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We employ the methods of the renormalization group to investigate the structure of Pomeron
Green's functions near l= 1, t= 0 in a theory where only four-Pomeron couplings are present.
When certain conditions on the renormalized couplings are met, the l 1, t 0 behavior of
the theory is governed by free effective couplings (the theory is "infrared-free"). In this
situation the renormalized Pomeron trajectory is of the form e(t) = 1+At + Bt/gnCt)~ for
t & 0, where A, B, and C are constants; the total cross section behaves as tT&(s) -yf+ p2/(lnlns),
with y& and y2 positive.

I. INTRODUCTION

The Reggeon calculus or Reggeon field theories
whose study was initiated by Gribov' several years
ago provides a constructive procedure for inves-
tigating the detailed interaction among Regge
poles and cuts. It also yields an automatic and
natural way to satisfy the discontinuity relations
across Reggeon cuts.

In this paper we continue our discussion of the
structure of the Pomeranehuk singularity which
arises in interacting Reggeon field theories. As
in our earlier work' we employ the renormaliza-
tion group to provide a nonperturbative tool for
the analysis of the renormalized Reggeon Green's
functions in the neighborhood of /=1 and t=0.
Our previous work pointed out the large ambi-
guity in choosing the appropriate Reggeon field
the'ory within which one ought to cast the Pomeron
problem. %'e encourage the reader to review the
detailed motivation for Reggeon field theories as
given in Ref. 2 and only remember here that one
must choose both a noninteracting Reggeon, to
begin with, and then a precise form of the inter-
action. In Ref. 2 we studied the physically very
interesting case of a linear trajectory a(t)
=1+0.0't whose interactions were given by a
triple-Pomeron coupling only. Because of the
wide range of possibilities in formulating the field
theories (a situation hardly special to Reggeons),
me feel it is important to study a variety of other
theories even when their clear connection to
physical processes may be vague.

We shall present here our analysis of the Reg-
geon theory in which the noninteracting Beggeon
has the energy- (8 = I-l) momentum (t'= [k~')
relation

E =a 'k',0

appropriate to a linear trajectory, and where the
interaction is taken to be of the X/4 variety. It is
easy to see from the outset that such a theory
mill never possess a triple-Pomeron coupling.
That coupling is of direct physical importance,
as, for example, in inclusive processes. How-

ever, it turns out that there are a variety of
amusing aspects to the quartic-coupling problem
which are not only interesting in themselves but
also play a role in the study of the structure of
secondary trajectories when Pomeron interactions
are accounted for.' The additional feature to
note is the presence of more than one coupling
constant (arising here because of the absence of
crossing symmetry in nonrelativistic theories
with E ~ k') which makes the infrared behavior of
the proper Reggeon vertex functions (E- 0, Ik I- 0) depend in detail on the direction of approach
to the limit and on the precise values of the re-
normalized couplings.

%'e find that when certain conditions on cou-
plings are met, the infrared nature of the Green's
functions is governed by the effective coupling
constants evaluated at zero. That is, the field
theory is infrared-free. Under these conditions
very mild modifications of the trajectories and
Green's functions are present. For example, the
bare linear trajectory

a(t ) = 1+a,' t

is modified for t small and positive to

a(t) =1+At + Bt/(inCt)'.

A constant total cross section which mould come
from (1) is then reached as

or(s) ~ y, + y, /(in 1nsP,

where y„y, & 0.
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II. REGGEON FIELD THEORY KITH Q4 COUPLINGS

%'e begin by recalling that the Reggeon calculus
is a technique for building partial-wave ampli-
tudes out of the propagation and interaction of
quasiparticles (Reggeons) in two space dimen-
sions and one time dimension. The theory we con-
sider here starts with a linear trajectory

(X(f ) =EX +0IXO

Following Ref. 2 we choose to cast this in the
form

E(q') = 1-a(q')
= (1- a)0+&0 q

where, clearly,

The first term represents the two-to-two process
in Fig. 1, while the second term gives the one-
Pomeron-in-three-Pomeron-out (and vice versa)
amplitude in Fig. 2. The absence of crossing
symmetry means that the couplings X„and Xo for
these transitions need not be equal.

