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S. Coleman, Ref. 9, section 5.
~ S. Weinberg, Phys. Rev. D 7, 1068 (1973).

For an explanation of the notation, see S. Coleman,
Ref. 9, section 5.
We have normalized the field variable [dA] so that
f [dA]exp[ 2(A-, DA}] = (P -independent constant)
x (det D) f2. With the same normalization for [df), we
have

[df]exp —— dw de f2(x, 7)
2& 0

= P-independent constant.

Note also that the 6 function is normalized so that
f[dA]8(A) = 1, so we have

8
[df)exp —— dv d ~x f 6(9 & —f)2&

1= exp —— d7. d x(8 ~")
2& p

The presence or absence of P -dependent normalization
factors is the trickiest part of the whole business. It
is therefore comforting to recall that the normalization
factors are irrelevant as long as we calculate Green's
functions like (2.18) or (3.12) and stay away from cal-
culating Tre-S& itself.

~5R. P. Feynman and A. P. Hibbs, Ref. 5, Chap. 10.
Equation (A5) comes from Feynman's Eq. (10-44) after
the correction of a typographical error.
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Spontaneous symmetry breaking at finite temperature is studied. We show that for the
class of theories discussed, symmetry is restored above a critical temperature P, . We
determine P, by a functional-diagrammatic evaluation of the effective potential and the effec-
tive mass. A formula for P, is obtained in terms of the renormalized parameters of the
theory. By examining a large subset of graphs, we show that the formula is accurate for weak
coupling. An approximate gap equation is derived whose solutions describe the theory near
the critical point. For gauge theories, special attention is given to ensure gauge invariance
of physical quantities. When symmetry is violated dynamically, it is argued that no critical
point exists.

I. INTRODUCTION

By drawing an analogy with the Meissner effect,
Kirzhnits and Linde' have suggested that spontane-
ous symmetry violation in relativistic field theory
will disappear above a critical temperature. They
gave qualitative arguments to support this conten-
tion in a theory with global symmetry (not a gauge
theory) and obtained an order-of-magnitude ex-
pression for the'critical temperature in terms of
the parameters of the theory. This problem was
next examined by Weinberg, who, in a preliminary
investigation, ' derived a numerical value for the
critical temperature in the Kirzhnits-Linde mod-
el. He then began to develop a complete analysis
of spontaneous symmetry violation and/or persis-
tence at finite temperature, with special emphasis
on gauge theories with local symmetries.

It was Weinberg who suggested to us that the dia-
grammatic-functional methods for evaluating ef-
fective potentials in field theory, which had recent-
ly been developed, ' ' might be profitably employed

to study temperature effects. We report here the
results of our investigation. Weinberg has also
presented an analysis of the problem. ' He uses
diagrammatic methods to determine a tempera-
ture-dependent mass, as well as operator tech-
niques to compute a temperature-dependent poten-
tial. We give a functional-diagrammatic evalu-
ation of these quantities, from which the critical
temperature can be deduced. All physical results
are in agreement and confirm the qualitative ob-
servations of Kirzhnits and Linde. '

We examine a field theory at nonzero tempera-
ture, or equivalently the ensemble of finite-tem-
perature Green's functions, defined by

( )
Tre Trp(x ) ' cp(x ) (1 1)re- BH

Here H is the Hamiltonian governing the dynamics
of the field y(x), and P

' is proportional to the
temperature. Spontaneous symmetry violation is
conveniently studied with the help of the finite-
temperature effective action I' (y)—the generating
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functional for single-particle irreducible Green's
functions. Alternatively, rs(cp) may be defined by
the following equations:

T re 8"T exp[ ifd'x (p(xP(x)]
Tre 8~ (1.2a)

(1.2b)

(1.2c)

(1.2d)

Tre 8"y(x)
V(x)l. =o- T, -sH (1.4)

It is assumed that H possesses a symmetry
which in the normal course of events would imply
that cp =0 at Z=O. Alternatively, symmetry viola-
tion is signaled by a nonvanishing value of fd(), for
which 5I' (y)/5y(x) is zero. Since we do not ex-
pect translation invariance to be spontaneously
violated, (1.4) should be independent of x. Hence
it is sufficient to study r8(y) for constant y(x) =Fp.

The effective potential V (y) is then defined by

V8(cp) =-(space-time volume) 'I' (y) ~~=~,

and symmetry breaking occurs when s V (y)/s y
=0 for y tO. The effective potential is the gener-
ating function for single-particle irreducible
Green's functions at zero momentum.

Weinberg' has given an operator method for cal-
culating V (y) to the one-loop approximation in
nongauge theories, while we develop a functional-
diagrammatic method for computing V (rp). Two
advantages of the diagrammatic approach should
be mentioned: (1) Operator techniques are ex-
tremely cumbersome beyond low orders of the
perturbation. Progress in conventional (zero tem-
perature) field theory in the last quarter century
derives precisely from the supplanting of earlier
operator methods with modern diagrammatic anal™
ysis. High orders of perturbation, to be sure, re-
main intractable even in the diagrammatic ap-
proach. Nevertheless, the existence of a system-
atic expansion and of a pictox ial method allows
one to survey large classes of graphs and to make
summations of interesting subsets. (2) The opera-
tor method is based on the canonical theory and

In (1.2d) J'(x) is eliminated in favor of q (x) by the
definition (1.2c). It follows that

5r8(y)
5y(x)

=-Z(x)

and qr(x), evaluated at J =0, is the thermodynamic
average of the field y(x):

on the Hamiltonian. Diagrammatic analysis can
be formulated purely in terms of an effective La-
grangian. In addition to the attendant simplifica-
tion, this is important when one comes to discuss
gauge theories. For such theories, operator eval-
uation of V (Fp) becomes problematical. '

The diagrammatic method for field theory at
finite temperature was invented by Martin and
Schwinger and othex s.' The crucial observation
which reduces this body of work to familiar con-
cepts of zero-temperature field theory is the fol-
lowing. The differential. equations satisfied by fi-
nite-temperature Green's functions are identical
with those of the zero-temperature theory. The
difference lies in the boundary conditions. Where-
as the familiar causal boundary conditions at t
=+~ are appropriate at zero temperature, period-
ic boundary conditions for imaginary time are rel-
evant at finite temperature. The diagrammatic
expansion gives a series solution of these differ-
ential equations, where each term in the series
is composed of free 2-point functions and vertices.
The identity of the differential equations then im-
plies that diagrammatic analysis is the same at
finite tempex"ature as at zero temperature. The
only difference lies in the type of free 2-point
function employed.

The Feynman path integral provides an indefinite
integral representation of the differential equations
of field theory. However, the path integral does
not contain a complete specification of the bound-

ary conditions. Hence we may use the same path-
integral representation in both cases, supple-
mented with appropriate boundary conditions. An

explicit example will illustrate our remarks.
Consider

fdrp exp[i( ,'yiD '(p—+Zap)]

f(fy exp[i( ,'yi D 'y)]-
Here D ' is the inverse propagator for a free spin-
less field, D '(x-y) =i( +m')5'(x-y). (We are
using a compact notation where all summations and
integrations are suppressed. Thus Jy
= f(f'xZ(x)y(x),

—,'yiD 'y = —,
' d~xd yy x iD ' x-y y

d xpx U+sl cpx

d'x a„y x 8 "y x -m'y' x

Elementary integration gives for (1.6)

Z(Z) = exp[--,' JDZ] .
The point is that D is not well defined until bound-
ary conditions are given. For finite temperature,
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(1.V) remains valid, with D determined by the ap-
propriate boundary conditions. [In momentum

space, the boundary condition specifies the coef-
ficient of 5(p'-m'); see (3.5) and (4.5) below. ]

The above considerations imply that the dia-
grammatic series for the zero-temperature effec-
tive potential previously derived from the Feyn-
man path integral' may also be used at finite tem-
perature, with appropriate replacement of the
free 2-point function of the conventional theory
with the finite-temperature 2-point function. Let
us recall the series representation for Va(y).

