string variable Y"(r, e), we introduce the
anticommuting spin variables 82(v, e), a= 1,2.
These dynamical variables satisfy the equations of
motion

where, in anticipation of commutation relations,
we have fixed the coefficients in the expansions.
Observe that the constraint equations (6.3)-(6.6)
lead to the relation

82" (r, e) =8", (2, —e). (6.13)

Tgg
2 (2 +l)l F/+2~n l n=1, 2, . . . (6.14)

Taking X, P', and the transverse components
of F" and 8" as the independent dynamical vari-
ables, Egs. (6.3)-(6.6) may be solved for the de-
pendent variables

F- I"'=0,

/1 0)
8-O', 8'=0, o, =

l

t, 0-1)
together with the gauge conditions

(6.1)

(6.2)

2 ~'P+

1
(2 l)1/2P+ 2 t

1 3
2) p) ~ s ~

(6.15)

(6.16)

(6.17)

Y ~ Y'+ —,'i (8 ~ 8' -8' ~ 8+8 ~ o28 —8 o28) =0, (6.3)

Y'+ Y"+i(S ~ 8-8 ~ S+S a28' -8' o,S)=0, (6.4)

where

T(a) + y(&)I |I + n (6.16)
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dY
T&„'&=, de —+Y" cosine4m~' 0 dv

. dY
+ 2i —~ Y' sinnedi

8'f" = , 88 2 ———2) 008682' (X di di

+i (S 5'-5' 5) sinne

and

G = ~kede e —+ Y' ~ S + (8- - 8)k 2 I di 1

(6.19)

(6.20)

T ' —Q [ k (k + n)] '"a, t ~ a„„
k=1

a, wg

—
2 Q [ k(n —k)] '"a" ~ a —-a 5

k=1

—i (2n')'" Wn P a„'+ i2' P'5„,5 ', (6.24)

T~„)"= Q (k+m2)b, t b„„
k=1/2

(6.21)
n-1/2

+2 g (,'n--k}b, b„, , (6.25}

At this point we impose paraquantization on the
independent dynamical variables. It is natural to
demand para-Bose commutation relations on the
string variables Y', and para-Fermi commutation
relations on the spin variables S'. The relative
commutation relation between these two sets of
variables is determined by the requirement that
the invariances of the theory not be disturbed by
the paraquantization. " In particular, we must
have closure of the algebra generated by Gk and
T„. It can be easily seen that the closure depends
on the relative commutation relation between the
two sets being of para-Bose type, which in turn
forces the order of the para-Bose and para-Fermi
statistics to be the same. " Therefore, in addition
to the commutation relations (3.6) on the string
variables, for the spin variables S' we will write

k= 1/2

G»= Q G»,

G=»i g Wna„~ h, „—i g (k+l)'"h, a»„
n=l i=1/2

+ (2 o( }1/2 Pl hlba1

It is straightforward to verify that

(6.26}

[ T„,G, ] = (-', n -k)G„,», (6.28)

{G»,G, }=2T„,+-2'q(D —2) (k2--,'}5», , (6.29)

[ T„,T ] = (n —m}T„, +sl q(D -2) n(n' —l)5„

(6.27)

s,' (T, e) = .g s.'"(r, e),
ex =1

00

S'a(V 8) = —~ (bkae 3»(3+e) +b«tel»&3+e))
k

(6.22)

S,' (7, 8) = S', (r, —8),
and demand

{b,'" bf t}= 5'f5„{b' b', "}= 0

[ b,'a bf et] = [ b,'a, b»fe] = 0, n 63 P

where we have defined

n n 7

8 Poincard invariance

To prove Poincard invariance of the model we
construct generators of the Poincard group in terms
of our dynamical variables. The generators of
translations, in the null-plane quantization, are P'
and P' and, from (6.15), (6.24), and (6.25),

o'"] = [b»",s"']=o

&f8} {bia &fet } p

[bkl &f] [bil Pf] [bil X-] [bil P+] P

(6.23) j.P
2 'P' To

{b',X }={b„'",P'}={5",X }={b'",P'}=0, g1,
Now the dependent variables a„, b„, and P, may

be expressed in terms of the independent variables
provided we symmetrize the bilinear forms ap-
pearing in (6.19) and (6.21), and antisymmetrize
the ones in (6.20). The result is

