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how one may substantially alter the infrared be-
havior of the Green’s functions or choosing an
inappropriate path by which to approach E; -~ 0,
E,- 0 or having an unfortunate ratio of renormal-
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ized coupling constants. Such trickery did not
appear in the ¢° theory which possesses a single
coupling and provides a richness of solutions not
explorable there.

*Work supported in part by the U. S. Atomic Energy
Commission. Prepared under Contract No. AT(11-1)-
68 for the San Francisco Operations Office, U. S.
Atomic Energy Commission.

fVisitor from the National Accelerator Laboratory,
Batavia, Illinois 60510.

iVisitor from Rutgers University, New Brunswick,
New Jersey 08903.

ly. N. Gribov, Zh. Eksp. Teor. Fiz. 53, 654 (1967)
[Sov. Phys.—JETP 26, 414 (1968)].

’H. D. 1. Abarbanel and J. B. Bronzan, Phys. Rev.D 9,
2397 (1974). Further references to work on the Regge-

on calculus and references to work on the renormal-
ization group may be found in this paper.

%H, D. 1. Abarbanel and R. L. Sugar, Phys. Rev. D (to be
published).

4This solution and other lore on the renormalization
group can be found in the lectures by S. Coleman given
at the 1971 International Summer School of Physics
“Ettore Majorana” (unpublished).

5S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888
(1973); G. Jona-Lasinio, Nuovo Cimento 34, 1790
(1964).

PHYSICAL REVIEW D

VOLUME 9, NUMBER 12

15 JUNE 1974

Feynman rules for gauge theories at finite temperature*

Claude W. Bernardf
Jefferson Physical Laboratories, Harvard University, Cambridge, Massachusetts 02138
(Received 18 March 1974)

Feynman’s functional formulation of statistical mechanics is used to study general-relativistic
quantum field theories at finite temperature. The techniques are then applied to gauge theories.
The partition function Tre™8¥ is discovered to be a gauge-dependent quantity which is meaning-
less in most gauges. Instead, we define a physically meaningful partition function which is
gauge-invariant and only equal to Tre~BH in certain “physical” gauges. Feynman rules for
this partition function and for finite-temperature Green’s functions are derived for a general

gauge.

I. INTRODUCTION

Recently, several authors'™ have considered
what happens when a system of elementary parti-
cles described by a quantum field theory is heated.
They have found that symmetries which are spon-
taneously broken at zero temperature (such as
those of the weak interactions) may be restored
at sufficiently high temperatures, and have cal-
culated®® the critical temperature at which such
a restoration takes place. To do this kind of cal-
culation, one needs to know the Feynman rules
for a field theory at finite temperature. For a
nongauge theory, these rules can be derived using
well-known methods.* However, for a gauge theo-
ry, a more powerful technique is needed to cope
with several new problems that arise. Chief among
these is the troublesome fact that the partition
function Tre 8% is a gauge-dependent quantity, as

we show by an explicit example. The gauge de-
pendence is caused by the appearance, in some
gauges, of specious degrees of freedom in H
which do not correspond to physical particles. The
trace over all states of H is not physically mean-
ingful in these gauges—the specious particles can-
not come to equilibrium with a physical heat bath.
It would seem, then, that gauge invariance is
completely lost at finite temperature. This is not
the case. The functional methods set forth in this
paper allow one to calculate the physically mean-
ingful partition function (i.e., Tre~?¥ in a gauge
without specious degrees of freedom—such as the
unitarity gauge) using Feynman rules defined in
any of the usual gauges (for example, the R,
gauges in a spontaneously broken non-Abelian
theory). Thus gauge invariance of physical quan-
tities is not lost at finite temperature; we must
merely remember that Tr e~ 8¥ is not in general
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a quantity with a direct physical interpretation.

