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An exact solution to the Einstein-Dirac equations is presented for a static, plane-sy~~etric
spacetime generated by neutrinos. We find the neutrino field to be nonzero and correspond to
a neutrino current along the symmetry axis of the space. The neutrinos yield a zero energy-
momentum tensor and therefore the gravitational field is exactly the same as for the vacuum
case. A comparison with other solutions is presented along with a discussion of the possible
physical significance of this "ghost neutrino" field.

I. INTRODUCTION ds =e "(dy +de )+e "(dx —dt ), (1.5)

= (8mx/c') T»,
where T» is the energy-momentum tensor for the
Dirac field 4:

T»-— ,Rc(4't—y&—4 ~
—4 t y&4+4ty~4, . —4t&y~q).

0 satisfies the zero-mass Dirac equation

y'4'.
~
=0. (1.3)

There have been many discussions of neutrinos
in general relativity since the classic paper by
Brill and Wheeler on the subject. ' In this paper
we present an exact solution to the Einstein-
Dirac equations for the case of neutrinos. The
field equations we wish to solve are

1»-R» —~g,.~ R

where u and v are functions of (x, t). As is clear
from Eq. (1.5), the x axis is the symmetry axis.
In this paper we shall restrict our discussion to
the static case. Hence, all functions u, v, 0, etc.
depend on only the one space coordinate x. We
shall carry out the calculations in the Cartan
orthonormal frame defined by

co'=e"dx, 0 =e"dy, w'=e" dz, (u =e"dt .
(1.6)

The formulation of the Dirac equation in Cartan
frames has been discussed by Brill and Cohen. '
The essential point of this approach is to identify
the Bargmann vierbein frame discussed by Brill
and Wheeler in Ref. 1 with the Cartan orthonormal
frame used to describe the geometry. The tan-
gent vectors cu, dual to the one forms ~' in Eqs.
(1.6) are given by

Here the semicolon stands for covariant differen-
tiation. Since for zero-mass Dirac particles the
trace of the energy-momentum tensor vanishes, it
follows from Eqs. (1.1) that the scalar curvature
R also vanishes. Hence, for zero-mass Dirac
particles the Einstein equations reduce (just as
for the electrovac case) to

u, =e "e„

Vc03=e e3y

where

e, = s/sx'.

(d2 =e e2

Qco4=e e4,

R» = (8xx/c')T, , (1.4)

In this paper we shall study solutions of Eqs.
(1.3) and (1.4) in spacetimes of plane symmetry
where the metric is defined by'

In the orthornormal frame the covariant deriva-
tives of the Dirac spinor are given by

(1.8)
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where I', is the spinor connection defined by Eq. (1.3), can be reduced to the very simple form

rg 4y @,+ (v+-,'u), 4' =0, (2.4)

and I'» are the Ricci rotation coefficients. Since
the notation is explained in detail in Refs. 1 and 3
we shall not repeat all of the results presented in
these papers. In general our notation follows that
of Misner, Thorne, and Wheeler. 4 Our convention
on the Dirac y matrices is the one given by Jauch
and Rohrlich, ' which is also that used in Refs. 1
RIld 3 ~

In this convention the neutrino field 4 „ is ob-
tained from the zero-mass Dirac field 4 by the
projections

with the solution

e =e-&"'""~e,Ot (2 5)

where 4o is an arbitrary constant spinor. This
gives the solution for a test neutrino field in the
given geometry for any v(x), u(x).

III. THE ENERGY-MOMENTUM TENSOR

The solution (2.5) yields the following nonzero
components of the energy-momentum tensor

(1 —iy, )@=0,
4 „=-,'(1 +iy, )4,

(1.10) T2~ = -4kce "(v, —u, )%' ty'y y44,

T~ = -4 Ice "(v, —u, )%' ty 'y'y 4 .
(3 1)

(3.2)

which yield All other components of the energy-momentum
tensor vanish identically or via the Dirac equation.

(1.12)
IV. THE EINSTEIN EQUATIONS

&ytyf y (1.13)

Since the x axis is a symmetry axis one would ex-
pect only S' of the spatial components of S~ to be
nonzero.

As the first part of our problem we must solve
the Dirac equation for an arbitrary static metric
with plane symmetry. This solution is for a test
neutrino field in the given geometry. Then we use
this solution in the energy-momentum tensor to
obtain the energy-momentum tensor generated by
neutrinos consistent with the geometry. Finally,
we solve the Einstein equations using this energy-
momentum tensor to obtain the solution to the
coupled Einstein-Dirac equations in which the
neutrinos are the source of the gravitational field.

II. SOLUTION OF THE DIRAC EQUATION

The nonzero-spin coefficients I', are given by
1 g 1 2I;=—,e v,y y,

F, =&e "v,y'y,
(2 1)

(2.2)

One could, of course, discuss neutrinos using two-
component spinors but this offers very little ad-
vantage in the material discussed in this paper.

Besides the energy-momentum tensor, another
observable associated with the Dirac field is the
conserved current, which is given in our notation
by

For the static metric with plane symmetry the
only nonzero components of the Ricci tensor R, &

are

R„=-e '" (2v ~~ + u „+2v,' —2v, u, )

R,2=-e '"(v»+2v, '),
Rg~ = -e (v»+2v ~ ) )

R44 = e '" (u „+2v, u, ) .

(4.1)

(4.2)

(4.3}

(4.4)

Therefore only the diagonal components of the
Ricci tensor are nonzero. Since the diagonal com-
ponents of the energy-momentum tensor all van-
ish, the Einstein equations yield

R« =0 (no sum on i }. (4.5)

Equations (4.5}are exactly the same as the vac-
uum field equations for this geometry, which were
solved by Taub' to obtain

u=ln(kx+1) "~, v =ln(kx+1)"', (4.6)

T„=O-4 ~y'y'y4% =0,

T,4 =0- 4 ty'y'y'4 =0,
(4.7)

(4.8)

where k is an arbitrary constant. Also from the
Einstein field equations we see that since R24
=R~ =0, we must have T24 = T,4 = 0. Referring to
T„and T~ in Eqs. (3.1) and (3.2) and using Eqs.
(4.6) we find that (v, —u, ) does not vanish. Hence,
we are left with the conditions

(2.3)

where the comma denotes ordinary differentiation.
Using the spin coefficients the Dirac equation,

which yield the following two equations:

I e, l' —
I e.I'+

I e, l' —
I e, l' =0 (4.7')



GHOST NEUTRINOS IN GENERAL RELATIVITY

k1
fI ~ 13

Z

kg

(4.9)

where 4, is a scalar; and since we have previously
found the solution for 4' in Eq. (2.6), we have the
neutrino solution

e =e '"+""&4
P P03

where

(4.10)

+co=+I

,.')
(4.11}

and a is an arbitrary constant. Using Taub's solu-
tions for u and v from Eqs. (4.6}we find that

(4.12)

Calculation of the neutrino current density S~

then yields

(4.13}

%e note that this current density corresponds to
a flow of neutrinos along the symmetry axis as
we had previously predicted.

V. SUMMARY AND CONCLUSIONS

Equations (4.6) and (4.12) represent an exact
solution to the Einstein-Dirac equations for a stat-
ic, plane-symmetric spacetime. The most inter-
esting property of the solution is that the neutrino
energy-momentum tensor vanishes, whereas the
neutrino field and current density do not vanish.
Since the neutrino energy-momentum tensor van-
ishes the gravitational field is exactly the same as

(4 6')

which reduce for neutrinos, Eq. (1.12), to the con-
ditions

(4 7el)

(4 6&s )

These equations yield the following two solutions:

for the vacuum field equations. Hence, there is
no way to determine that the neutrinos are present
by measurements on the gravitational field. For
this reason we refer to these neutrinos as "ghost
neutrinos".

Our solution should be compared to the solution
of the Einstein-Dirac equations in the Taub uni-
verse presented in Ref. 3. There, the Ricci ten-
sor is also diagonal but the only way the energy-
momentum tensor can be diagonal is for 4 itself
to vanish. Hence, the neutrino field generates a
gravitational field which is not consistent with the
geometry of the Taub universe. For our solution
we find the neutrino field is consistent with the
geometry of the gravitational field but it does not
generate it, because it yields a zero energy-mo-
mentum tensor.

Our solution is analogous to the constant spinor
fields allowed by the zero-mass Dirac equation in
flat spacetime. These constant spinor solutions
also yield a zero energy-momentum tensor in the
flat spacetime. The question of whether "ghost
neutrino" fieMs in general relativity have physical
significance is, of course, the most important
question to answer. Although these neutrinos yield
a zero energy-momentum tensor they do yield a
nonzero current density which is in principle ob-
servable. Hence, it is conceivable that these neu-
trinos could be observed, although it is difficult
to imagine how they could be observed.

The fact that the Einstein equations allow "ghost
neutrinos" opens the possibility that these equa-
tions could also allow other "ghost solutions".
That is, if we have a solution fox a given energy-
momentum tensor, we cannot be assured that there
are not other fields ("ghost fields" ) present which

give a zero energy-momentum tensor. Gf course,
if these "ghost fields" are not observable, then
they would not be of any importance except as
mathematical oddities. %e have not found any
references in the literature to the possibility of
"ghost fields" in general relativity.
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