'P +
a=1 n=l

Q kkk —0). (6.,30)
a=1 k=1/2

This leads to the mass squared operator
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M2 —2P+P- P2

na.' a."
0'. =1 n=l

+ Q Q kbn bn —naI.
n= 1 k=1/2

(6.31)

In the null frame these generators take the follow-
ing forms in terms of the independent modes:

M'~ =X'P~ -X'P' —i ~~ a' ~a~" -a' ~a'a„a„-an an
n=1 n=l

(bi tab/a bfat bt a)

The generators of the homogeneous Lorentz group
may be constructed in the usual manner:

M~"= — de r~, rr' — r', rr~ —,S~, S'

(6.32)

0.'=1 k=1/2

M =X P'

M' = —;(P'X+X P'),
and

(6.33}

OO Igl

M 4 p (X Tn+ T Xn) X P +
(2 ()]/np~ g ~ (Tns +cE Tn)+

(2 1)~/np+ g (Gn bn bn Gn)
fr=i k=1/2

(6.34)

For q=1, the expressions for M"" reduce to the known results. "" It can be seen that our Poincard group
generators close except for the nontrivial commutators

[M'- M~-] =
&i(p+}n ~ 16 & 16 o i ( n nn sn sn)

~1 La

q(D- ) 2
q(D-2) 4 (b"tb" —b"+ i(p+)& ~ 4 4

— % n n
—

n bn).
k=1/2

(6.35)

To ensure the vanishing of this commutator for
i 0j, we must require

a

K'"=expI fw g-gi" if I.
ik=1/2 S=Pf

(6.39)

1&0= »
D=2+ / 8.q

(6.36)
Then one can verify that they satisfy the conditions

K~=K„t

For p=4, the theory will be Lorentz-invariant in
four dimensions. Other possibilities are D= 10,
6, 3, 2, for which@=1, 2, 8, ~, respectively.

[K„,A„' ] = [K„,BI ] =0, a) P

(K„,A„"]=]K„,a,"]=0, ~ P.

(6.40)

C. Connection with internal symmetry
and dual tree amplitudes

In Sec. IV to construct dual tree amplitudes we

made a Klein transformation to the colored string
picture. In this section we will again construct
the Klein operators which transform the fermionic
parastring model to a colored fermionic string pic-
ture. To be explicit, we do this for the meson sec-
tor boundary conditions. We write, in addition to
(4.14},

(6.37)

where the zero modes are defined by (4.5). Con-
sider the operators

From these it follows that

[A„',Apt]=5" 6 „5 ',
(D 4 a ffg8t ) 506 ba8

[A'„",a/'] =0.
(6.41)

(0, kN I ~(4,)D" ~(kn) lo, k,). (6.42)

Again we can distinguish two types of excitations:
the color-independent excitations z = 1, which are
invariant under the gauge group SO(3), and the
color-dependent excitations, e = 2, 3,4, which
transform according to the fundamental represen-
tation of the gauge group SO(3).

Finally, in the spirit of the discussion of Sec. IV,
we will write down the tree amplitudes for the me-
son sector of the colored fermionic string:

(6.38)K K(.)&(»

where K ' are defined through Eq. (4.7), and

In this amplitude,

D = (P& Mn) (6.43)
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where by (6.31)

~ P F hB .B'—"a,)of=i k=1/2
(6.44)

V(k) =:k S,(0)Vo(k):, (6.45)

where V,(k) is given by (4.15). Again, by choosing
this vertex, only excitations with += 1 contribute
to the tree amplitude, even though the underlying
theory is Poinearb-invariant in four space-time
dimensions.

Thy main objective of the present work has been
to exploit the nonuniqueness of the quantization of
a classical theory and to restore Poineard invari-
ance to string theories. %'e have constructed two
parastring models, one without and one with fer-
mions. In both cases, we have found that dual tree
amplitudes can be obtained from Poincard-invari-
ant theories in four space-time dimensions. The
ground-state particles are still taehyons, however.

