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Energy spectrum of H in a strong magnetic field
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'@he binding energy of the hydrogen negative ion is calculated by a variational method for
magnetic fields in the range 0-3 x 109 gauss.

Strong magnetic fields =10'-10' 0 are believed
to exist in certain white dwarf stars" and it is
generally accepted that even stronger fields exist
in pulsars. This motivated the study of the effect
of such fields on the energy levels of atomic hy-
drogen. ' This work is also of relevance to certain
problems in solid-state physics, 4 such as the en-
ergy levels of excitons and excitonic molecules.
We turn now to a study of H in a magnetic field.
We extend the variational techniques used in the
study of hydrogen' to the case of two electrons.

The Hamiltonian for a hydrogen negative ion in
a magnetic field B oriented along the s direction
may be written

H=HO+HI+H»,

where the unperturbed Hamiltonian in the absence
of a magnetic field is

1 »
e» e» e»

Ho= —Q, +p2 )-———+
&x &. Ir,-r, I

'

with p& and r, the momentum and spatial coor-

dinate of the ith electron. The perturbation due to
the magnetic field gives rise to the additional
terms

where the Larmor frequency is

(4)

&, = —,'p, &az'(r, 'sin'8, +r,'sin'8, ),
where 8& is the angle between r& and the field vec-
tor taken to define the z axis. In Eg. (S), I; and
S, represent operators for the projection along
the @ direction of the total orbital and spin angular
momenta, L and 8, respectively.

Due to the magnitude of the field under consid-
eration, the HI term, which represents the linear
Zeeman effect, gives rise to a complete Paschen-
Back effect. Vfe therefore choose the angular and
spin parts of our basis functions to be the set

fr(r, s,r2s2) = Q C(i~i~I;m, m2Mz)C(z 3S;yg ~ Mz)I'( (y)y (j )X
& )(s )~

& ) (s )

where C is a, Clebseh-Gordan coefficient and Y and
X are spherical harmonics and spin functions,
respectively. The composite index I'=—n, l„s,/„I, .
In this basis, the matrix elements of HI are pro-
portional to (M~+2Mz), where Mz and Mz are the
eigenvalues of I; and S„respectively, Further,
the matrix elements of H» are diagonal in ML, , Ms,
and S.

Since the total Hamiltonian is invariant under
rotations about the z axis and under inversion, the
eigenstates can be labeled by M~, Ms, 8, and par-
ity m. Thus, a general form of the trial solution
may be written

g(y, r,s„r,s,) Ag (~p, ) ' &~(r,)Gr(r, )
r

&& t'r (i,s„r",s,),

where y = (M~Mzsw), and the reduced radial part
of the trial function (E or G) is expanded in a lin-
ear combination of Slater orbitals of the form
a&r"' 'e +". A is the antisymmetrization operator.

At zero magnetic field, the only bound state of
H is apparently the IS state' and the ion can be
considered as two H atoms is IS states plus the
Coulomb repulsion of. the two electrons. We cal-
culate this ground-state term to be -1.0537 By,
compared with the excellent calculation of
Pekeris' who obtained -1.0555 Ry. We consider
the agreement to be satisfactory since we have
not explicitly included correlation terms, i.e.,
t~~~~ invo lving Ir, i, I, in the expan-sio n (6). It
is clear however that correlation terms are im-
plicitly included in the wave function chosen.

In the sum over F, 18 terms are included in the
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FIG. 1. Energy levels of the hydrogen negative ion as
a function of the magnetic field strength B.

FIG. 2. Electron affinity of the hydrogen negative ion
as a function of the magnetic field strength B.

calculation of the ground-state energy at zero
magnetic field. For the largest magnetic fields
(-10' 6) reported here, we use up to 66 terms,
with a maximum L of nine.

Figure 1 gives the energies of some of the low-
est states of H as a function of magnetic field
strength. As the magnetic field is increased in
strength, the linear term of Eq. (2) first becomes
important. The lowest-energy state goes from
the singlet, even-parity state y= (000+) to the
triplet, odd-parity state y=(-1-11-). The cross-
over occurs at approximately B=1.2x10' G.

The matrix elements of H, depend only on ~M~ I,
whereas those of H, depend on the sign of (M~

+2M&). Consequently, the values of B, at which

the energies of the components with (Mz, +2M) )

negative reach their minima, indicate approx-
imately the magnetic field strength at which the
quadratic effect becomes dominant for each com-
ponent. In Fig. 1, for example, this occurs at
B= 3.3 x 10 G for the triplet, even-parity state
y = (0 -1 1+).