The existance of Feynman rules for the true
partition function in renormalizable (R,) gauges of
a non-Abelian theory is extremely useful in cal-
culation of the critical temperature. It turns out
that in these calculations one must keep track of
powers of temperature that occur in higher-order
perturbation theory—a task which is very difficult
in unitarity gauge but fairly simple in a renormal-
izable gauge.®

Section II of this paper presents a somewhat
heuristic derivation of the finite-temperature func-
tional formalism for a nongauge field theory, start-
ing from the better-known zero-temperature for-
malism. This finite-temperature formalism is
not new; Feynman first wrote it down for a single
nonrelativistic particle in one dimension.® Since
then, it has been used by many authors for various
purposes.® Here, we present it in a somewhat
different context and with a different motivation:
that of finding finite-temperature Feynman rules
for a relativistic quantum field theory. The rules
for an interacting scalar field theory and the exact
partition function for a free scalar theory are
worked out as examples.

Section III deals with gauge theories. The lack
of gauge invariance of Tre 8 is discussed. A
functional integral in a “physical gauge” is set
up which can be used to calculate the true partition
function; the Faddeev-Popov ansatz’ is then used
to change the functional integral to “nonphysical”
gauges. The Feynman rules for general gauges are
derived, and the nature of “ghosts” at finite tem-
perature is discussed. Free electrodynamics is
used as an example.

Section IV restates some of our conclusions, and
an appendix works out a technical detail of the
functional formulation.

II. DERIVATION OF THE FUNCTIONAL FORMALISM

Consider a quantum field theory described by a
Hamiltonian density 3¢(m, ¢), where ¢(X, t) is the

Tre™® =3 (ple™®]¢)
]

-~ [ fam [

periodic

Note that only the field integration, and not the
momentum integration, is restricted to periodic
orbits.

In the usual cases where 3C is no more than a
quadratic function of 7’s, we cando the 7 integration
immediately by completing the square. This
merely replaces 7 in the integrand by its value at

[d¢]exp { fosd‘rf d*x[img - 3¢(m, w)]} .
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Heisenberg-picture field operator and 7 (X, t) is
its conjugate momentum. (The generalization to
a theory with many fields will be immediate.)
Then ¢(X, 0) is the Schr&dinger-picture field op-
erator. Let |¢,) and | ¢,) be eigenstates of ¢(x, 0)
with eigenvalues ¢,(X) and ¢,(X). Thus

(P(i, O)I Qo= (po(i)l (po> ’
(P(i; 0)' (P1>= 991(;)' <P1> .

Then the Feynman functional formula in Hamilto-
nian form® gives the transition amplitude for going
from |@y) at t=0to | ¢,) at t=1¢,:

(p.le™ 1]y
=N j [drr][d(p]exp{i fo “ar f dx[np -3¢, (p)]},

(2.2)

where the integral over classical fields, [ [d¢],
runs over all possible configurations that start at
@oX) at t=0 and go to ¢,(X) at t=¢,. The integral
over momenta, f [d7], is unrestricted. ¢(X,t) is
defined to be 8¢ (X, t)/8t. N is a constant normal-
izing factor. To avoid ambiguity, we require that
the momentum integration always be done before
the field integration.®

Now simply let it, =8, where B is the inverse
of the temperature. Make the variable change
it=7 in the integrand of the exponent. Note that
@=19¢/87. We have

(2.1)

<¢1l e_B”I Yo

v [ [dn][d<p]exp{ fo Yar [ @fing - setn, ¢)]},

(2.3)

where ¢ is now taken to mean 9¢/97.

To find the partition function Z=Tre ¥ we
just allow the f [d¢] to go over all periodic paths,
i.e,, those that have the same classical field at
7=8 as at 7=0. Symbolically

(2.4)

—
the stationary point of the integrand and adds a
ghost term if the quadratic term in 7 is ¢-depen-
dent.® The stationary point is given by

i age(m, @) )

Py (2.5)

This, together with the addition of a possible
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ghost term, is just the prescription for going from

the Hamiltonian to the usual effective Lagrangian,
£.4, with the additional stipulation that all 7 de-

rivatives in £ are multiplied by i. Thus we have

Tre™ 8
N [

periodic

where N’(B) is a new (infinite) normalizing factor

which will be determined later. The 8 dependence
of N’ comes from a careful evaluation of the [ [dr].