%'e have also shown by Klein transformations
that these models are equivalent to color string
models. In fact, it is not difficult to see that the
color string formalism ean be derived from the
Lagrangian

2 = (-det g,~)'",
where now

BF(sFp
gob ~ ~ ff ~ b

8=x

(7.1)

(7.2)

It is, of course, necessary to specify a direction
in the color symmetry space and specify the c.m.
coordinates and momenta in that direction, so that
they become color singlets under 80(q- ) trans-
formations. The essential advantage of f e para-
quantization approach in arriving at these results
is that it allows one to make use of the nonunique-
ness of the quantization rather than imposing an
ad hoc color symmetry group. Similarly, one can
derive the color fermionic string formalism from
the Hamiltonian formalism of Sec. VI by allowing
the dynamical variables to carry suitable color
indices.

If one describes the degrees of freedom of a
composite object interms of the c.m. and relative
coordinates of its constituents, then the properties
of our para- (color) string models seem to indicate
that there are more than just one relative coordi-
nate involved. For example, in the color fermionic

string model, there are four such coordinates. One
of these is more intimately connected with the c.m.
motion and is distinguished from the other three by
being invariant under the transformations of the
color symmetry group 80(3). This distinguished
relative coordinate also behaves qualitatively dif-
ferent from the other three in that it is excited by
external momenta and carries the bulk of the en-
ergy and momentum.

In transcribing these ideas to a second-quantized
theory, we have shown again that if the field func-
tional depends on more than one relative coordi-
nate, it is indeed possible to construct free field
theories which are Poincard-invariant in four
space -time dimensions.

In connection with these results, we wish to
bring two important points to the reader's atten-:
tion. First, by extrapolating from the convention-
al string model, it has sometimes been thought
that for any value of the c-number anomaly in the
algebra of the gauge operators, there exists a
dimension of space-time for which the theory is
Poincar6-invariant. This is not true, in general.
For example, in our para- (color) string models,
the expression for the c-number anomalies is the
same whether or not we break the symmetry in
the manner that we have. However, if the symme-
try remains intact, the algebra of the Lorentz gen-
erators close only for @=1and D=26, i.e. , no
color symmetry at all. Thus to prove the Poincard
invariance of a model, it is not enough to know the
expression for the c-number anomalies in the al-
gebra of gauge operators.

Second, as a result of specifying a direction in
para- (color) space, the particle states in our dual
tree amplitudes are color singlets, i.e. , they cor-
respond to particles satisfying not parastatistics
but ordinary statistics. It is, of course possible
to construct states which are not color singlets,
but at least at present they do not seem to be of
any physical interest.

There are clearly a number of crucial problems
which remain to be investigated. Among them is
a, systematic study of the interactions of color
strings with each other.

Note added in proof. After submitting our manu-
script for publication, we learned that parafield
excitation has also been utilized by J. F. L. Hopkin-
son and R. W. Tucker, Phys. Lett. 478, 519 (1973).
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APPENDIX

Here, we will collect some useful formulas and
derive some of the results quoted in Secs. III and
VI.

First we derive the expression for M' in (3.33)
and derive (3.34). From (3.23), it is straightfor-
ward to find

We then observe that P' and T„commute and

P+ -++ Q

Inserting this into the above expression for M'
and using (3.24) we will recover (3.33).

The commutator (3.34) may be calculated by de-
composing M' =A'+B', where

AI =, , {X',TQ ) -X P',
4 ~'P+

(A2)

n=l

M'- =-,'({x',p-) {p',x-])

+2 Q„,Q„- Q„,Q„
n=l

(Al)

Using (3.9), (3.10), and (3.22), Eq. (Al) becomes

It is easily checked that

[A', A'] =0, ixj
w oo

- n=l

M' =, , {X',Toj-X P'4~'P'
(PIBJ -P'BI).P+ (A3)

2(2a')"' + w(I '' p' I ( " 'p'I)'
The calculation of the commutator between two
8's is much more tedious owing to appearance of
double sums, which cancel to give

OO

(A4)

Utilizing these relations will immediately lead to
(3.34).

Next, we derive Eq. (6.34) and (6.35). For this
purpose we need the commutation relations of var-
ious gauge operators with the independent dynam-
ical variables

[T„,a' ] = —[m(n+m)]'"a„',

[T„,a' t] = [m(m -n)]"'a' t —[m(n —m)]'"a„'

—i(2 n')"'Wn P'5

[T., b' ] =-(k+»n)b»". ..
[T„,b,' ] =(k ——,'n)b» „+(k ——,'n)b'„»,

Now, from (6.32) we can find

M'- = M.'-+ M'-

where M,' is given by the same expression as
(3.33), and

—s ~ & ~G bc t GGG.