Consider a theory described by the (effective)
Lagrangian S{qr,(x)]. Here y, stands for all the
fields of the theory labeled by a, not only scalar
fields. For gauge theories Z{qr,(x)) contains the
appropriate gauge-determining and gauge-compen-
sating terms To. compute V (y), shift y, in
Z {y,(x)j by constant fields Fp, , and drop all terms
independent of and linear in rp, . [If one is not in-
terested in Va(y) as a function of all the fields,
but rather in a subset of the fields —e.g. , the sca-
lar fields —only those fields need be shifted in
Z {y, (x)}.] The shifting and truncation procedure
defines a new Lagrangian 2{Fp„'p, (x)j, which can
be decomposed into a "free" term, bilinear in the
fields y. , and an "interaction" term:

&{~.~.( A=&.{~.~.())+& {~.~.()).
(1 5)

The effective potential is

v'(q ) = v, (i)+ v,'(i)

+i exp i d4xg& cp„'fI(), x . 1.9

Here Vo(y) is the classical potential —the tree ap-
proximation. V~8(cp), defined by

V~8(Fp) = (space-time volume) '

kiln dy, exp i d'xS, y„y, x

(1.10)

is the one-loop approximation. Higher loops are
given by (exp[if dS4x, {y„y,( ))]x) —the sum of
all the single-particle irreducible vacuum graphs.
The free, finite-temperature propagators used in
these graphs are to be deduced from
Z, {Fp„'y, (x)j, which is quadratic in y„and the
vertices are determined by Z, {y„y,(x)}. Also
an over-all factor of space-time volume is de-
leted Note tha. t the functional integral (1.10) is
elementary, since Z, {y„rp,(x)] is quadratic in

8
Va ~

In Sec. II, we discuss spontaneous symmetry
breaking and symmetry persistence at finite tem-

perature and define the critical temperature P,
from V (p). In Sec. III, a theory of self-interact-
ing spinless fields is examined, V (y) is com-
puted exactly on the one-loop level, and P, is de-
termined for weak coupling. Next, an approximate
two-loop calculation is performed. This is of in-
terest since it demonstrates that no difficulty is
encountered with renormalization at finite temper-
ature, and that two-loop effects are negligible for
weak coupling. In an O(N)-invariant theory, all
graphs that dominate for large N are summed, and
a gap equation is obtained. The equation deter-
mines P, and gives a parameter-independent de-
scription of the theory near the critical tempera-
ture. The effect of fermions is briefly considered
in Sec. IV. Gauge theories are discussed at length
in Sec. V. It is here that our methods are espe-
cially useful, since we can calculate in an arbi-
trary gauge, expose clearly the gauge dependence
of the effective potential at finite temperature, and
extract a gauge-invariant critical temperature. In
the above examples, symmetry breaking is carried
by a vacuum expectation value of a scalar field. In
Sec. VI we examine an example of dynamical sym-
metry violation —the Schwinger model of two-di-
mensional spinor electrodynamics. ' We show that
no critical temperature exists; the "photon" re-
tains its mass at all temperatures. We also argue
that in four-dimensional models of dynamical sym-
metry violation, "the same phenomenon should al-
so happen, and symmetry is never restored. Con-
cluding remarks comprise Sec. VII, where we
briefly show how our summation methods can be
used at zero temperature to establish the occur-
rence of symmetry breaking.

Appendix A is devoted to a derivation of nonin-
teracting finite-temperature 2-point functions for
bosons and fermions. Both the imaginary-time
and real-time representations are obtained. Cal-
culations in the text are performed for the most
part in the imaginary-time formalism. In Appen-
dix B, some of them are redone in the real-time
formalism and various ambiguities of this tech-
nique are exposed. Finally, various technical
computations are presented in Appendix C.

II. DEFINITION OF THE CRITICAL TEMPERATURE

Consider a theory involving scalar fields y,
such that the effective potential at finite tempera-
ture V is a function only of y'. At zero tempera-
ture V (jr') = V'(y') is assumed to possess a sym-
metry-breaking solution a V'(y')/ay, =0, Fp, x0.
We inquire whether the finite-temperature contri-
bution to V~(Fp~) can eliminate the symmetry
breaking so that the only solution to



SVMMETHV aEHAVIOH AT FINITE TEMPEaATUHE

8 VS(+()) 8 V8(~2)
=2(p, 2

=0

8 VS(@2)

~9 P iso
(2.1)

Let us decompose V8(S)') into its zero-tempera-
ture part V'(jr') and the finite-temperature part
V (y ). From (2.1) it follows that a necessary
condition for symmetry persistence is

8 V'(i') 8 V'(i')
+

q"=0
(2.2a)

The first term in (2.2a) is recognized to be the
renormalized mass parameter of the symmetric
theory,

82 V 0(~2)e 5,)=
89 a~9 b y=o

1s cp~ = 0.
Symmetry breaking will be absent when 8 V8(y')/

Gap'10 for Fp'0. %8 shall assume that for large
S)*, 8 Vs(y')/8 j* is positive; hence persistence of
symmetry x'equires

D ( )
Tre 8"Ty(x)y(y)

r~-5H (3 1)

Two diagonal representations for DB(x-y) can
be given.

(i) Imaginary t&ne. The time arguments of
D()(» y) -are continued to the interval 0 ~is„ iy,
~ P and

rrs(s) fs "=rrs(s)*

Here f, stands for

(3.2)

1 I
dk'

( iP) ~-J~ (»)' '

the summation is over n=0, +I, . . . . The four-
vector k has time component (d„=2'/(-iP). For
noninteracting fields,

D,(k}=,

m. SELF-INTERACTING SPINLESS FIELDS

A. Temperature Green's function

The finite-temperature 2-point function of spin-
less fields is defined by

(2.2b)
~g,

(4v's'/P')+k'+m' ' (3.3)

(The "mass parameter" is defined to be the in-
verse propagator, i.e., the single-particle irre-
ducible 2-point function, at zero momentum. )
Hence (2.2a) may be rewritten as rrs(s) =f s "*rrs(O). (3.4)

Note that fox positive m', k'-m' is never zero.
(ii) Real time. No continuation is performed

and a Fourier representation is given:

8 V8(y') m'
q"=0

(2.2c) Now k is a real Minkowski four-vector and f,
= fd~k/(2v)4 In the .absence of interactions

(Since symmetry breaking is assumed to take
place at zero temperatux'e, -m' is a positive
quantity. ) The critical temperature P, is defined
by

D8(k) = „, , + Bs 5(k'-m'),

E =(2*+m')"*
(3.5)

8 VHo{+2)

8cp
(2 3)

Fox' Weak coupling ln the examples consldex'ed by
us, it shall be seen that there is only one value of
P, which satisfies (2.3). At a lower temperature
(8 '& p, ', (2.2c) is never satisfied„and symmetry
breaking occurs; for high tempex'ature P ' & P,
the symmetry pex'slsts.

Equations (2.2c) and (2.3) have an obvious inter-
px'etation. The zero-temperatux e theory possesses
syrnmetx'y breaking and is characterized by nega-
tive nba. The mass correction due to finite temper-
ature is 28V (y')/8 jr'~„-,. When this exceeds m',
the effective miss squared becomes positive and
symmetry breaking disappears.

In Appendix A, these formulas mQl be derived.
Evaluation of the effective potential in the one-

loop approXimation leads to expressions of the
form

inDetD8(x-y},

where Det stands for a functional determinant.
Since both representations diagonalize D, the
above is given, both in the imaginaxy and real fox'-
malism, by"

(sosos-rrmssoroms)If (mrorrsSf)rorrs(S)I .
r

In the text ere shall use the imaginary-time fox mal-
ism for the most part; some sample calculations
with the real-tine formalism ax'e presented in Ap-



3324 L. DOLAN AND R. JACKIW

pendix B, where it will also be seen that the real-
time method is sometimes ambiguous. "

B. Vp(y2) in the one-loop approximation

We consider the simplest model of one self-in-
teracting Bose field described by the Lagrangian
(apart from counterterms)

V&(~2) s + ln(1 e-88@)d3k E„1
(2v)' 2 P

= v', (i*)+v,'(j'),
D'k

VO( 2) s
(2v)' 2

(3.13a)

(3.13b)

V (rp') = dxx'ln(1 —e (* 's "~
)2m'p4

~ t V(x}t= 2s,es "m —km'~' ——,~ . (3 6) (3.13c}

)t &'xZ, ((p;(p(x)t =
)

d 'xd 'y ,'rp(x)-

xi')-'(p; x —yj(p(y),

tS '(cp;k)=k'-M', M'=m' +'X p('.

(3.7)

The quadratic part of the shifted Lagrangian is The zero-temperature one-loop term, (3.13b),
is to be compared to the usual expression' '

~ 4
V'((p') = ——,ln(-k '+k'+M' —ie) .x

—
2 (2v)4 o

(3.14a)

That this agrees with (3.13b) follows from the fact
that, apart from an infinite constant,

The zero-loop effective potential is temperature-
independent: ln(-k, +E —ie) = —,E.dko

2 27r
(3.14b)

(3 6)

The one-loop approximation has been frequently
computed' '; it is

V~s((p') = --,'i lniS '((p; k)

1 d'k
=2p~ (2 )

ln(k —M )
n

1 ~ d3k 4g2n2
29~ (2w(' P' " ) '

E„=k'+M'. (3.9)

The sum on n diverges; it may be evaluated by the
following trick. Define

(E)=p ln(, +E ), '

(3.10)
ev(E) ~ 2E

SE ~ 4x'n'/P'+E'

From the fact that

Thus, we know from previous calculations thats '

M

(3.15)

where the y' polynomial is determined by the usu-
al renormalization conditions which are imposed
at zero temperature.