As with the P theory, it is useful to perform
some ordinary dimensional analysis on the quan-
tities in I.= I.,+ I, Noting separately dimensions
(denoted by square brackets) of time as (energy) '
and those of space as (momentum) ' we write

(10)

(11)

This is the bare energy-momentum relation of
our quasiparticle. It is described by the free
action [k]=&",

[x]= [x,J =za-,
(12)

(18)

Requiring the action to be dimensionless yields

d «df[ ,'igt(-x, t)s, y(«, f)

(1 ~-)Al
and, of course,

[a'] =zu-'. (14)

d xdt Iox, t,
where the Reggeon field operator g(x, f) has been
written in D space dimensions conjugate to q and
one time dimension conjugate to E. Physics takes
place at D = 2. The interaction we choose is de-
scribed by the addition to the free Lagrangian

It is clear that the couplings A,, and A, are not di-
mensionless. %'e will shortly define dome dimen-
sionless coupling constants to replace the A.'s.

Our procedure will be to examine the renormal-
ized proper vertex functions I'„"' for n incoming
and m outgoing Pomerons. These vertex functions
are defined as the Fourier transforms of the re-
normalized Green's functions

G„'" '(x„ f„.. . , x„,„,f„,„)=~-""&'
&O~ T(yt(x„... f„,„)~ ~ ~ y'(x„„,f „„)y(x„,f„)~ ~ ~ y(x„ f,)) ~

O& (16)

with the external legs amputated by multiplication
by

(16)

The renormalization constant Z relates the re-
normalized field operator to g by

The unrenormalized theory is defined in terms

of A,,o, Xo, ao', 0.0, and a possible cutoff will call
A. Vfe choose a„=1, which means we are dealing
with "massless" quasiparticles; there is no energy
gap at k'=0. Vfe will parameterize the renormal-
ized theory by a set of numbers A.„X, 0. ', and e.
These numbers are.determined by normalization
conditions on a selected set of vertex functions.
We choose n = 1, which means that in the renor-
malized theory the singularities of the propagator,
Q~z', will occur at g =0, k' =0. This is guar-

FIG. 1. The transition two Pomerons bvo Pomerons
has a bare coupling constant No.

FIG. 2. The transitions three Pomerons one Pomeron
or one Pomeron three Pomezons. Both have a baze
CollplUlg Ap.
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anteed by requiring

r t")(E,k', o. ', ~, ) „E„,k„') ~. ..-k. ,=o. (18)

Since there is no "mass" scale in the renormalized
theory because e =1, we have to provide one by
choosing a normalization point somewhere in the
(E, k') plane. We will choose the point E = E»-& 0
and k'=k„'&0. This choice keeps us away from
the various branch points which arise in pertur-
bation theory in A, ?o and Ao. This is pictured in
Fig. 3. Normalizing away from E =0, k' =0 keeps
us from any infrared problems. All the vertex
functions I'B™'") will depend on E„and k„' [as
indicated in Eq. (18) for I'i"'"], as will the re-
normalized parameters A.„X, and a'.

The remainder of our normalization conditions
are given by

—1 7

B .k2 =k~2

(19)
8

&, zr„' "(g, kz, a', ), ) „E„,k„)
S- -E~zk2 —P 2

1V

= -42 '(E„,k„'), (20)

which are not specific to the quartic interaction
but are requirements coming from our choice of
a linear E, k' relation. Further, we set A.? by

(g2) z)&., (E»-& k» )E»» ) I
z=- »; z' /=//&» /)& zj-24 &)/) (2„)D+ (21)

where E„k„E„k,are incoming while Ez, k, and E„K,are outgoing, (see Fig. 4), and 2), =+1 for an in-
coming Reggeon and = -1 for an outgoing Reggeon. Finally, with E„k, incoming and E„k„.. . , E„k,
outgoing, as in Fig. 5, we set

iA(E»,-k».')
B & z& z» & 1&»&» /&By=- ~B»B»22 »4=- B». kz"-~ k/=e&»2/2)(4$(/ 2( &)/)

= -( )D+y (22)

y (~ &)D/2» (23)

Now for convenience we shall eliminate the di-
mensional couplings A. and A.? in favor of the di-
mensionless combinations

more general light by noting that if we identify
dimensions in time and space (so a is dimension-
less), then at D = 4 the triple-Pomeron coupling
is dimensionless while at D =2 the quartic-cou-
pling constants are dimensionless. Further, each
of the theories is scale-invariant in its special
dimensions.