The same kind of thing happens at zero tempera-
ture, but there we are interested in a { -« limit
(the S matrix) and so N’ is an unimportant infinite
constant which is usually ignored.

For a nongauge theory, we can use (2.6) to de-
rive the Feynman rules in the ordinary way. The
quadratic part of £, determines the propagators

and the nonquadratic part determines the vertices.

There are only two basic differences from the
zero-temperature rules:

(1) The presence of the ¢ and the absence of
an 7 multiplying £.; just accomplish a “Wick ro-
tation” of the rules into Euclidean space. There
is no need for an i€ in the propagator denomina-

aolexe [ "ar [ @ 2ato,i9)],
(2.6)

tors.

(2) The requirement of periodicity over the
finite range of the T integration changes all energy
integrations into energy sums. For bosons this
means replacing the energy 2, by 27m/B and sum-
ming over integer » instead of integrating over
k, For fermions the correct prescription is
buried in the complications of the integral of anti-
commuting C numbers. However, since we never
have to do anything other than a quadratic fermion
integral, we can define this integral to give the
right rules.® These rules are well known®; they
are the same as the boson rules except for the
usual minus sign for loops and the sum over odd,
rather than even, multiples of 7/B.

As an example of those techniques, we work out
the Feynman rules of simple scalar field theory
described by

£(‘P; Qb) =£e[f (90’ (p)
=38,00%p - zm3@® - ro*. (2.7)

There is no additional ghost term in £, since
there are no derivative interactions in £, and
hence the term in 3¢(m, ¢) which is quadratic in
7 has a ¢-independent coefficient. We now have
from (2.6)

B
Tre-ﬂ”=N'(B)f[d<p]exp(f drfd%{—%[(aow)z+(a¢<p)(8‘<p)+m2<p2]—kw"}) . (2.8)

Define the quadratic part of the action by

B
se=-1 [ ar [ @xl(00)0,0)+(0,0)(0,0) +m?e].

(2.9)
Since ¢(X, 7) is periodic in the interval 0 <7<j3, we

can expand in a Fourier series:

0l =0/0) T [ e et o, @),

r

with 6 the Kronecker delta, we obtain

$o==31/8) 20 [ s 0,7+ +m )0, @0,
" (2.12)

If we write S,= —3(¢, D@), where the brackets de-
note the scalar product on our function space,
then

D=w,2+k®+m?, (2.13)

(2.10) in momentum space.
. 8 e The Feynman propagator, Ap, is then just D7
- —ik% -
qo,,(k)—fd%fo dre™ e T o(x, 1), Thus in momentum space
_ . . - 1
where ew,, =2mm/B. Using the identity Ap(w,, k) = PRy el (2.14a)
fo dre'(“n™“n =85, ./, (2.11) and in position space
. ., , A3k et RGRHu(r-1)
AeX =X, T=T )=(1/B)Z f @Y er i eme (2.14p)

Just as at zero temperature, we can now expand the exponential of the interaction term, A¢* in a power
series to get a diagrammatic expansion for Tre 8. We use the functional formula

[ a0l @29 20, 7)o, )0 Gs TGe T
=const X (detD) V(¢ (X,, 7))@ X, T.)0 X, T3)@ (X, T4)) + permutations, (2.15)
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where the contraction of two fields is indicated by
corresponding sets of superscript dots and is given
by the Feynman propagator (2.14b):

Q'R TNP Ry, T)= 8p X, =K, T, - T5) (2.16)

We represent the contractions in the usual way by
diagrams. Use of (2.11) shows that we have con-
servation of discrete energy and a factor of 8 at
each vertex, as well as the usual conservation of
momentum. The Feynman rules are thus the zero-
temperature rules, with the replacements

da‘k i d’k
a5 ) G

Ry—iw,, (2.17)

1
(2”)464(k1+k2 o) = ;’(2")336%;«0,, PN
2

X3k, +K, ++ ),

with the factors of ¢ just coming from the rotation
to Euclidean space.