The finite-temperature contribution V„(3.13c),
vanishes as it should at zero temperature, P- ~
(for M' & 0). We shall now show that the complete
exPression (3. l3c) cannot be used to determine
the critical temperature P, for symmetry Persis
tence. The difficulty is that, according to (2.3),
P, is determined by VB at y =0. But for small val-
ues of y, M' = m'+-,'Xy' is negative and V, be-
comes complex. (Recall m' &0.) This would lead
to a physically unacceptable, complex P, . The
problem is that the higher-loop contributions are
significant, if one wishes to compute P, exactly.

However, if one wishes to compute P, approxi-
mately for small 6, (high temperature}, we may
expand V1B:

, =-—+-,wcoth~g,+n 2g

we deduce that

sv(E) 1 1
BE 2+ eBE

(3.11)
w M' 1 M
Otl 24ti

2M lnM p + 2 M +O(M p ).

v(E) =2P —+ —ln(1 —e )
E 1 -BE
2 p

+ terms independent of E.

(3.12)

Consequently we find, apart from unimportant
constants,

(3.16}

Here c = &+2ln4m -2y=5.41. The remaining terms
are positive integer powers of M'P 2 times an over-
all factor M4. Note that the'M4lnM' term is the
negative of the corresponding zero-temperature
contribution (3.15). This expansion is derived in
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Appendix G.
The first two terms in (3.18}do not become com-

plex for negative M', hence we may rely on them.
Thus, according to (2.3) we find

1 -12' 2

p, ' (3.17) FIG. 1. Lowest-order mass correction.

m =m +5m + —
l~

=m +5m

Al~ "d& 1
2 P ~ (2w)'4v' '/P'+g '

A. d SA 1 1
2 (2v)' 2Z. Z (e"-1)

(3.18a)

[The "temperature-dependent mass" is defined to
be 25 V (y')/sFp'

~
„-,.] The mass counterterm 5m'

cancels the zero-temperature contribution —the
first term in the integrand. Thus we are left with

1 oo 2
qA. d

x
8 2 2p2 (

2 2 2)ll2

1
(x 2+ g2~2)l/2e

which is indeed large in the weak-coupling limit.
This agrees with Kirzhnits, Linde, ' and Weinberg. '
In Sec. IIIG we show that two-loop corrections to
(3.17) are insignificant for weak coupling, while
in See. IIID eorreetions to weak coupling are dis-
cussed.

Let us observe that it is possible to obtain (3.17)
without first computing the effective potential. Ac-
cording to the general theory presented in Sec. II,
especially in the last paragraph, all that is needed
is the self-mass correction at finite temperature.
In the one-loop approximation this is given by the
graph of Fig. 1. Hence the entire temperature-
dependent mass is

1
2A,

12P
(3.19b)

6m 2
(3.20)

C. Vp(y~) in the two-loop approximation

We compute Vs(y') to the two-loop level. Our
purpose in this further approximation is to demon-
strate explicitly the workings of renormalization
at finite temperature and to show that higher or-
ders do not modify the lowest-order calculation
of P, for weak coupling. Since the two-loop calcu-
lation is rather tedious, we shall perform it only
approximately. We consider an N-component spin-
less field with an O(g)-invariant interaction.

& i%a(xi=IS p9'as Ps 'k~ P
(3.21)

In each order we keep only the term dominant in
This calculation has been already performed

at zero temperature, and we shall refer to this
work for details. '"

The counterterms which must be added to (3.21)
are

(3.22}

This agrees with (3.17).
In (3.17) and (3.19), the critical temperature is

expressed in terms of -m', an unphysical, renor-
malized parameter of the Lagrangian. We may re-
write this in terms of the physical mass of the
non-Qoldstone meson —the "0 meson. " Recalling
the lowest-order formula m ~2 =.-2m 2, we have

The critical temperature is then given by

1
(„2+g 2~2) 2/2, ~

X g C j

(3.18b)

(3.19a)

To the order we are working it is unnecessary to
consider wave-function renormalization. ' The
shifted "free" and "interacting" Lagrangians are

&o(v. 'v. ( )}=-',m. "v.—lm. M'. v

M, ~
= [m~+5m + V(X+5k}FP']5,l, + V(X 5A}+rP, rP , l

(3.23a)

g,,(Fp„rp, (x)}= —Vl(A. +5AQ, y, y'—
Again we see that the integral is complex for m'
&0; hence (3.18) cannot be correct. However, the
1/P' part is real; therefore for small P,

* we find

(3.23b)

g, determines the free propagator at finite tem-
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perature:

A

y2 2 ab "2

m, ' = m'+5m'+-, '(A+5K)q&',

m, ' = m'+ 5m'+ v(A, + 5X)y',

(3.24)

M =m2 -5M

= m'+gXj',

5M =5m +@54p .

(3.28b}

The counterterms 5M' are determined at zero
temperature. Since (3.28a} can be expressed as

)"g ') = )',(e«*)- -,'(ie J )e(k' -ki')

1 Q+~5M N

The lowest-order effective potential is the tree
approximation: (3.29)

V,(y') =-', (m'+5m')Fp'+ —,(X+5K)Fp'. (3.25)

The one-loop term

) e(j' )= (f --',e«ed«(k«( };e'}.ek

=-~i ln A -m, k -m2 ' 3 26a

we see that the one-loop term develops a tempera-
ture-dependent infinite part to second order, which

happily is canceled by a similar temperature-de-
pendent infinity in the two-loop term. The remain-
ing temperature-independent infinities are re-
moved in the usual manner.

A simple calculation gives for the renormalized
effective potential

has the dominant N contribution

F,'(e}')=- (ieI )e(k'-ee, '). (3.26b)

The two-loop contribution consists of the two

graphs portrayed in Fig. 2. Previous calculations
show that only the double bubble of Fig. 2(a) sur-
vives for large N: It is O(N'), while the graph of
Fig. 2(b) is only O(N) 'Ther.efore the two-loop
term dominant in N is

V'(i*) =V.(i')+V,'(i')+v& M. VS(q')

(3.30a)

(3.30b)

V (y') = M'ln —~(M'-';m'}'64~' Sla

N
d 21 il (g2«. 82s2)l/2)+ 2 4

,'(k )= k—, ( ) «.', ) . (3.27)
1

90P 24P 12m P
The effective potential to this order becomes

V (y ) = Vo(y ) —ziNJI In(k -M —5M )
+ O(M' lnM') (3.30c)

+gA, ~ Pf (3.28a)
The critical temperature obtained from the one-

loop potential is evaluated for large temperature
as before [compare (3.17)],

1 12~2
PO

(3.31)

The two-looy part of VB in the limit of small P is

M
V~(y ) = N(vs) 8

3-+0 (3.32)

(a)

FIG. 2. Two-loop contributions to the effective poten-
tial; graph (a) is O(N2), graph (b) is O(N).

Note that the dominant, small-P term is imaginary
for M' & 0. Consequently we cannot include it in a
calculation of P, . In Sec. IIID we discuss the or-
der of magnitude of the terms which we have
dropped.
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D. Discussion of higher-order effects

Our evaluation of the critical temperature to the
one-loop level in (3.1'I), (3.19), or (3.31) was ap-
proximate in that the exact one-loop effective po-
tential was expanded for small P and only terms
of O(M'/P') were retained; see (3.16) and (3.18).
We noted that the next term, O(M'/P), cannot be
relied upon since it leads to a complex value for
P, . Observe that the contribution of this term to
the temperature-dependent mass is [see (3.18}]

1
2 2 A, m

12P
+0 (3.33)

Near the critical temperature P -P, = O(MX/
~
m

~ ),
hence —,'X/12P' is O(m') and Am/6 is O(v X m').
Thus, the terms we ignore in the one-loop calcu-
lation are depressed by a factor I7 relative to the
terms we keep, and the result for P, is valid up to
terms of order v A P, ."

The two-loop calculation confirms the above es-
timates. We found the dominant, nonconstant
term in the effective potential to be O(XM/P'); it
contributes to the effective mass O(A.'/~m~ P');
see (3.32). Again, this must be ignored since it
is complex. Fortunately, near iI=P, , O(A.'/~m~P')
=O(v A. m'}; and the error made in our lowest-or-
der formula for P, is again O(MAP, ).

Clearly to improve our calculation it is neces-
sary to survey all multiloop graphs. The next-to-
leading terms have a distinguishing property:
They are not analytic in the mass parameter near
m' =0. From the explicit evaluation of the rele-
vant integrals presented in Appendix C, it is seen
that these terms arise from the infrared region of
integration: The n=0 mode in the discrete sum
and the k =0 region in the integration are infrared-
singular when the mass vanishes. Thus, a more
exact determination of P, requires an analysis of
the infrared behavior of the field theory.

We shall now show that in the O(N)-invariant
theory discussed in Sec. IIIC, the next-to-leading
terms can be easily summed, in the limit of large
N. It is more convenient to concentrate on the
temperature-dependent mass, rather than on the
effective potential.