X? D/2-?
y& (& &)D/2 (24) III. RENORMALIZATION-GROUP EQUATIONS FOR

THE VERTEX FUNCTIONS

The space dimension D =2 seems slated for a
special role here. Recall that in the theory with
a triple-Pomeron coupling, D =4 played this
special role. We found there a particular sim-
plicity at D=4 and were able to make a perturba-
tion expansion in 4-D =a for all vertex functions.
Here the physical number of dimensions is singled
out. We can view this special role in a somewhat

I 2gp k~ E=

The unrenormalized vertex functions I' z/'" (E„
k„a,', )).„)).», A) are related to the I' B' ) by

r,'"")(E„k„a',), ~„E„,k„')
= Z&" )/zr &„" ")(E„k„o.,', )).„)).„,A) . (25)

The simple observation that the F~' cannot know
about the normalization points EN, k~' for the re-
normalized I'„ leads to two independent conditions
on i+..

~2
k

E), k( Ep, kp

FIG. 3. The E, k2 show~ the lowest-order perturba-
tion theory cut along E =no'k /3 and the normalization
point (-E'&,k N ) used to define the renormalized theory.

E2, k2

FIG. 4. The definition of momenta in the vertex func-
tion 62'2&
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8 8 8«~'» ~ +P. (y, y, ) —+P~(y, y, )8a„''8y '~8y,
n+st+r. (o', y, y) v, —

l z(y, y, )]
xi {s' }(E„k&,a', y, y„E„, «~2) =0, (26)

where

These functions could also depend on a'«„'/E„,
but we choose not to display it. Also one requires

8 8
+ Ps(» yr) —+ P~(y»r)—8@~ 8y

8$
Pz(y, y.)=«»' » ~

N eotX02 X 0 ~ Arm~

Pm (y, y, ) -«w
a, , X,, X.„,Ar~~

8+
(vl! ( l yy yl) —

N {}«28

(27)

(28)

(29)

x I's~'"}(E„k„a', y, y„E„,«„')= 0, (3l)

with p, p,~, f~, and y~ defined just as in Eqs.
(27)-(30) with E„[}/&E„replacing «„'s/»„'.

These are the important equations in our work.
We will turn them into equations governing the

E&, k& variation of the Fs{"' }(E„k,) hy using ordin-
ary dimensional analysis. The dimensions of
I (t2, m) a

y, (y, y,)=«„',inZ, (30)2 8

N

[ lv {)lvz)}] E(«2)D{2 z Iz}/4
R y

which allows us to write

(32)

(&,~&
O(2 tl tft}/4 g k ~ t'

QI 2 N(El!t{i!& l y) yry E]ry «])r ) l"" z '2 ' z 'y'y')
N N

and leads directly to the result

r'" "'(!"z ("'2 v' y y z l *)=("""'»"" "'r'" '(z )v l' "v' y y —' '
) (34)

Using this together with E{ls. (26) and (30) yields our key result:

8 8 8 8 n+m Dl,—-(vZ, + vl, ) —. (+v())v-Zmv [(v-v)v'-(vrv+ vr)], +, (vy, + vy) v vl (,2--v--m)I
8y~

&& r '„" '(g "E„g "R„a', y, y„E, « ') = 0. (36)

The solution to this equation is fairly standard. ' Define t = in); then

=i.{„""}(E„k„a'(-t),y( t), y, (-t),-E„,«„')

V Vzz Zr[VV V!Z(2 V ml !( V m-)[V-y(-y(y)y()')) V Vy, (,y(r), y ()'))]]), (I)
-t

where the effective slope and coupling parameters
satisfy the auxiliary equations

&a'(t) Ca Kg

u'(t) dt
=(v-o)- o y

+ v
Q Q

dy(t)
dg

(oP&+ }P-s),

d y, (t) (oP)2+ ]'P)s) y (39)

E), k)

4e k4

FIG. 5. The definition of momenta in the vertex emo-
tion rz~'2}.

which are to be solved with the boundary con-
ditions y(0) =y, y, (0)=y„and a' (0)=a'. By di-
mensional arguments, the P's and the f/a "s can
depend only on y and y, .

If we knew the renormalization-group functions

P, g, and y and could integrate (37), (38), and
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(39}, then we could solve for the detailed variation
of the I'i»na l in the E& and 1j. These functions can
only be known in perturbation theory unless one
is capable of solving the full-blown field theory
directly. We will proceed as usual, then, and
evaluate each of these functions in lowest-order
perturbation theory. With them known to this
order we will solve the auxiliary equations and
then determine the behavior of the I'~.