2(2 s)1/ ~»»r P+» ~ P+
4=1/2

where we have used (6.16). We then employ the
anticommutator relations between the a's and b's
of (A5) and observe that

[C„a! ] =-iWnb!"„,

[G», a„' t] = —i&nb„' t —ion b»"„,
{G„b', ) = —i(k+l)"'a,', g,

{G„b"'}=i (f k)'~'a', "»' i(k f)I-&—'a'"
+ (2a') "»P'5"5

[C„X']= —a (2o.')' 'b"
[G,P'] = [G,X ] = [G,P'] =0.

(A5) baal

and recover Eq. (6.34). Similarly Eq. (6.35) may
be obtained with the calculation of various com-
mutator involved, writing as before

M,' =A' +B'

we find
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1
"

q(D —2)
[M M ) (P)g l6

i bit jl Dlt (12
16 i& & & & ) (A6)

and

1 00 OO[B'™] —('—j) = —2. .. Q Q([b," b„', +b," b, '„—('—j)] T„2n'P' '
k=1/2 n=l

+i~n[a„"tbj' +a"t bj't a-"bj't —(i j—)]G, —H. c.)

a+ (2' ——
) [b" b" —(i—j)] —gba'[a'„' a[' —(i j)])

k=1/2 n=l
(A7)

and

, , (Pg[[b,"b' ~ b,„"',b' —(i—j„)]T„
k=1 2 n=l

+ion [a'„bt b +a'btbjbt +a'bblbt (i —j)]G, -H.c

+ g [2(T,+a,) -Sk' ——,'+ ,'q(D —2)-(k' —,')][b„"—tb", —(i—j)]
k=l/2

—Qa'[a"aa" —(i—j)])
n=l

(AS)

[A', Mb ] —(i—j) = —... (T,) g [b," bj' —(i—j)]+—,(P'Mj —PjM
b ).1 4lf (A9)

Adding (A6)-(A9) will immediately yield (6.35).
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Gauge and global symmetries at high temperature~
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It is shown how fini*te-temperature effects in a renormalizable quantum Geld theory can
restore a symmetry which is broken at zero temperatuxe. In general, for both gauge
sy~~etries and ordinary symmetries, such effects occur only through a temperature-depen-
dent change in the effective bare mass of the scalar bosons. The change in the boson bare
mass is calculated for general field theories, and the results axe used to derive the critical
temperatures for a few special cases, including gauge and nongauge theories. In one case, it
is found that a symmetry which is unbroken at low temperature can be broken by raising the
temperature above a critical value. An appendix presents a general operator formalism for
dealing with higher-order effects, and it is observed that the one-loop diagraxns of field
theory simply represent the contribution of zero-point energies to the free energy density.
The cosmological implications of this work are briefly discussed.

I. INTRODUCTION

The idea of broken symmetry wa, s originally
brought into elementary-particle physics on the
basis of experience with many-body systems.
Just as a piece of iron, although described by a
rotationally invariant Hamiltonian, may sponta-
neously develop a magnetic moment pointing in
any given direction, so also a quantum field the-
ory may imply physical states and S matrix ele-
ments which do not exhibit the symmetries of the
Lagrangian.

It is natural then to ask whether the broken
symmetries of elementary-particle physics would
be restored by heating the system to a sufficiently
high temperature, in the same way as the rota-
tional invarianee of a, ferromagnet is restored by
raising its temperature. A recent paper by

Kirzhnits and Linde' suggests that this is indeed
the case. However, although their title refers to
a gauge theory, their analysis deals only with
ordinary theories with broken global symmetries.
Also, they estimate but do not actually calculate
the critical temperature at which a broken sym-
metry is restored.

The purpose of this article is to extend the anal-
ysis of Kirzhnits and Linde to gauge theories,
and to show how to calculate the critical tempera-
ture for general renormalizable field theories,
with either gauge or global symmetries. Our re-
sults completely confirm the more qualitative
conclusions of Kirzhnits and Linde. '

The diagrammatic formalism used here is
described in Sec. II. Any finite-texnperature
Green's function is given by a sum of Feynman
diagrams, just as in field theory, except that en-