Let us begin by recalling the one- and two-loop
calculations of ms'. The one-loop term depicted
in Fig. 1 contributes to ms' the amount

NA. 1 m
6 12P' 4mP

This quantity is the dominant small-P expansion of
the "one-vertex bubble" f„i/(0' -m'). [It is also
2s V, (Fp')/ey'~~=„where V~8(cp') is given in
(3.30c).] The two-loop contributions to m8' are
depicted in Fig. 3 ~ They are just the derivative

(b)

FIG. 3. Taro-loop contribution to mass correction;
graph (a) is O(N ), graph (b) is O(iV).

of Fig. 2 with respect to (It)~ at y =0. In the large-
N limit, of course, only Fig. 3(a} is relevant. Its
value at small P is, according to (3.32)

8 V8(jy~) Pjg 2 I
2 th 2 6 g6 p

3 ~ (3.34}

For purposes of subsequent analysis it is in-
structive to deduce this number directly from Fig.
3(a). First, the two vertices give a factor
i(- v'i@%)'. Then the upper "one-vertex bubble"
gives 1/12P' —m/4wP The lo.wer "two-vertex
bubble" is

8@Pm

Therefore the entire contribution, which domi-
nates at small P, is -(vXN)'(I/96mP'm). This of
course agrees with(3. 34}.

As we consider higher loops in the large-N lim-
it, it remains true that only iterated bubbles need
be considered in each order. Other graphs always
involve a lower power of N. ' Thus in third order,
only two graphs are O(N'). These are drawn in
Fig. 4. For small P, the graph of Fig. 4(a) domi-
nates over that of Fig. 4(b). The former involves
two "one-vertex bubbles, " which give O((1/P')');
and one "three-vertex bubble"

(b)

FIG. 4. Three-loop, O(N3) contribution to mass cor-
rection; graph (a) dominates over graph (b) at high tem-
perature.
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Therefore, the graph is O(X'/m'P'), which for P
near P, is O(MXm') —the same magnitude as the
next-to-leading one-loop term and the dominant
two-loop term. The latter graph of Fig. 4(b) has
two "two-vertex bubbles" giving O(1/P'm'), and
one "one-vertex bubble" O(1/P'). Thus it is
O(A.'/m'P'), a factor mP=O(v A. ) smaller. Similar
reasoning in any order yields the conclusion that
for large N and small P only one graph is impor-
tant in each perturbative order: the "daisy" of
Fig. 5. (It is clear that we are selecting those
graphs which, for zero mass, would be most in-
frared-divergent. }

The contribution of P-order perturbation theory
will now be evaluated. The over-all factor is
i(--,' i') . There are P —1 "one-vertex bubbles"
giving

and one "p-vertex bubble"

FIG. 5. An example of "daisy" graph contribution to
mass correction.

1 12m2
mz ~ =0 for

C pc YN
(3.36)

which reproduces the lowest-order result. Thus,
in the large-N limit, the O(v X p, ) terms give no
correction. The summation of daisies has
achieved the marvelous result of removing the
imaginary, unphysical terms in ms'. Clearly
(3.35} is real for vlA/12P'~ -m', i.e., above the
critical temperature.

Nevertheless, the improved expression for mz'
is still not satisfactory. The difficulty is that as
the critical temperature is approached from above,
m'+ vs&/12P ' vanishes, and the last term in the
square brackets in (3.35) dominates. This gives a
negative value for m8'. Therefore we seek a fur-
ther refinement of the approximation.

In order to develop the theory further, let us ex-
amine our previous formulas for ms'. In lowest
order one has

m8 = m +gÃA.i k' -m (3.37a}

(Then correctness of the combinatorial factors is
established by a tedious study of Wick's theorem. }
Therefore the temperature-dependent mass is

The infinities and counterterms have been re-
moved by renormalization. Hence the integral
i f, I/(k' -m') is defined to be just the finite-tem-
perature part. The daisy sum replaces this by

—m +

—&M.i (I'-m') '
~l

(3.37b}

=OS +

= m'+

(8 ') (12l!' 4!!)

6 P 12P2 gm2 ]2P~ 4gP

1
6 12P 4 P 12P

(3.35}

The value of the critical temperature is not af-
fected by the inclusion of the next order terms. It
is seen from (3.35) that

It is natural to continue the iteration, and we are
led to a "gap equation" for m8 .'

ms ——m +vMi(k'-ms. ') ' .
k

(3.38)

The graphs summarized by the gap equation (3.38)
are the "superdaisies"; an example is in Fig. 6.
These graphs exhaust all the dominant N contribu-
tions, and (3.38) is exact for large N. This is
most easily seen by recalling the exact Schwinger-
Dyson equation for the propagator in our theory.
It is given in Fig. 7, The heavy lines represent
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FIG. 6. An example of "superdaisy" graph contribu-
tion to mass correction.

the complete propagator. T is the scattering am-
plitude. The equation is not renormalized, hence
m, ' is the bare mass and the dot is the bare inter-
action strength. The large-N limit instructs us to
drop the term involving T." The equation is then
trivial to solve. We find

m8' = mo'+vNA()& (k'-m8'} '.
k

(3.39)

Finally we renormalize and obtain (3.38), which
for high temperature and weak coupling becomes

1 mq
m =m + M. (3.40}

The critical temperature which follows from
(3.38) or (3.40) is still given by (3.31). In addition,
the gap equation can be solved for me. When P-P„
(3.40} implies

(3.41}

The approach to the critical temperature (from
above} is linear in temperature. " It is remarkable
that all reference to the parameters of the theory
has disappeared, and the critical exponent is found
to be unity. For high temperature above the criti-
cal temperature, the mass is again proportional
to the temperature":

IV. FERMION FIELDS

A. Temperature Green's function

For Fermi fields, the finite-temperature
Green's function is

Tre "Tg(x)g(y)Sgx —y Tre

SB can be represented in two ways.
(i) Imaginary time:

(4.1)

SB(x}= e '"'Sg(k).
k

The symbol f, has the same meaning as in the
Bose case, but the time component of k is given
by e„=(2n+1}s/( iP) F-or f. ree fermions one has

(4.2)

S8(k) =
~ (4 3)

(ii) Real time:

sg(x)= J e ' 'sz(k).

Here f, = fd4k/(2w)4 The fr.ee, momentum-space
propagator is

(4.4)

It is of great interest to extend the validity of
our gap equation so that graphs, subdominant in
N, are also included. This entails analyzing the
infrared structure of the full Schwinger-Dyson
equation, Fig. 7, including the last term. (Only
the infrared properties of field theory are impor-
tant for our calculations of finite-temperature ef-
fects. ) Also, the procedure of renormalizing tem-
perature-dependent quantities with zero-tempera-
ture renormalization conditions must be fully de-
veloped. Another interesting line of development
can be the study of theories with symmetry groups
other than O(N), to see whether exact solutions, in
some limit, can again be obtained.

8 y2P

fm fP,
p

(3.42)

i 2r
Rg(k) = ., — Bs (f+ m)5(k'-m'),j'-m e +1

(k 2 + yg 2}1/2
(4.5)

Our gap equation gives an entirely consistent de-
scription of the behavior of m& above the critical
point. Below the critical point our theory is not
applicable since a phase transition occurs.

I = —k + m +
iD(k) O

These formulas are derived in Appendix A."

B. Vp(y) in the one-loop approximation

If the theory is described by the Lagrangian

&(V.(x) Ax&=&7 A mal 4G'A.--
+boson Lagrangian, (4 8)

FIG. 7. Schwinger-Dyson equation for the propagator.

where y, is a multiplet of Bose. fields and the6"s are matrices, then the shifted "free" La-
grangian is
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=2i lndet A2- M'

2 ~ ( d'k ~ 1
(2n+1)'m'

(4 8)

The first determinant is over Dirac and internal
indices, while the second is only over internal in-
dices. M, is the ith eigenvalue of the matrix M,
and the sum in i is over these eigenvalues. The
n summation is evaluated by the same differentia-
tion trick employed in (8.10). We find

d3k

5

(4.9a)

&',(j')=-4f, Q-', z (4.9b)

V~8((p) =-4, , t
dxx'

2m2p4 g,

xg ln(1+e " 'e "& ' ).
(4.9c)

Various aspects of the above have a simple
physical significance. The minus sign is a conse-
quence of Fermi-Dirac statistics; the factor 4 re-
flects the four degrees of freedom present in a
fermion field: particle, antiparticle, spin up,
spin down. The first term in brackets in (4.9a) is
the zero-temperature result; the second arises
from finite-temperature effects. For small P,
(4.9c) can be expanded; see Appendix C:

R,((p; (p(x), (I((x)) =i(t(Pf $-M{i+boson terms,

M= m+G'(p, . (4.7)

The one-loop effective potential, apart from the
boson contribution, has been previously computed
for zero temperature":

v,'(()=if inset((-I(

Quantization of these theories requires a choice
of gauge, which frequently introduces unphysical
states in the spectrum. It is not clear whether it
is permissible to make the statistical hypothesis
for such states. Can one do statistical mechanics
in any gauge, or must one select a gauge in which
only physical states are present'P Even if one de-
cides to calculate in a physical gauge, one does
not know which gauge is physical: If symmetry
breaking occurs, only the unitary Lagrangian is
physical; if symmetry persists, there are several
gauges which are physical, for example the Cou-
lomb gauge or the axial gauge in which one com-
ponent of the vector field is set to zero.