If we are calculating Tr e~ ?¥, we must remember
to include N’(B) and (detD)~*2 from (2.8) and (2.15)
(see below). However, we can also calculate fi-
nite-temperature Green’s functions, which are
statistical averages of T-ordered fields:

TloEy, TRz o) o0 1)

_Tr [(P(-. sT)‘P&za T) 0]
= Trle , (2.18)

where T is the 7-ordering symbol. In this case,
N'(8), (detD)~"2, and all parts of diagrams not
connected to the external fields are canceled by
the denominator of (2.18), just as in the zero-tem-
perature S matrix.

As an example, we calculate the partition func-
tion Z=Tre ¥ in the simplest possible case—a
free scalar field, with the Lagrangian given by
(2.7) with A=0. Since the functional integral is
now just a Gaussian, we can evaluate it exactly,
using the version of (2.15) where there are no
fields to contract:

f [dple~(#P9) /2= const X (detD) /2. (2.19)

Thus we have, using (2.6),
InZ =InTr e~ ® = —; In[detD] +1nN'(B) +const
=~3 TrlnD +1nN'(8) +const .

Using (2.13) and ignoring the B-independent con-
stant gives

InZ=- Zf(zn)31n(w +w,?) +1InN'(B),

(2.20)

where w,2=k?+m? We will do the 3, in (2.20)
first. Write

Z In(w,? +w,?) =

2
1
2
daz =
— W, +a

1/82

+ Z:ln(w,,2+1/62), (2.21)
where the lower limit has been chosen so that it
will contribute no B dependence to the final result.

The second term in (2.21) is B-dependent and
infinite, but a careful evaluation of the 7 and ¢
integrations in (2.4) (see Appendix) shows that its
contribution to InZ is canceled by InN’(B) to within
a B-independent constant. Using the results of
the Appendix, we can write, symbolically

ov'() = -ang)x Y [ s,

which cancels the contribution of the second term
in (2.21). It is clear that we get one factor of
N’(B) for every f[dn] we do in (2.4).

Continuing the evaluation of InZ, we can do the
>7n in (2.21) with the standard Regge-type trick of
introducing a factor of 38 cot(38w) which has poles
of residue 1 at w=2m/B, and integrating in the
complex w plane over a contour which includes all
the poles. The contour is then continued into the
upper and lower half planes to pick up the poles
at w=zia only. The [da® in (2.21) can then be
performed. The result is

- [ 4% ?ﬂ)
an—f (2")3ln <csch )

+B-independent constant .

(2.22)

(2.23)

With a simple rearrangement, (2.23) can be put
into the form we would get by evaluating InZ by
a trace in Fock space:

InZ = f(Z )3[ By

This is the usual result for an ideal Bose gas, with
the zero-point energy of the vacuum included. The
presence of the zero-point energy should be no
surprise—the functional-integral formalism never
does normal ordering for us.

-1n(1 - e'B“’k)] . (2.24)

III. GAUGE THEORIES

We can now apply the functional formalism to
gauge field theories. Before starting, however,
let us show that there is a nontrivial problem in-
volved here. Consider free electrodynamics de-
scribed by the Lagrangian

£=—3F,, F*, with F,=9,A,-8,A,. (3.1

If we work, for example, in the Coulomb gauge
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(described by V+A=0) or the axial gauge (described
by A,=0), calculate H, and take Tre 4, we come
to the usual conclusion that Z describes a mass-
less Bose gas with two degrees of polarization.

If, however, we work in the Feynman gauge (de-
scribed by the Lagrangian £=-38,A4,8%A”), cal-
culate H, and take Tre~%7 we get obvious non-
sense: a Bose gas with three positive- and one
negative-metric states. That is,

In(Tr €™ 8) £y nman gauge
‘3f ((;:r,;"[
S e,

with w,= (k2)2,

The reason for the nonsense of (3.2) is not hard
to find. The Hamiltonian in the Coulomb or the
axial gauge has just two independent degrees of
freedom, whereas in the Feynman gauge there are
two extra degrees of freedom: longitudinal and
timelike photons. When we take Tre™?” in the
Feynman gauge we include these specious states.