FIG. 6. The lowest-order correction to j. ~ ' &.

To determine Z and e' we need I' ".The
lowest-order perturbation correction to the free
propagator is shown in Fig. 6. We find for this

( ) n 'kz D ' I'(1-D)I' "(z,k, 0', A.0, A.10)mE- 0'k + (,)
E -(~ ) (

(40)

which gives
2 D-2

from infinities. The renormalization-group func-
tions are quite regular at D=2.

Equation (40) also yields

r(2-D)
(3 t )D/2+ t(v 8 w)

(41) 0 0

From this we evaluate y~ and y~ to lowest order:
I(2-D)

(~8 w)D(3 i)D/2+ 1 (44)

and

r, (y, y, }=y' sz" I+ sz"
N N

r (s-D)
(~8w) (3 i) '+

tm
' k»' ' I'(3-D}

v 8w) (3 i)

(42)

(43)

and

2 a'k»', 2 I'(3-D)
9 E y (~g )D(3 t )D/2+ 1

r(s-D) a' k,'
~B 2 y (3 i)D/2+1(~8 )D

(48)

In arriving at these expressions we have not in-
troduced an explicit cutoff A to regularize the
perturbation theory. Instead we have simply used
the dimension D to provide a' way to stay away

(46}

To find the functions P we need & compute the
graphs shown in Fig. 7 for F " and those in
Fig. 8 for F" . This gives

9~,.~, w"r(1-D/2) Z,r „"(~(normalization point = kD+ 1 ~0 4r r)D/2 3D/2(2 (47)

U I normalization point (rk kD+ 1 1 10 a r I )D/2
r kr(1-O/r) o 'k '

)(2 )D»
'k ' ' ' r r(1 D/2) I'-

(tm ') ' 3 (2w}
(48)

From these we find

Qyty w r(2-D/2) a'k»2 D ' ' tm'k»2 D, I'(3-D} a'k»2 ' tm'k»2

4 (2w) 3D/2 E„E 3 y (WBw)D(st) /2+1 Sz Sz

(49)
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D 7J»&2z'(2 D/2) (y ' k») D z'(3-D) (y ' k
4 y)y (27fp3»/2 E 3 y (~67Jp(3 )) l2+ ~ 3E

(so)

+D/2l (2 D/2) &t k 2 &I2-2 o) I k
4 (2 w) 3E 3E

o')k»' ' ' » 2I'(2-D/2) F(3-D) o)'k» o, 'k„'
(51)

D y, ' g ~'1'(2-D/2) a'k ' ' ' D, I"(3-D) o. 'k»'
4 (2»P 3Z 3 ' (We»P(3) P"+' 3E

(52)

Note that for D 42 P~ and P» have a linear zero
at y=O or y, =O. This disappears at D=2, leav-
ing a higher-order zero.

The slope of the functions P near y=O or y, =0
is positive for D =2. This means that zero cou-
pling may be a stable point of our auxiliary equa-
tions in the infrared region. More precisely, as
we study the $- 0 (t - -~) limit of (36) the effec-
tive couplings y(-f ) and y, ( t) will appr-oach zero.
In such a case we may ignore the cubic terms in
our P's since they will be negligible in the $ region
of interest. With this in mind we write the char-
acteristic or auxiliary equations for y and y,
needed in Eq. (36):

dy(t) 3v
16m yy" (ss)

d yi(t ) vyi~ o y'
d t 16m 4n

(s6)

f

may now note that the presence of k~' has served
only to ensure that the last term in (54) was not
missed. That is, had we chosen to normalize at
E =-E„, k~'=0 as we did in the triple-coupling
problem' we would have encountered an infrared
divergence in the second graph of Fig. 8 at D =2.
However, at this stage we may with impunity set
k„'=0, which results in

d)))) )))())y,))) u')t *

)
'

dt 16m EN

(53)

To solve these let p=y, /y; then

dp vy 2 2o
pdt 8m v

(sv)

d t 16m 3E~ 3E„4w
(s4)

where we have specialized to D = 2.
Rather than solve these equations in general, we

and

or

dy 3v
gt

=
16 y p

d p' 4 [p'-2o/v]
Gy 3

(ss)

(59)