We shall compute the critical temperature in the
simplest gauge theory, scalar quantum electrody-
namics, and show that it is gauge-invariant on the
one-loop level. Thus there is no preferred gauge
for statistical calculations of the critical tempera-
ture in this model. However, two conditions must
be met: (1) The critical temperature is to be com-
puted only from the 1/P' term in the effective po-
tential. (2) The gauge must not be such that higher
orders of the perturbation are emphasized. (This
will be explained in detail below. ) The calculation
will be performed for an arbitrary translation-in-
variant gauge which does not require gauge-com-
pensating terms, as well as in class of gauges re-
quiring gauge com-pensating ghosts.

It is for these calculations that our diagram-
matic technique becomes especially useful. Not
only is a survey of various gauges quite easQy
performed, but also the operator method meets
with difficulties which have been explained by
Weinberg. '

The theory which we study is described by the
Lagrangian (counterterms are suppressed)

2 f(p, (x), A "(x))= ,'F"'F„„+-',-s„p,e" p'—-(-,' ' pm'(

+ pe'y'A'+ gauge terms,
2 2 4-7m M- M-

180P' + 12'' ' 18~2 '"
M+ 18',c+O(M, 'p') (4.10)

(p' =(p, (p, , (p~=((p')', a =1, 2,

c =2y- 2-21nw =-2.S4.3

The first two terms agree with the formula ob-
tained by Weinberg's operator method. '

V. VECTOR-MESON GAUGE THEORIES

A. Qeliminary remarks

The development of statistical mechanics for
gauge theories raises the following question.

The quadratic part of the shifted Lagrangiarr is

|l,{(p„(p.(x), A" (x)j

1 pp 1 1= -4&" +pv+2~ gee ~ "@e-rteMeaea

—e&,&&„y,y&A" +-, e'fIt)'A. + gauge terms,

M, (, =(m +zap )5,(, +xA(p, (p&. (5.2)
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8. Ghost-free gauges

It is easy to show that the most general inverse
propagator for a free photon fieM in a translation-
invariant gauge which does not require ghost- com-
pensating terms is

i& '.a( rp k'}= k'5. a I'.a

~s (rp akj=aek &aarpa ~

(5.5b)

(5.5c)

According to the general procedure, V ((pa) in
the one-loop approximation is given by

ii), '„(,k) = -kag„„+k„k,+d„(k)d„(-k), (5.3) V'(q ') = V.(j')+ V,'(j'), (5.6)

where d" (k) is an arbitrary vector which satisfies
k"d„(k)w0. Hence, for these gauges, (5.2) implies
that

f=
~

d'xi, (y„y.(x},A "(x)}

d gd4y —,'A. " XiZ 'qp qp,'X-y A. "

+-2'(p, (x)iu '„({p;x- y}gapa(y)

+ 4 "(x)M„,((p; x-y}(p,(y)].

(5.4)

V,(rp') = —,
' m'rp'+ —,{p'. (5.7)

--,'i lndet iZ„„q;k +i@„„y;k

To calculate V, (rp), the functional integral
fdrp, dA" e" must be evaluated. We see from
(5.4) that I is (luadratic and the integration is ele-
mentary:

v, (a') = -—', if )e eee 'ei '„(2; a)

In momentum space, the propagators are

iE '„„(rp;k}=(-k2+e'rpa)g„„+k„k„

+d„(k)d„(-k), (5.5a)

N2 (rp. k}-I2 ( (p k}3)

Evaluation of the determinants finally gives

(5.8a)

v, {a')=--,'if )e(a'-m, ')-if )e(a' —e')

,i ) -ln-(k -ia ) ia m2 —
2 (k -m2 }. -)a m, d—1 2 2 2 2 (k dP 2 2 2 2 2 (k dP

2 $2 2 2 y2

m, 2 = ma+~2k(p2, m22 = ma+a){(p2, p2 = earpa, (k ~ d}*=k2d"(k)k, d "( k), da =d-a(k)d" (-k).
(5.Bb)

(i) Lorene gauges. The evaluation of the re-
maining k integration in (5.8b) is simple for Lo-
rentz gauges where d" (k}= (1/M{2 )k". With this
choice, we have, apart from unimportant con-
stants,

V8(y2) = --,'i ln(k' -m, ')
k

I
V8(9 ')=, , dx x'[3 ln(1 —e-r*"8"')'")

27t'p4

+ln(1 e-( 22+ 82~ 2) '/2)

(1 (2 2+ 82R 2) r/2)

(1 (& 2+ 82R 2) i/2}j

ln(k' —)a')
k

ln(k -m, ak +{2)a'm ')

The R;"s are roots of x' -m, @+ap.'m, '.
ft, ,' = -,' m, '(1+[ 1 —(4r2 p.'im, ')1'"j.

(5.11)

(5.12)

= V', (jo')+ V,'(i*),

+g,4 ln ', —gXm'cp' —~SX'y4

+Qfml p, +Op (5.10)

2 R
Vaa({pa) =

4 2 m, aln '2 +3)aalu 2 +ft,aln

The zero-temperature contribution (5.10) has been
conventionally mass-renormalized. Coupling-
constant renormalization cannot be determined be-
cause of infrared divergences. Hence the quantity
a is arbitrary; however, we have arranged it to
be of order e'.

Observe that the effective potential is gauge-de-
pendent —n -dependent. Even if we compute the
critical temperature from (2.3), we find a gauge-
dependent expression



L. DOLAN AND H. JACKIW

m' BV x(9)x)

2 ep

1 dxx
4m P,

38 —,'a+@x
«(ex 1 } («X +P 2m 2)l/a(e(x 2+ Bx 2lnX)l/2 1}

«(ex 1) («x+P xmx)l/x( (x2+Bxmxt2)l/2 1)
~

Clearly this gives an unacceptable, gauge-depen-
dent (n-dependent) answer for P, '. However, we
have already shown that the one-loop calculation
is reliable only for the I/P, ' term in (5.13). U
this part is extracted, we get a result which is o.-
independent, hence gauge-invariant, for the class
of Lorentz gauges under consideration:

1

C

(5.14)

The numerical coefficients in (5.14) are related to
the masses induced by the shift and to the available
degrees of freedom. Recall that after the shift
there appears a photon "mass" term e2cp2, while
the two scalar particles acquire additional masses
—,'Ay' and ~Ay2. Finally, the factor 3 arises from
the three degrees of freedom of a massive vector
meson.

(ii) ONer gouges. For arbitrary d"(k) we cannot
evaluate (5.8b), since we do not know the k depen-
dence of d" (k). Nevertheless, it is possible to
compute the critical temperature. First we de-
termine BV, ((()')/By' ~~,:

(k d)' (k d)' k'

(5.15)

The first integral in (5.15) corresponds to the first
integral in (5.13) and leads to (5.14); the second
integral is gauge-dependent. As always, only the
1/P' term, for small P, is significant in (5.15). It
is not difficult to see that the I/Px term arises on-
ly from that part of the integral which in the zero-
temperature limit is quadratically divergent. The
last two terms in the second integral are of
O(1/k') for large k; hence no quadratic divergence
arises, and they do not contribute to the O(1/P')
term. Only

Z
" 82ypg 2

2, k'-m' (k d)'

can possibly give a I/t)' contribution.
For axial gauges d" (k) =ll "/Ma, where n" is an

arbitrary 4-vectox and n is set to zero at the end
of the calculation. Similarly, for Coulomb gauges

d" (k) =(I/)(n )(k" n "-n k); n" is a timelike unit
vector and a tends to zero. For both cases k'/
(k d)'~ o., and the dangerous term vanishes iden-
tically. Thus in the physical gauges, the critical
temperature is determined by the first integral in
(5.15) and agrees with (5.14).