The lesson of (3.2) is that Tr e~ ?¥ is not a phy-
sically meaningful quantity in all gauges—in some

~In(1- e-ﬂ%)]

J

Z=(Tre-eu),xialgauge=Nf II [dP';][dPg]f o

periodi

gauges spurious particles, which could never come
to equilibrium with a physical heat bath, are
wrongly counted as physical degrees of freedom.
Thus the partition function Z must be defined as

Tr e~ 8% only in a “physical gauge” —i.e., one with
the right number of degrees of freedom. Function-
al methods may then be used to determine Feynman
rules for this Z in other gauges, but it is still this
physical Z that we calculate.

The first step in deriving Feynman rules for a
gauge theory is to write down a correct expres-
sion for Z in terms of a functional integral in a
particular gauge. There are two basic ways of
doing this. One way would be to start with (2.4)
in a gauge which is physical. For example, con-
sider a pure Yang-Mills theory (fermions or sca-
lars would be trivial to add) described by the La-
grangian

£=—iF, F°, (3.3)

where F9, =3 ,A} - 8,A% +gf**A%A¢ and f®° are
the structure constants of the group.

Following Coleman, !! we see that the Hamiltonian
for this theory in the axial gauge (defined by A3 =0)
has only two degrees of freedom for each vector-
meson field: A}, and A;. Thus, in the axial
gauge, (2.4) becomes

[dA';][dA;]exp{fBdrfdsx[inA;-sc(A';,P';)]} , (3.4)

where P, are the conjugate momenta to A7, and j=1,2. The integral over P’s can be done easﬂy The
result is simply the expression for the Faddeev-Popov ansatz in the axial gauge'!

z=(v@)p [

periodic

where we have gotten one factor of N’(B) for each
P integration (@ runs from 1 to #), and [dA] means
integral over all the vector-meson fields.

There is a second way of proceeding, which I
will briefly sketch out. We could start with Tr e~ 8#
in a physical gauge, calculate the Feynman rules
straightforwardly using the techniques of many-
body theory, * and then write down a functional in-
tegral which gave the same Feynman rules. For
example, consider a spontaneously broken gauge
theory of the type studied by Weinberg.* Weinberg
performs a canonical quantization of the theory in
unitarity gauge, a physical gauge with no specious
degrees of freedom. Thus, we can use his canon-
ically quantized Hamiltonian to derive a set of
Feynman rules for Z. These turn out to be just

B

z-ve) [

periodic

@I O(A‘;)exp[j; ar [ @ ,c(A,iA)], (3.5)

r

the same as the zero-temperature rules he writes
down with the usual substitution of energy sums
for integrals. It is then a fairly simple matter to
check that his method of “summing the springs”

to simplify the Feynman rules goes through exactly
the same at finite temperature, unaffected by the
switch from integrals to sums. The resultant rules
are then just the ones that can be derived from a
functional integral with the Faddeev-Popov ansatz
in the unitarity gauge, so we can set Z equal to
that functional integral.

In any case, using either the first or the second
method outlined above, we can arrive at an ex-
pression for a gauge theory like (3.5). In gen-
eral, it will look like!®

[aA ][d(p]exp[f d'rfd3x£(A, @, 1A up)] det( >H 5(F?), (3.6)
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where m is the total number of physical particles
and polarization states in the theory. The integral
in (3.6) is over all periodic fields (A stands for the
vector-meson fields, ¢ for any other fields in the
theory). The II,8(F?) picks out a surface in the
function space of the fields which corresponds to

a physical gauge. The det(d0F®/8w°) is necessary
because the equations F?(x)=0 determine the sur-
face only implicitly: w®(x) are the set of functions
which parameterize the gauge transformation of £.
[The determinant is lacking in (3.5) because, for
the axial gauge, it is det(d/9x,), !* which is a con-
stant independent of fields and of B8.] If we had
used the second method for the unitarity gauge,
(3.6) would look slightly differently: Instead of a

0 function, there would be an extra term added to
&£ in the exponent, which is just a slightly different
way of choosing a gauge surface.