FIG. 7. The lowest-order correction to 6 ' ~. FIG. 8. The lowest-order correction to 6 ' ~.
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We will seek solutions with a positive effective
coupling constant y(t }. The relation between y and

p we see to be

y 16m ', 2o

-t)= 'r p(0)' 2a-/v "4
p(t)' 2a/v

(eo) 3/4
C„=exp — p(0}'-—

2 Pl ~lp(0)2 & I (
v

(61)
dg

p(,) (x'-2o/v)'14

d p vy 2o. 3/4 20. l/4—-p(o)' —-p(t )dt 8m -v v
(62)

is always negative and p(t)- 2a/v as t -~. Then
y(t)-~, as we see from (60). This is a case
mhere dropping the higher-order terms in the
auxiliary equations for y and y, is hardly justified.
Furthermore, any confidence one might have in a
perturbation expansion in A. or y must be minimal.

lf p(0)& (2a/v)'~', then we see from

d p v y 20 "4, 2o "4
p(0)'- — p(t )'-—dt 8m v v

(63)

@vt 2 2g 3/2

p(t) ~ p(0)'-—
g ~ 16% v

(64)

Clearly in this case y(t) goes to zero for large t
as t '. This means that the neglect of higher-
order terms in P is allowed and, more interest-
ingly, the behavior of I's for smal/ energies and
momenta is govensed by zero coupzing. This
theory is infrared free. It is a-musing to note that
the condition of infrared freedom on the behavior
of I' (("E&, $ 12%, a ', y, y„E ),

(y, '/y') (v/2a) & 1, (65)

depends on the path (that is, o and v) one takes in
reaching the infrared point as 'mell as the values
of the renormalized couplings y, and y.

The behavior of y(t} and y, (t) for large t is

( )
1 Iev 1

y't ' v [p(0)'-2a/vj'" ' (66)

y(t)~ 16m

g vt
(6V)

From the equation for a'( t) and the perturbation
expression for g me have

a'(t) ~ a'C„e " '~'(I+ C/t'+ (66}

where

that p(t) is ever increasing, and for large t, which
ls the regime of interest,

We need one more ingredient for the study of
I'„(g"E„("'k„.. .}. That is the integral

exp — dt' (ay, + vys) (I S+Rk
-t

Using our expressions for y, (zero when h„' =0)
and ys we find that (Vl) behaves as

(V2)

for large t.
IV. PROPERTIES OF THE RENORMAI. IZED TRAJECTORY

Vfe have now discovered that by a propitious
choice of renormalized coupling constants, me can
determine the small-E„small-%, behavior of the
renormalized vertex functions in a perturbative
manner since the effective couplings entering the
right-hand side of our expression (36) for I's go
to zero as g- 0. A function of particular interest
is the inverse propagator, for its zeros determine
the Regge trajectories.

Vfe are instructed to take the renormalized
propagator I'~~"~ determined to some order in
perturbation theory (lowest order will do in our
case) and place it into Eq. (36). I'~„"'~ to O(y') is

il's'"(E k') &' y yi Es}

-Z 'k'+
288m

(V3)

in D =2 dimensions.
We nom set v= q = 1, for me expect the zero of

the inverse propagator to remain approximately
linear in the interacting theory. This means that
me can confirm the existence of a Pomeron pole
in this theory only if X,/A =p(0) & H2. The quartic-
coupling theory is otherwise not infrared-free.
The requirement that X,/X & W2 is not as stringent
as it first appears, since, when A, and A. are
small, the vacuum is unstable unless A.,/X & 4/3. '

The renormalized F~"~with v=cd=1 is
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iI'i„"~((E,)k', 5r', y, y„E )=g(C„) 'I' 1-
2

n'C
=(C ) 'I'5 E-C a'k'+ — E)-

2 (-in()' 3

15 C (a'C k'

)
(a'C k' E

1 + ~ ~ ~

(74)

(75)

The left-hand side is a function of $E and $)P only. To cast the right-hand side in this form we write

1 5 C~u'k' 8 1 ( 1 7)

(-1n))' (-ln))' SE„E„[ln(C -a'$k'/SeE„~/eE„)]' ( -ln(, + E ln — -1 =,-, , +O~ (76)

This enables us to conclude that

fr'„'"(E,k', n', y, y„E„)=(C„)-'' E C„n-'k'+-,' . .
" " - + ~ ~ ~

[-ln(C n 'k'/SeE„E/eE&)] -'

as E, k' go to zero. This function has a zero very
close to

CC~e'k
[-ln(-2C~a 'P/3eE„)] ' (78)

which yields a Regge trajectory for y & 0,

Cc(Ca ' t
[-1n(2C„o.'t/SeE„)] ' '

V. CONCLUSIONS

We have investigated the behavior of the re-
normalized Green's functions for Pomerons when

the interaction among the Pomerons is only of the
$' type given explicitly in Eq. (9). Under the con-
dition that the ratio of two renormalized couplings
be larger than a given value, we found that the
effective couplings that determine the infrared
behavior of the field theory approach zero. That
is, the infrared behavior of-a Pomeron field theo-
ry with quartic couplings can be determined to
high accuracy by the use of perturbation theory
around the coupling constants equal to zero.

Within this framework we examined in detail
the inverse propagator and found that the inter-
actions give rise to a very mild modification of
the noninteracting linear trajectory. If one

which is a very moderate modification of the orig-
inal linear trajectory. For t & 0 the trajectory
becomes complex and there are two trajectories
at complex conjugate positions.

couples in particles by simply tacking them on the
ends of Reggeons (as in Fig. 9), then our 1'z"
of Eq. (77) gives rise to

o' r(s) -y, [1+—,C/(ln lns)'+ ~ ], (80)

FIG. 9. The coupling of particles (heavy lines) to
Pomerons (wavy lines) which interact in all possible
ways. This set of graphs give 0~(s) = pf + f2/(ln lns)
Multiple Pomeron emission by particles is smaller
asymptotically by powers of lns.

where z, is positive and factorizes. Since the
present theory is infrared free, corrections to
this result from multiple Pomerons being emitted
from the particles are essentially like that of the
noninteracting theory; that is, each correction is
smaller by powers of lns than the term exhibited.

The tj5' theory is of a medium amount of interest
in its own right but fails to provide a model of
significant physical consequence because, by its
very definition, it lacks a triple-Pomeron cou-
pling. (The problem of combining both a tjI' and tj54

is intriguing and is relatively easy to formulate.
Its solution has somewhat eluded us because it
seems natural to investigate the tjc theory in an

expansion about D = 4 space dimensions while we

have just demonstrated in this paper how the p4

theories are simple in the physical dimensions
D =2.) Nevertheless, the quartic-coupling problem
has proved instructive in itself by demonstrating
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how one may substantially alter the infrared be-
havior of the Green's functions or choosing an
inappropriate path by which to approach E,- 0,
k, - 0 or having an unfortunate ratio of renormal-

ized coupling constants. Such trickery did not
appear in the g' theory which possesses a single
coupling and provides a richness of solutions not
explorable there.
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Feynman's functional formulation of statistical mechanics is used to study general-relativistic
quantum field theories at finite temperature. The techniques are then applied to gauge theories.
The partition function Tr e 8~ is discovered to be a gauge-dependent quantity which is meaning-
less in most gauges. Instead, we define a physically meaningful partition function which is
gauge-invariant and only equal to Tr e in certain 'physical" gauges. Feynman rules for
this partition function and for finite-temperature Green's functions are derived for a general
gauge.

I. INTRODUCTION

Recently, several authors' ' have considered
what happens when a system of elementary parti-
cles described by a quantum field theory is heated.
They have found that symmetries which are spon-
taneously broken at zero temperature (such as
those of the weak interactions) may be restored
at sufficiently high temperatures, and have cal-
culated" the critical temperature at which such
a restoration takes place. To do this kind of cal-
culation, one needs to know the Feynman rules
for a field theory at finite temperature. For a
nongauge theory, these rules can be derived using
well-known methods. ' However, for a gauge theo-
ry, a more powerful technique is needed to cope
with several new problems that arise. Chief among
these is the troublesome fact that the partition
function Tre 8 is a gauge-dependent quantity, as

we show by an explicit example. The gauge de-
pendence is caused by the appearance, in some
gauges, of specious degrees of freedom in H
which do not correspond to physical particles. The
trace over all states of H is not physically mean-
ingful in these gauges —the specious particles can-
not come to equilibrium with a physical heat bath.

It would seem, then, that gauge invariance is
completely lost at finite temperature. This is not
the case. The functional methods set forth in. this
paper allow one to calculate the physically mean-
ingful partition function (i.e., Tr e 8" in a gauge
without specious degrees of freedom —such as the
unitarity gauge) using Feynman rules defined in
any of the usual gauges (for example, the R

&

gauges in a spontaneously broken non-Abelian
theory). Thus gauge invariance of physical quan-
tities is not lost at finite temperature; we must
merely remember that Tr e ~ is not in general