It may appear that there are gauges for which
the critical temperature is gauge-dependent, pro-
vided (k d)' goes as (k') ', e ~ -1 for large k'.
This leads to a quadratic {or stronger) divergence
in f, [k'/(k'-m')] 1/(k d)' at zero temperature,
and can contribute to I/P x terms at finite tempera-
ture [Fo.r example if we choose d"(k) =k "/(nk')l/'
then

j ' 2 2 2 2

J, (k'-m')(k d)'

and this has a 1/P' part, for small P'. ] However,
we shall now argue that gauges for which (k d)'
behaves as above are unacceptable. The point is
that the free vector-meson propagator correspond-
ing to (5.3) is

id, )'"k =
g"' d' k"k" d" (k)k"
k' (k d)' k' k'k d(k)

k "d '(-k) k "k"
k k d(-k) (k ~ d)

All terms but the last are O(1/k') for large k. The
last term, however, has an asymptotic behavior
determined by (k d)', and for the above gauges it
is O((k')". ') at large k. This corresponds to a non-
renormalizable theory, and we must expect that
higher orders are important. Consequently, it is
not surprising that nonsensical results are ob-
tained when the higher orders are ignored.

Thus we conclude that the critical temperature
is gauge-invariant on the one-loop level, for
ghost-free, translation-invariant gauges which do
not emphasize higher orders, provided only the
leading high-temperature form is computed.

C. 8& gauge

Another popular gauge is the g& gauge, ' which
may also be viewed as a regularization of the uni-
tary Lagrangian. The computati. on of an effective
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potential in this gauge requires a modification of
the conventional definition of the R& gauge, which
has been already given by us. 4 The gauge-fixing
and -compensating terms in (5.1) are

(8~A" +v, (p, ) +S„g*a "g —eg*I()e„v,92„

(5.17)

where v, is an arbitrary 2-vector and g is a ghost
field. The gauge terms lead to a shifted, quadratic
Lagrangian contributing to (5.2):

——(s„A)'+v, (p,}'+8„(p*s"g —e(p*|()e„v,(p, .

(5.18)

The effective potential is determined by the func-
tional integral Jdrp, dp*d)1)dA "e'~, where I is given
by

I= d'xZ, y„.y, x, A" x, gx

d'xd'y [-.'('p. (x)i& '.&(('p; x -y}(pk(y)

+ ,'A" (x—)iZ '„,((p; x —y}A"(y)

+A"(x)M„,((p; x —y}(p,(y)

+y *(x)is '(i' x - y})p(y)] .
In momentum space, the propagators are

iS 'd(, ((p;k}=(k -m —V p(y }5dk —f& p2p(bd(

(5.20)

'n '„„(e;k)=(-k'+e'e')d„„+(1——)kek„,

M „,((p; k}=ice), (p, k„k„v„——
0,

(Vp "}=k e& kvopk.

The functional integral has been evaluated previ-
ously. We find"

V, ((p) =-—,'i [-21niS '((p;k}
k

+in detiZ 2„„((p;k}

+in det(iK) '„((p;k}+iN„(rp; k})],

(5.2i)

V', (y)=,(3e'+-,'~+ v~)y'A'

D. The unitary Lagrangian

Yet another way to compute P, ' is to work with
the unitary Lagrangian ZU, which describes the
charge-zero sector of the theory. This Lagrangian
is obtained by removing the gauge degrees of free-
dom, or by taking a limit of the R& Lagrangian. It
is

Zv( p(x}, A "(x), g(x)}= -,'F""F„„+--,'8 „pe"p ——,'m'p'

——,p'+-,'e'A'p'+ g *pg,

(5.23)

where the p fields are ghost fields. The shifted
quadratic Lagrangian

Ev, (p; p(x), A"(x), g(x)}= ,'F"'F„,+--,'-s „ps "p

——,'(m'+-,'Zp') p'

+ —,'e p A +|t*gp

(5.24)

leads to the one-loop effective potentia14

V,(p') =--,'1j[-2 1npe)neet((-k' ~ e'p')d„„~ k„k„)

+in(k' -m' ——,'Xp')]

=-—,'i [31n(k —e p )+ln(k'-m ——,'Ap )]
k

+ constant. (5.25)

The zero-temperature limit has been evaluated
previously, and it is renormalizable. ' The 1/p'
part of the finite-temperature term is, apart from
constants, (1/24P')(3e'+-,')).)p'. Thus, the critical
temperature computed by this method differs from
(5.14):

+ less-divergent terms . (5.22)

This is gauge-independent —a - and v, -independent.
Since the quadratically divergent term at zero
temperature determines the 1/P' term at high
temperature, we conclude that the critical temper-
ature, computed from (5.21}, agrees with the pre-
vious result (5.14).

N., ((p; k}=M.{(p;k}E„„(y;k}M",(rp; -k}.
C

(5.26)

We shall not evaluate the remaining integration
completely because of the tedium involved. The
1/P term is easy to extract. Previously we found
the quadratically divergent part of the zero-tem-
perature potentia14:

Equation (5.26) disagrees with (5.14) in that the
latter has two contributions proportional to —,'A. and
~A. arising from the two scalar degrees of free-
dom. In the unitary theory there is only one scalar
degree of freedom and the ~A. portion is absent.
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On the other hand, if one calculates P,
' in the reg-

ulated unitary theory, i.e., from the 8
&

Lagran-
gian, and passes to the appropriate limit, one ob-
tains (5.14). This follows from the considerations
of Sec. VC, where it is shown that P,

' in the 8&
gauge is gauge-invariant.

We attribute this inconsistency to the fact that
the unitary Lagrangian does not correspond to a
renormalizable theory (even though the one-loop
effective potential is renormalizable). Conse-
quently we must expect that higher-order, multi-
loop contributions modify the one-loop result
(5.26). It is an open and interesting question how
one might extract the missing ~A, term from the
higher-order contributions to VU. In any case, we
believe that the correct answer is (5.14) and not
(5.26).

The formula (5.14}for P,
' is written in terms of

the unphysical parameter -m2. We may use low-
est-order expressions which relate -m' to the
physical masses to rewrite (5.14). Recall that the

Higgs particle, the "o meson, "has the mass given
by m, ' = -2m'. Also the vector-meson mass satis-
fies m„' = (3e'/A)m~'. Hence from (5.14) we have

An extension of our computations to non-Abelian
gauge theories can be given. A most interesting
further investigation would examine whether exact
results can be obtained for an O(N) gauge theory
in the limit of large N, analogous to our treatment
of the O(N) scalar theory in Sec. III.

symmetry remains broken, in sharp distinction
with the state of affairs that transpires when sym-
metry breaking is carried by a scalar field.

The easiest way to understand spontaneous sym-
metry violation in (6.1) is through the anomaly
of the axial-vector current, 2,"=iPy"y'P I.t is
known that in spite of the apparent chiral symme-
try of (6.1), the current is not conserved ~ Ra-
ther, one has

8 8"=ca E""
P 5 P II (6 4)

8"e~"E = eJJLP 5 0

a a"e "E„„=ce&„„E"",
-C3F = 2ceE.

(6.6)

Consequently, symmetry can reassert itself only
if c =0 at some finite temperature.

However, c is not modified by temperature ef-
fects. A nonvanishing c is a consequence of the
singular short-distance behavior of the zero-tem-
perature theory, while the theory at finite temper-
ature has the same short-distance behavior. This
is best seen from the finite-temperature propaga-
tor, in the real-time formalism:

Sg(k) =S(k)+Sq(k),

where c = e/2n at zero temperature. Equation
(6.4) together with the equation of motion

(6 5)

implies that the vector meson has a mass (2ce)"'
To see this, recall that in two dimensions 4,"
= e""J,and E""=&""E. Hence

VI. CRITICAL TEMPERATURE IN THE
SCHWINGKR MODEL

S(k) = —, (6.V}

2= it}$y —,'I' ""I"„„+e—Z"A„,
E "=e~W"- e"A. (6.1)

As is well known, because the vacuum-polariza-
tion tensor

II""(q)= f(g""q' —q "q")II(q')

has a pole at q'=0,

II{q')= e'/Ilq',

(6.2)

(6.3)

the vector meson acquires a mass p=e/v v, and
gauge invariance of (6.1) is spontaneously broken.

We show that at finite temperature the gauge

There exists an explicitly solvable model field
theory with dynamical symmetry breaking: the
Schwinger model of two-dimensional, massless
spinor electrodynamics, ' governed by the Lagran-
gian

2r
S8(k}= —

) )
$5{k').

Decomposing S ~(k) as in (6.V), we find

li 8"(q) =Ii.""(q)+11~8"(q),

II 8"(q) =A. "'(q) +4'"(-q) +B""(q).
(6.9)

II,""(q) is the familiar zero-temperature contribu-
tion with a pole at q' =0,

Temperature modifies the theory near the mass
shell, and not for large ~. Hence short-distance
behavior is not affected. We conclude therefore,
that c remains nonzero at all temperatures, and
the symmetry is always broken.

The above general argument may be explicitly
verified by computing II ~&" at finite temperature,
and showing that it retains the pole:

d k
II & "(q) = e' Tr 2,y "S8(q+ k)y'S &(k). (6.8)
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d'k
A ""(q)= e' Tr, y "S(q +k)y"5'8(k),

d'k
B""(q)= e'Tr 2y "P&(q+k)y"P&(k).