Now comes the crucial point of the argument.
Since the Lagrangian is gauge-invariant, the inte-
gral in (3.6) must be independent of how we pick
our gauge surface. In other words, we do not
have to stick to a physical gauge on the right-hand
side of (3.6); we calculate the physical partition
function even if the equations F%(x)=0 correspond
to a nonphysical gauge. This statement does re-
quire one qualification: One surface is as good as
another only as long as they both intersect the
orbit of any given field under gauge transforma-
tions once and only once. This is to ensure that
the integral in (3.6) runs equally over all physically
distinct fields (i.e., those not connected by a gauge
transformation). However, this qualification is
not really a problem, since the situation is essen-
tially the same as at zero temperature. There, we
know that the specification of the gauge surface
by the 6 function and the boundary condition on the
fields (vanishing at spatial and temporal infinity)
is enough to define the exact location of a given
field on its gauge orbit. At finite temperature, we
have merely changed the boundary condition (van-

Z=[V(@)F(det - ) [

periodic

ishing at spatial infinity, periodic from 7=0 to
T=8).

Thus, we can change the surface of integration
in (3.6) just as at zero temperature, and can write
the left-hand side in any of the usual gauges (Feyn-
man gauge, Landau gauge, the R, gauges for a
spontaneously broken theory, etc.). The Feynman
rules in any of these gauges will be the zero-tem-
perature rules with the simple changes given by
(2.17). The important point is that when we use
these rules in a given gauge we calculate the true
Z, which is not necessarily Tr e~ ?¥ in that gauge.

An example will show how this works. We return
to free electrodynamics described by (3.1). Write
down (3.6) with F(X, 7)=3,A* - f(%, 7), f(%X, T) an
arbitrary function, 0 < 7<8:

Z=[N’(B)]2f[dA]exp[foﬁded3x(-%FuuF#V):I

xdet<%>6(amu -5, (6.1

where a rotation to Euclidean space of all 7 deriv-
atives is understood. Note that there are two
factors of N’(B) in front, since (3.6) must be de-
rived initially in a physical gauge (such as the
axial gauge) where there are two momentum inte-
grations to do [see (3.4)]. Since under gauge trans-
formations 8A*=-6*w, we have

det <6~(M> - det(-CP). (3.8)

dw

In addition, since (3.7) is independent of f, mul-
tiplying the right-hand side by

exp [— —213 foﬂ d-rf d3xf2]

and integrating over [df] merely gives an extra
B-independent normalization which can be absorbed
into N’(B).* The integral over [df]is thenevaluated
trivially with the 6 function, and we have

[dA]exp{foBdedax[—%FwF“”—(1/2a)(8“A“)2]}.

At zero temperature the det(-[?) is an unimportant constant and is usually ignored, but here it is 3-de-
pendent, so we must keep it. For convenience we work in the Feynman gauge (@ =1), Z should be (and is)

independent of . With a=1, (3.9) becomes

Z= [N’(B)]zdet(—Dz)f

periodic

where a total derivative in the exponent has been
dropped using the periodicity of A. It is now trivial
to perform the functional integration. We merely
have four integrals, one for each v, each of which
is exactly the same as the scalar-field integral

[dA]exp[_/;Bded%(—%auA,,a“A”)] ,

(3.10)

—

done in Sec. II. (The fact that for v=0 the inte-
grand has the wrong sign is no problem; we merely
analytically continue by defining Aj=iA,. This adds
an irrelevant constant to InZ.) The det(-[F) can

be written
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det(-(?) = exp[Tr In(-CF)]

=exp Z[%ln(w,,ﬁﬁﬂ ,  (3.11)

where we have used the fact that the determinant
is defined on the space of periodic functions. Thus,
we have from (2.19) and (2.20)