Figure 2 gives the non-negative values of the
binding energy for H as a function of magnetic
field strength B. The electron affinity (binding

energy) of H is given by

I(H ) =-E(H )-I(H),

where E(H ) is the energy of H and l(H) is the
binding energy for the hydrogen atom in the ground
state The qua. ntities I(H) are given in Ref. S. If
I(H) &

( E(H ) ( we have a "continuum" state, in

which one electron is at infinity, unaffected by the
Coulomb field but still under the influence of the
magnetic field.

For B& 1.2X10 G, the only state with a positive
electron affinity is the singlet state y = (000+). In
the intermediate range 1.2x10' & B& 3.3x10'G,
there are no bound states of the system. In this
range of B the continuum" state with the lowest
energy corresponds to one bound electron with
spin down and one unbound electron with spin down
in the lowest Landau level. At a B value of 3.3
x10' G the electrons become bound again. In the
range 3.3x10 &B&3.3x10 G, the bound state is
the triplet state y = (-1 -1 1 -). In this range the
binding energy initially increases with increasing
magnetic field. However, it exhibits a maximum
at 1.2x10 G. It might have been conjectured, by
analogy with atomic hydrogen, that the binding
energy of the lowest triplet state would increase
monotonically with increasing magnetic field
strength. However, the Coulomb repulsion be-
tween the two electrons plays an important role.
As the magnetic field strength is increased, the
electrons move in orbits of decreasing radii and
decreasing interorbit distances. In other words,
the electrons are being forced closer together as
B is increased. This tends to decrease the bind-
ing energy. Eventually this effect starts to dom-
inate, which explains the turnover in the binding
energy curve. As a check on this interpretation,
we repeated the calculation with the electron-
electron interaction term omitted and found that
the curve no longer turned over.
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An exact solution to the Einstein-Dirac equations is presented for a static, plane-sy~~etric
spacetime generated by neutrinos. We find the neutrino field to be nonzero and correspond to
a neutrino current along the symmetry axis of the space. The neutrinos yield a zero energy-
momentum tensor and therefore the gravitational field is exactly the same as for the vacuum
case. A comparison with other solutions is presented along with a discussion of the possible
physical significance of this "ghost neutrino" field.

I. INTRODUCTION ds =e "(dy +de )+e "(dx —dt ), (1.5)

= (8mx/c') T»,
where T» is the energy-momentum tensor for the
Dirac field 4:

T»-— ,Rc(4't—y&—4 ~
—4 t y&4+4ty~4, . —4t&y~q).

0 satisfies the zero-mass Dirac equation

y'4'.
~
=0. (1.3)

There have been many discussions of neutrinos
in general relativity since the classic paper by
Brill and Wheeler on the subject. ' In this paper
we present an exact solution to the Einstein-
Dirac equations for the case of neutrinos. The
field equations we wish to solve are

1»-R» —~g,.~ R

where u and v are functions of (x, t). As is clear
from Eq. (1.5), the x axis is the symmetry axis.
In this paper we shall restrict our discussion to
the static case. Hence, all functions u, v, 0, etc.
depend on only the one space coordinate x. We
shall carry out the calculations in the Cartan
orthonormal frame defined by

co'=e"dx, 0 =e"dy, w'=e" dz, (u =e"dt .
(1.6)

The formulation of the Dirac equation in Cartan
frames has been discussed by Brill and Cohen. '
The essential point of this approach is to identify
the Bargmann vierbein frame discussed by Brill
and Wheeler in Ref. 1 with the Cartan orthonormal
frame used to describe the geometry. The tan-
gent vectors cu, dual to the one forms ~' in Eqs.
(1.6) are given by

Here the semicolon stands for covariant differen-
tiation. Since for zero-mass Dirac particles the
trace of the energy-momentum tensor vanishes, it
follows from Eqs. (1.1) that the scalar curvature
R also vanishes. Hence, for zero-mass Dirac
particles the Einstein equations reduce (just as
for the electrovac case) to

u, =e "e„

Vc03=e e3y

where

e, = s/sx'.

(d2 =e e2

Qco4=e e4,

R» = (8xx/c')T, , (1.4)

In this paper we shall study solutions of Eqs.
(1.3) and (1.4) in spacetimes of plane symmetry
where the metric is defined by'

In the orthornormal frame the covariant deriva-
tives of the Dirac spinor are given by

(1.8)