(6.10}

Upon inserting (6.7) into (6.10), it is easy to show
that A"' and B""vanish identically. As an addi-
tional check, we have also calculated with the
imaginary-time formalism. The result is the
same —the vacuum-Polarization tensor at finite
temPerature coincides zoith the one at zero tem-
Perature.

A dynamical model of symmetry violation in
four dimensions has also been given. " For that
explicit example we argue that finite-temperature
effects do not restore the symmetry. In the dy-
namical model, symmetry violation is carried by
a bound state. The existance of the bound state is
a consequence of the non-Fredholm kernel in the
Bethe-Salpeter equation. The kernel fails to be
Fredholm because of singular high-energy behav-
ior. As high energies are not affected by finite
temperature, the bound state will remain even at
high temperature and symmetry violation per-
sists. " (The model of dynamical symmetry viola-
tion considered by Nambu and Jona-Lasinio uses
a cutoff field theory. " The influence of finite tem-
peratures in this context has not been examined
by us. )

~Nx
d'k

0 6 0 (2n)4 k2 ~2i (V.1)

where. m'=2SV'(q')/SP'~ S,. This is not espe-
cially interesting, since it merely sums the loops
of the mass renormalization. However, it is easy
to see that

8cp
(7.2)

is given, in the leading N approximation, by ex-
actly the same series of loops. Hence

2 2 g 2 dk iII =ntQ + XQ6 lp + 6 JLQ
(2 )4 k2 SR2

Renormalization is trivial; we find

(7.3a)

SR' =m'+gq7'+gII'ln (7.3b)

trapping of various excitations.
The leading N summation can also be used at

zero temperature to obtain information about the
effective potential and about symmetry violation
in the O(N}-invariant Bose field theory, (3.21).
The zero-temperature version of our gap equation
(3.39) is

VII. CONCLUSION

The restoration of a spontaneously broken sym-
metry above a critical temperature is a phenom-
enon whose aspects in field theory have been ex-
hibited in this investigation. An interesting dis-
tinction emerges between symmetries broken dy-
namically and those broken explicitly by scalar
fields: The former remain broken at high tem-
perature, the latter can be restored.

We have computed the critical temperature in
terms of the renormalized parameters of the the-
ory for a variety of models. Also in the large-N
limit of an O(N)-invariant spinless theory, we
obtained a parameter-independent description of
the behavior near the critical point. Renormaliza-
tion, which defined the parameters, was per-
formed at zero temperature. This is by no means
necessary —an alternate procedure is to renormal-
ize at finite temperature; a convenient point is
the critical temperature. In that case P, is no
longer calculable, but other parameters of the
theory are expressed in terms of P„and no in-
formation is lost." Finite-temperature field the-
ories are examples of dynamical systems with
long-range (infrared) modifications. It is possible
that they present an analog to models with infrared

where we have set

A'
16m'

~

m'

ln —116n' 1 m'I
(7.4)

~BNX(1/16n')
1 +i'(l /16n') '

and have rescaled the field cp by q& - (MN/4n)qV

Clearly (V.Sb} has a symmetry-breaking solution
for m'&0:

2
A2 m

It, = (p (7.5)

A detailed study of (V.Sb) is planned. "
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obtained the zero-temperature equation {'i.3) for
sl {g )/sP

APPENDIX A: FINITE"TEMPERATURE
GREEN'S FUNCTIONS

In this appendix we derive the finite-temperature
boson and fermion Green's functions for noninter-
acting fieMs that have been used in the text. The
results are well known'; however, me present
them here for the convenience of those practition-
ers of conventional field theory who may be un-
familiar with this formalism.

1. Spinless Bose fields

The finite-temperature 2-point function

Tr e e"ry(x)q(y)Dax —y =
Tre —/if

&T@(x)e(y)&= &e(x)q (y))

=De(x —y), ix, &iy,

=
&V (y)V(x))

= De(x —y) ) iyo & ixo.

Note that for imaginary times in the interval
[0, -iP] we have

D ))(x —y)1.,=0 = D'8(x —y}l.,=o

DB(x-y)l.,=-l8 D8(x y)l =-'8 ~

(A4)

= Tr e ' 4)(-iP, x)p(y„y)

The desired boundary condition now follows from
(A4):

(Tr e 8")De(x- y) l, ,= Tr e 8"y{y„j)p(0, x)

= Tr e "e'"q (0, x}e '"

= &Te(x}e{y))

for noninteracting fields, satisfies

(Al} =(»e '")D))(x-y)1.,=-~8

(A5a)
(0,+m')DB(x —y) = i5'(x-y}. — (A2)

In order to solve this equation, boundary condi-
tions must be specified. These are given for
imaginary time. The time arguments of D~ are
continued to the interval 0 ~ ix~iy, ~I3, and "time
ordering for imaginary time" is defined by

Thus we have from {A3) a periodicity condition

(A51)DB(x- y) l, ,=D))(x- y) l,
In the imaginary-time domain, Dz may be rep-

resented by Fourier series and integrals, which
incorporate (A5b):

8( y) { y) ~ (2v)3 ( jp) (2m)3 8( ssps ss'p ) ) ss p

The summation extends over e =0, +1, . . . . The inverse formula is

D8(~ p ~,ps)- d , x'~e~ 0 d'xe "~'" dy, e '"~'"0 d'ye'& ''ID&(x —y).
0 0

(A6b)

Since DB(x —y) depends only on coordinate differ-
ences, the above transformation diagonalizes it:

D8(~„p, e„.p') = iP6„„(2-v)'5'(p —p') D))(ru„, p) .
dXO d Xq

(A81)

Ds(x-S) = f s "' "'Ds))s),

Ds()s)= f s"*sss( ),

(ABa)

A compact notation for these transformations is and P is the 4-vector (&u„, p}. This vector is never
timelike P' = a&„' —p' = —{4en' jP'+ p') ~ 0.

From (A2) and (A6) it follows that D))(P) satisfies

(-P'+m')D, (P) = -i,
(A9)

There is no ambiguity in the division process since
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p'-m'kk0 (for m'&0). This completes the deriva
tion of the imaginary-time representation for the
Green's function.

It is also possible to represent Ds(x —y) for
real time by Fourier integrals. We define first

-iB
-(2kn/8)k() ds -ik xD (x)

p

-ia
dxe '"" 8'p

p
p

Dx(k) =f d'xe'"D)(x). (A10) x 'e "()'()D&(k)dkp
271

(The bar indicates a Fourier integral transform. )
The following manipulations are now performed:

De(k, k)= Jd'xee e" "' 'D (*xe)x

"dk, e '() —1

"dkD p(kD, k)
~ 21T co~ —kp

(A14b)

d'xe'"D'D "'"'D8(x, ip, x)—

= e o d'xe'™DBx

=e 8 oD'(k). (All)

(A15)

In the free-field case where D()(k) is given by
(A9), we find

Hence to determine p(k), we extend DB(&o„,k) to
a continuous function D8(k„k}, and

p(k) = D8(kD+ ie, k) —Ds (kD - ie, k) .

In passing from the first to the second equality,
(A5a) was used. Equation (All) may be summar-
ized by

p(k) = 2ve(k, )5(k' -m') . (A16)

Therefore the real-time Green's function which
follows from (A13) is

DB(k) = [I +f (kD)]p(k),

D', (k) =f(k,)p(k),

1f(E}=,se
(A12) E = (k2+m')'/'

2. Fermion fields

(A17)

p(k) =D8(k) —D()(k) .
Knowledge of p(k} determines D8(k), the Fourier

integral transform of DB(x). To see this, observe
that

D, (k)= f d'xe"*[e(x,)D', (x) ~ e(-x.)D', (x))

The formalism for Fermi fields is developed
analogously, except that anticommutativity must
be taken into account. We record, with little
comment, the relevant equations:

Tr e 8"T(I)(x}y(y)
8 x Tre -BH

"
dkD D8(k,', k) Ds(kD) k)
277 kp kp + iE' kp kp g6

= &Ty(x)7(y)),

(ig, -m)Ss(»-y}=i6'(x-y).
(Al&)

(A19)

"dk,', - 1+f(k,') f(k') For complex time in the interval [0, -iP], we have

(TP(x)(l(y)}= (g(x)4(y)}

The spectral function p(k) can be obtained from
the imaginary-time representation for D8(x),

-i8
D,((u„, k) = dx,e "k" ""o d'xe '"'~D, (x).

p

(A14a)

Since D()(x —y) I, ,=D8(x —y}I, , for x, in the
imaginary interval [0, -iP], the above is also giv-
en by

=S'8(x —y), ix, & iy,

= -Q(y)(l (x)}

=S 8(x —y) k iy() & 'ix()

S 8(x —y) I.,=.=S ()(» —y) I.
S()(x-y) I.,=;() -S()(x—y) I.,= i().