1nZ=21nN'(B)-Zf(g—:r’;gln(w,fn?), (3.12)

where 1n det(—-[?) has canceled two of the four
functional integrals. Using the results of Sec. II,
we see that (3.12) can be written

1nZ=2f-(g%I§-§ln[— ééw—k -1n(1 —e'B“’k)] , (3.13)

with w, =[(k)?] 2. This is the partition function
for a zero-mass Bose gas with two polarization
states: the correct answer. Comparing (3.13)
with (3.2) shows that the functional integral in the
Feynman gauge is not equal to (Tre ™) g i avge s
which was wrong. Note that the presence of the
determinant from the Faddeev-Popov ansatz was
crucial; without it, we would have gotten the
wrong answer, and not even the same wrong an-
swer as (3.2).

In more complicated cases (such as non-Abelian
gauge theories) we would write the determinant
as an integral over ghost fields, which are un-
physical spin-zero particles which have a fermion-
like minus for loops. It is clear from the example,
however, that since the ghosts are just a shorthand
way of writing a determinant defined in the space
of periodic functions, their Feynman rules will
involve a sum over even multiples of 7/B, as for
bosons, and not odd multiples, as for fermions.

Note that the whole Faddeev-Popov procedure
also goes through if we calculate finite-tempera-
ture Green’s functions such as those of (2.18) as
long as the operators in the Green’s functions are
gauge-invariant combinations of fields. In other
words, if we define

(T[B&,, T)B&X,, 7o)+« )

- Tri{e ¥ T[B&, 7)B&, 7,) - I}
Tre 7

’
physical gauge

(3.14)

J

400 +00
Tre-BH=1ime rIdni(i)f
.

n=>c = periodic

|©

where B’s are gauge-invariant operators, then
these Green’s functions will have the same value
when calculated in any gauge by the Feynman rules
given here. Of course, even if the B’s are not
gauge-invariant operators, (3.14) is “gauge-in-
variant” since it is defined in a particular gauge.
But then we will get wrong results if we calculate
(3.14) using the Feynman rules of a different gauge.

IV. CONCLUSIONS

We have seen that Tre~?? is a gauge-dependent
quantity which is only physically meaningful in a
gauge where there are no unphysical particles.
The true partition function Z is then defined to be
Tre %, where H is evaluated in one of these phy-
sical gauges. Using functional-integral methods
and the Faddeev-Popov ansatz, the Feynman rules
for Z can be derived in any convenient gauge—
when we use those rules we calculate Z and not,
in general, Tre~?” in that gauge. The Feynman
rules for a given gauge (for example, any of the
R, gauges of a spontaneously broken theory) are
just the zero-temperature rules for that gauge,
with the substitutions given by (2.17):

ko"iwn’
e .1 f a3k
@en' " 'B Z,,: (2m)?’
(21)26%(k, 4y v+ ) = %(2,)353@1 dEaeee)

XBGW"I +wn2 +ey
where w,,=21m/5 for bosons and Faddeev—-Popov

ghosts, and (2n +1)1/8 for fermions.

APPENDIX: DETERMINATION OF THE CONSTANT N'(B)

A “careful evaluation” of (2.4) involves dividing
up the d7 integration into a Riemann sum of »
fields evaluated at T values separated by €, with
ne =3, and taking the limit z ~«, € -0. Fora
scalar theory defined by (2.7) with A=0, we have

3e(n, @) =5[n% + (Vo) +m2¢p?]. (A1)

Thus (2.4) becomes

dm; (%) exp (JZ f @x{in; (@, - @;.)) —3€[12 +(Vg,)? +m2¢,2]}> ,

(A2)
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where we integrate over » 7 and ¢ fields instead
of a continuum of them, and where we have re-
placed @; by (¢; - ¢;.,)/€. The periodicity condi-
tion just means identifying ¢,=¢,. Each of the
7, (%) integrations is now a trivial Gaussian, and

can be done immediately. (We do not have to divide
up the space integrations and do them carefully,
since the infinite constant we would get would not
be B-dependent.) The result is

Tre-? =1im f:—: 'I:]l: d¢t€(§) ex-p{ _1 E

n=>c

fdsx[(_‘f’ﬁeiuﬁ +e(?7<p,-)2+em2cp,-2]} s (A3)

where ¢,=¢, and we have ignored all B-independent constants. Already we see the appearance of a 8-
dependent constant in the product of the 1/Ve=1/(2r3/n)"/2. However, to get N’(8) in a more useful form
we must proceed in the evaluation of (A3). Upon Fourier transforming the X variable to k, (A3) becomes

'B”—limf Hd(pi(k)exp{ E f (;;’;3[-(([?,(1{) E(pj_ (k))2+€wk2[‘pi(ﬁ)]z:|}: (A4)

n—>o

where w,2=k?>+m2. If, for the moment, we keep ¢,# ¢, and do not perform the f dy, integration, (A4)
simply becomes the expression for the infinite product (one for each k) of independent, frequency-w,,
harmonic-oscillator density matrices, p(g, (K), ¢,(k)). The density matrix, p, is defined by Feynman,

who obtained it by performing functional integration with exactly the normalization of (A4)'*:

. . 1/2
plg, (k), ¢ (k)= <#’;wk> exp{ Sthw (@2 +9o) cosh(Bw,) - 2¢, %]}, (A5)

where we have again ignored all constant factors. Thus (A4) becomes

re 8= H fd(p (E)(—w*—) 1,2exp[:-zﬂ(&:(costh - 1)] (A6)
% " sinhfw, sinhfw, k ’
—
where we have now set ¢,=¢,. The ¢, integration ACKNOWLEDGMENTS
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Spontaneous symmetry breaking at finite temperature is studied. We show that for the
class of theories discussed, symmetry is restored above a critical temperature 8, ~1. We
determine B, by a functional-diagrammatic evaluation of the effective potential and the effec-
tive mass. A formula for 3, is obtained in terms of the renormalized parameters of the
theory. By examining a large subset of graphs, we show that the formula is accurate for weak
coupling. An approximate gap equation is derived whose solutions describe the theory near
the critical point. For gauge theories, special attention is given to ensure gauge invariance
of physical quantities. When symmetry is violated dynamically, it is argued that no critical

point exists.

I. INTRODUCTION

By drawing an analogy with the Meissner effect,
Kirzhnits and Linde! have suggested that spontane-
ous symmetry violation in relativistic field theory
will disappear above a critical temperature. They
gave qualitative arguments to support this conten-
tion in a theory with global symmetry (not a gauge
theory) and obtained an order-of-magnitude ex-
pression for the critical temperature in terms of
the parameters of the theory. This problem was
next examined by Weinberg, who, in a preliminary
investigation,? derived a numerical value for the
critical temperature in the Kirzhnits-Linde mod-
el. He then began to develop a complete analysis
of spontaneous symmetry violation and/or persis-
tence at finite temperature, with special emphasis
on gauge theories with local symmetries.

It was Weinberg who suggested to us that the dia-
grammatic-functional methods for evaluating ef-
fective potentials in field theory, which had recent-
ly been developed,®~® might be profitably employed

to study temperature effects. We report here the
results of our investigation. Weinberg has also
presented an analysis of the problem.® He uses
diagrammatic methods to determine a tempera-
ture-dependent mass, as well as operator tech-
niques to compute a temperature-dependent poten-
tial. We give a functional-diagrammatic evalu-
ation of these quantities, from which the critical
temperature can be deduced. All physical results
are in agreement and confirm the qualitative ob-
servations of Kirzhnits and Linde.?

We examine a field theory at nonzero tempera-
ture, or equivalently the ensemble of finite-tem-
perature Green’s functions, defined by

Tre 8 To(x) - - o(x;)
T‘ii_‘ﬂﬂ X @)

Ga(xl, ...,X,)=

Here H is the Hamiltonian governing the dynamics
of the field ¢(x), and B! is proportional to the
temperature. Spontaneous symmetry violation is
conveniently studied with the help of the finite-
temperature effective action I“B@ )—the generating