The boundary condition is antiperiodic:

S((x-y)I.,=D=-Se(x-y)l. = i8
p

The imaginary-time formalism leads to

(A20)

(A21)

(A22)
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s, (s)=f e'~s, (*), (A23)
d'k

2 (2w)
(B1)

S,(u) = (A24)

For real time, S8(ko, k) = e ()S [)(ko, k). This
relation can be expressed by the following equa-
tions:

5"8(k) = [1-f(k,)]p(k),

78(k) =f(k,)p(k),

1f(E
(A25)

p(k) =F8(k) +5'[[(k) .
The spectral function p(k) is obtained from the
imaginary-time propagator:

-i8
S ((u k)= dx e [(2~+1)s/s]*o

g ny 0
0

-jk'xg&

"dk, p(k 1K)

~ 27T (&7~ —ko

p(k„k) =S [[(k,+if, k) -S[[(ko—ies k),

(A25)

and the real-time propagator is determined from
the spectral function:

s, (s) = I d'|:e' [s(x,5's(x) —8(-x,)s[[(x)]

where P"= ((s)„,p) and (d„= (2s + 1)w/(-iP). Combining
(A23) with the equation of motion (A19), we have

This expression has no explicit dependence on
temperature in the real-time formalism, since
iD '=k'-m'. But if we rewrite (Bl) as

ih d'k D
2 (2w)4 i ' (B2)

2E E(p ~ —1)

This gives the same result for the one-loop effec-
tive potential obtained by the imaginary-time
formalism.

The two-loop calculation involves J [d'k/(2w)']5,
which obviously gives the same answer in the
real-time formalism as in the imaginary-time
formalism. However, in higher-order loop cal-
culations, one encounters integrals of the form

f [d'k/(2w)'](&)". Clearly this is undefined since
it appears to possess products of 5 functions at
the same point. For imaginary time, the analo-
gous objects are also given by

then the P dependence appears, since

i 2w 5(k' -m')
+m2

[Apparently the temperature dependence of (Bl)
is hidden in the choice of a particular Riemann
sheet used to evaluate the logarithm. ] To facilitate
the evaluation of (B2) we differentiate with respect
to m':

i d'k 8
y 1 d k

2 (2w)' &m' 2 (2w)'

""' '"","'. -f(.) ().„2n k, -ko+ic

For noninteracting fields,

p(k) = 2we(k, )(g+m )5(k' —m'),

( )
i 2w(p+m) (k, ,

)g-m+ie ew +1

(A27)

(A28)

Hence we define the real-time calculation in this
manner. The Fermi case is argued similarly.

APPENDIX C: EVALUATION OF INTEGRALS

Various integrals whi"h were encountered in
the text will be evaluated here.

APPENDIX B

The advantage of the real-time formalism is
that it immediately splits computations into a zero-
temperature and a temperature-dependent part,
by virtue of that split in the propagator. However,
the expressions encountered in this formalism are
often ambiguous. We show a way to circumvent
the problem for the calculations found in Secs.
IIIB and IVB.

For a Bose field, the one-loop effective poten-
tial involves integrals of the form

1. Derivation of Eq. (3.16)

It is easy to obtain the first two terms in the
expansion. From (3.13c) we have

Vie(dP') = 2, dxx in[1 —exp(-(x'+a )" )],2m'P'

a' =P'M' (Cia)

Sa' ' 4w'(3', (x'+a')"' exp((x'+a')'") —1 '

(C1b)
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V8 "' 1
4 1(9 ) 4 2p4

x '
~ ( '+4w' ')""" 1+x'

dxx

1

(x ' +a')'"[exp((x ' +a')'") —1]

1
Sm'P'

(20 1
x dx (x' +a')'"[exp((x' +a')"') —1]

'

(C1c}

The second equality in (Clc) follows from the
first by an integration by parts. Thus we find

+ 2
1 " 1

g&+~ 2' ~~

1 1+2 „,(2wn}'" (1+a'/4w'n')"4" ' —1

1

X
cos2mc

(cea)

I,' (a) = —+w '2 ' 4&(1+e)+I(a}+O(e},

The second sum in (C6a) is O(a'). Also it posesses
a limit as & -0. Hence we get

V~2(((()') ~,2,= 2, dxx'ln(1 —e *)

g'
90P4' (C2a)

I(a) = —g —1+» —1
gg 4g 2~2

= O(a'}.

(C6b)

(cec) '

1
24P'' (C2b}

Here f(1+e}is the Riemann zeta function which
satisfies

(1 )
2'w' 0(-e}

sin —,'we 1'(1+e}
The remaining terms in (3.16) are more difficult.

What is needed is an expansion of
, 1= 2'w' ——ln2w +y+ O(e}

dx 1

(x +a')' ' exp((x +a )' ') —1' (C3)
The estimate of I,"(a) is

y =0.577. . . . (C7)

oo 1I, (a) = dx (x'+ a')»' exp((x'+a')"') —1 '

e &1 (C4)

By use of the series (3.11), I, (a) may also be
represented by

I, (a) =I,' (a) + I,' (a), (Cea)

It is convenient to study the regulated quantity I,' (a) = —+ —+2(y —ln2w)+I(a)+O(e}. (Ce)
26 20

I(')(a) is given by
46 x '

I,'(a)=-2a '
dx( +)»2

l 1 1 1= --,a B(2 ——,e, —,e)

1= --,'a '+2' —+O(e2)
E

n=0, +1, . . . (C5b)

= ——+-, ln —,a+0(e) .1
26

Upon combining (C8) and (C9), we finally get

(C9)

0 (~+a j
(C5c)

For convergence of the separate integrals I", ,
we must assume that 1 &e &0. They will be esti-
mated for small a' in this region, and then their
sum will be continued to & =0, which is a regular
point for I, (a).

By a change of variable 1~"(a) may be cast in
the form

I(a) = —+ 21n—+ —,'y+I(a}.
2a 4m

(C10)

Since

s2VB(p2)
Sa4 8 2p4 (

we can regain Vf(P') from (C10) when the bounda-
ry conditions (C2} are taken into account. and



thus (3.16) is verified. Note that the x/2a part
of I(a) which leads to the M'/P term in Vf(P')
in (3.16), and the m/P term in m 8', (3.18), comes
from the n =0 term in the series (CSb). This ver-
ifies the assertion in the text that the infrared
region determines the next-to-leading contribu-
tions.

The order M'(llf'P') part of (3.16) which arises
from the O(a') part of I(a), can be obtained from
(C6c). Integrating that expression twice, and

recalling the boundary conditions, we find this
contribution to Vf(Fp):

I a)= dx
1 1

(x'+ a')"' exp((x'+ a')'")+1 '

(C13)

%e regulate as before with x ' and express the
integrand as a series with the help of (3.11):

I, (u) =I,' (a)+I,' (a),
oo 1~ x'+a'+ (2n+ 1)'v"

32' " a' "' 3 a'
3P' 4g'n' 8 g'n'

3 a'
128 m'n' .

I',"(a)=,' -dxx ', ,(/+ad

s=o, +I, . . . (C14b}

Following our previous method, we find

2. Derivation of Eq. (4.10)

To estimate the fermlon colltrik)ution to the ef-
fective potential

I/i(a) = —
2

+-,'(In-,'v —y) +f(a) +O(e), (C15a)

a2

"(2..'1).

V, (y) = —,, dxx' In[ 1+exp(-(x'+a')"')],
5 P

I',"(u) =
2

—
& Inaa+O(e) .

(C15b)

(C15c)

w'e proceed in a fashion entirely analogous to the
Bose case, discussed above. Hence, we only
sketch the relevant steps. The first two terms
in an expansion in a' are easy to get. The hard
part is an estimate of

(C16)

A double integration of (C16) establishes (4.10).
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We paraquantize the classical massless relativistic-string action and find that the resulting
theory is Poincare-invariant in four space-time dimensions if we use para-Bose commutation
relations of order 12. More generally, we find that if the dimension D of the space-time
and the order q of parabosons are related by the expression D = 2+ 24/q, then the quantized
theory is Poincare-invariant. We also construct a fermionic parastring model which is the
analog of the Ramond-Neveu-Schwarz model and find that it is invariant in D dimensions if
D= 2+ 8/q, both the fermions and the bosons being of order q. We show by explicit Klein
transformations that these theories are equivalent to "color"-endowed canonically quantized
strings with SO(q -1) "color" symmetry. We obtain dual tree amplitudes by suitable choice
of vertices. Finally, we consider second-quantized parastring theories and show, by an
explicit example, that they can be Poincare-invariant in four space-time dimensions.

I. INTRODUCTION

The search for the understanding of the funda-
mental structure that underlies the dual resonance
models has been the subject of many interesting
investigations in recentyears. ' ~ From among var-
ious approaches, the one which has reached the
status of a bona fide theory is the gauge theory of

the relativistic string, ' which is based on a geo-
metrical description initiated by Nambu. ' In this
case the fundamental structure is a massless
relativistic string.

An important feature of the string model is that
all of its properties follow from a single action:


