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The properties of nuclear matter and dense neutron-star matter are studied by an ap-
proach which largely avoids the microscopic assumptions of nuclear-matter theory. The
method is empirical, employing an extended form of the law of corresponding states to
deduce the properties of nuclear systems from those of laboratory substances such as
helium. It is possible to predict the solidification pressure and density, the compressibility,
and the critical temperature of nuclear and neutron-star matter. As previously reported,
a comparatively low solidification pressure is found for neutr on-star matter, implying a
solid core for most neutron stars.

I. INTRODUCTION

There are several reasons for attempting an
empirical approach to nuclear matter. The sim-
plicity and relative transparency of the method
to be described are worthwhile in themselves, and

may allow application to phenomena barely acces-
sible to conventional microscopic techniques. De-
tailed models of the nucleon-nucleon interaction
may be avoided as may the assumptions and re-
sults of standard (Brueckner) nuclear matter
theory. Indeed, the present approach may be re-
garded as an independent —albeit weak —test of
such theories. By working from the experimental
properties of real materials, we let nature com-
pute the bulk of the many-body effects, and only
have to concern ourselves with differences be-
tween substances. We pay for these advantages
of an empirical approach with a large uncertainty
in our results, and are only able to make order-
of-magnitude estimates. The uncertainties come
partly from the approximations used, but also
significantly from lack of sufficient source data;
there are few real quantum systems.

Our procedure is based on an extension of the

quantum law of corresponding states first proposed
by de Boer' and successfully used by him' to pre-
dict the properties of He' before any was available
for study. de Boer's model is not directly applic-
able to nuclear matter because of the considerable
difference between nuclear forces and the Van der
Waals forces typical of laboratory quantum sys-
tems such as helium. However, we are able to
generalize the corresponding-states law to apply
to a larger class of interactions by means of an
equivalent density transformation. We first apply
the extended model to symmetric nuclear matter
(-,' neutrons, —,

' protons), and then to neutron-star
matter, the latter causing more difficulty as less
experimental information is available.

Our chief goal is to predict the crystallization
pressure and density of neutron-star matter, which
bear considerably on the structure and dynamics
of neutron stars. A preliminary account of this
work' has already appeared, based on a less de-
tailed model than described here. Several other
authors ' have also examined the crystallization
question, using more microscopic techniques.
Clark and Chao' have followed an approach close
to our own —based on corresponding states —but
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need to assume particular nuclear potentials and
a variational nuclear-matter calculation, both of
which we specifically avoid.

In Sec. II we describe de Boer's law of corre-
sponding states. In Secs. III and IV our extensions,
the core shift, and the energy shift, are developed
and exemplified by applications to the Bose hard-
sphere fluid and to nitrogen. Symmetric nuclear
matter is discussed in Sec. V, followed by neutron-
star matter in Sec. VI. The accuracy and impli-
cations of our results are considered in Sec. VII.

itions, we expect I'* and I'* to be smooth functions
of A., and this forms the basis of our predictions.

In the study of nuclear and neutron-star matter
we are chiefly interested in the ground-state prop-
erties at zero temperature (neutron stars are
cold on a nuclear energy scale). Let us define
E~o and Vo to be the equilibrium free energy and
volume per particle at zero temperature and pres-
sure. Then

E*,= E~ (X, statistics)

II. CORRESPONDING STATES

The cIgssica/ law of corresponding states is
readily understood on dimensional grounds. Con-
sider a group of substances described by a.dditive
two-body potentials of the form v(r) = ef(r/o),
where f is a function common to all the substances,
which only differ in the scale parameters c and 0.
We may express the pressure I', volume per par-
ticle V, temperature T, and free-energy per par-
ticle F in terms of dimensionless, ~educed quan-
tities:

P*=Pcs/e,

V g —V/+3

T*=uT/e,

E+=E/q .
Dimensional analysis then implies that

Eg( Vw Ts)

V*, = V~0 (A., statistics),

where E~o and V*, may be multivalued functions in
the presence of several alternative phases. Fig-
ures 1 and 2 show experimental values of E*, and
Vo for some substances described approximately
by a Lennard-Jones 6-12 potential:

The parameters ~ and a are based on second-
virial-coefficient determinations, " in lieu of any
reliable high-density data. " I'* and V* are the
values appropriate to the fluid phase (at T =P = 0)
for He' and He', and to the solid phase for the
remaining substances. We desire fluid data
throughout, but such are not available (being de-
fined by a metastable state for all but helium).
The solid-fluid transition at some A. between 8,

Pg( Vg Tg)

where E*(V",T*) and P*(V*,T~) are universal
functions of their arguments for all substances
concerned. The molecular mass m does not enter
the equation of state.

Qn admitting quantum mechanics we aHow the
construction of a further dimensionless parameter

which mea, sures the importance of quantum effects.
The equation of state must be modified to

E*=E*(V*,T*, A., statistics)

ol

P~ =P*(V*,T", X, statistics),
(2)

allowing at the same time fox differences between
Bose and Fermi systems. The result (2) may also
be derived from the Schrodinger equation; the en-
ergy eigenvalues scale with e for fixed V*. Except
at isolated points, corresponding to phase trans-

o
0

FIG. 1. The reduced equilibrium volume per particle
of several substances as a function of the quantum
parameter A, .
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FIG. 2. The reduced equilibrium energy per particle
of several substances as a function of the quantum
parameter A. .

Fo/e = F~o(A),

Vo/os = V*(A),

X' = h'/mao'

(Sa)

(3b)

(Sc)

for c and 0, and use these parameters to predict

and He' implies a discontinuity in V*,(Z) of only
5-1O Vo and a small discontinuity in s F~/s Z.
itself should be continuous. Reasonably smooth
curves can thus be drawn through all the points,
the solid-phase data at least suggesting the trends
of the fluid data. We subsequently only need values
of A. beyond the He4 point, for which we use simple
polynomial fits to the F*,(X) and V*,(X) data. We
have used a simple straight line through the He'
and He' points for F*,(A). We make no allowance
for statistics dependence since no appreciable
effect is seen in the data. However, the statistics
effect should increase with A. and this, and the lack
of further data, causes the uncertainty in the ex-
trapolation curves F*,(A) and V*,(X) to grow rapidly
with increasing A.

It is easy to see how predictions might be made
with the corresponding-states law. Given an e
and a o we may predict E, and V, and any other
properties that vary smoothly with A., provided
we have sufficiently accurate extrapolation curves
for each property. Alternatively, given two prop-
erties such as E, and V, we may solve numerically
the implicit equations

III. THE CORE SHIFT

One of the main failures of the above approach
is the use of an effective 6-12 potential to simu-
late much broader nuclear potentials. In Fig. 3
the Reid soft-core 'D, potential is shown with a
6-12 potential of the same depth (e) and zero-
crossing point (o). The 'D, component is fairly
typical, and probably of considerable importance
in dense neutron matter, ' but is not at all well
represented by a 6-12 potential. There are no
ordinary substances with as wide a potential bowl
as nucleons, and so it is not helpful to consider
other shapes of reference potential. Nor do ordi-
nary substances show sufficient variability in their
potential width for direct extrapolation on a third
width parameter to be feasible.

We find that a core-shifted 6-12 potential
(C-6-12)

12 ( 6

v, „(r)=4& (4)

is well suited to simulating a nuclear potential, at
least in the region of the attractive bowl. Figure
3 shows such a potential fitted to the 'D, nuclear
component. The problem thus becomes how to

further properties of the substance. The accuracy
of such procedures depends on how well the un-
known substance is characterized by the common
potential shape, which is always a 6-12 potential
in the present work.

The nucleon-nucleon interaction is not well de-
scribed by a single central potential of the 6-12
shape, but we ignore this for a moment and con-
sider finding c and 0. Directly guessing e and o

from the various potentials is hardly feasible, but
suggests a large A. of perhaps 5 to 20. The second
procedure described above —solving Eqs. (3)—
may be attempted since we know that E,= —16
MeV/nucleon and V, = 5.9 fm'/nucleon for sym-
metric nuclear matter, from the radii and binding
energies of finite nuclei. We obtain c =120 MeV,
0 =1.15 fm, A. =3.2; a 6-12 material with these
parameters (and a molecular weight of '1) would
have the same equilibrium energy and density as
nuclear matter. These results imply an effective
6-12 potential that appears rather unrealistic,
being deeper and narrower than most nuclear po-
tential components. No single central component
of the Reid soft-core potential" is as deep as 120
MeV, and an average potential would be expected
to have a depth of about 50 MeV or less. We there-
fore have little confidence in using the above values
of e and o to make further predictions, and turn
instead to an extension of the law of corresponding
states.
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or
Vglls VI/3/& +n/P

Here, and henceforth, we use starred quantitiep
(*) exclusively for properties of 6-12 systems.

The energy shift is given by

E(V) = z [E,(V) —eE f(V*)],
where E,(V) is the potential energy due to all but
nearest neighbors in the nuclear system and E~2(V*)
is the corresponding reduced energy in a 6-12
system. The —,

' avoids double counting. For fluid
phases we compute E, and E*, from integrals of
the form

1
v(r) dsr,

V R

which is equivalent to setting the radial distribu-
tion function g(r) to unity beyond nearest neighbors;
this is not a bad approximation at the densities
concerned. The radius B defines the regime of
further neighbors. For consistency we must have

1 R
J' = z + 1

V

where z is the mean number of nearest neighbors,
in order that

1
[g(r) —1]d~r = —1

V p

as required Bt zero temperature. This leads to

3(z+1)V
4w

giving a = 1.34 to 1.42 for z = 9~ to 11 as found in
ium 17, 18

It is not necessary to use the tail of the effective
C-6-12 potential in calculating E,(V); instead we
can use a more realistic nuclear potential tail.
Our effective potential will then be discontinuous,
having a different form for the core and tail re-
gions, but this is of no account since the two forms
enter the model in quite different ways. For the
nuclear potential tail we use the one-pion-exchange
potential (OPEP)".

VopEp (r) = 3.5 r '
T2

x[o, ~ o2+S»(1+3/x+3/x2)] e '/x,
where x= 0.7r for r in fm and v in MeV. For
r & 3 fm all nuclear potentials reduce to the OPEP
form; the radius A in our model is always greater
than or equal to n Vp' '= 2~ fm, so the OPEP
should be a reasonable approximation. We must,
however, average in some way over spin and iso-
spin, taking account of the strong correlations
present in the nucleon fluid. The allowed s-wave

pair states (the dominant long-range components)
have (r, T2) (o, .a.,) = —3 and we take this for our
average, ignoring the tensor term &12 In fact the
tensor term will add further attraction, but the
admixture of higher momentum states will counter
this. We thus use

v~(r) = —10.5e o'7"/0. 7r

as our average, commenting that our results are
anyway insensitive to this assumption since the
E*,(V*) term is dominant in the energy shift.

The inclusion of the energy shift complicates the
computation of c and o from Fp and V, . Without
the energy shift I p and V, corresponded to a min-
imum in the free energy F*(V*)of the equivalent
6-12 system, but now we have for the point Fp Vp.'

8+ Bg+ B V+ BE
BV 'BV* BV +BV'

We cannot therefore immediately relate Ep Vp to
the extrapolation curves F*,(X), V~o(A), which cor-
respond to aF*/s V*=0. We need to know more of
the 6-12 equation of state. F*(V*)than the location
of the zero-pressure equilibrium point. This
knowledge can only be based on the experimental
data for He' and He', which we must attempt to
extrapolate with respect to A.. We define

X= [ V~ —V~(X)]/V*(X)

and

Y=[F*-F+(~)] ',
and estimate Y(X, A) by linear extrapolation of Y
with respect to X from the values of A (He' and He')
at which Y(X, A) is known. " This is a fairly arbi-
trary procedure, but does not lead to great errors
if A. is not too far from the helium values. In any
case the energy shift is quite a small correction
to our model, and so V* is close to Vp.

Our model is now complete. To find ~ and o
from experimental values of F, and V, (and chosen
n) we adjust e and o until Eq. (6) predicts an F(V)
which has a minimum at F„V„using the prescrip-
tions given above for F*(V~) and E(V).

We have applied a similar model to the predic-
tion of Ep and Vp for solid nitrogen at absolute
zero, starting from a C-6-12 potential. Such a
potential (with negative n, ) has been called the
Kihara Potential. "We find c, o, and 6 by fitting
the theoretical and experimental second virial
coeff icients, obtaining e = 130 'K, o = 2.99 A,
6 = —0.19. Our model has to be modified some-
what: For a solid phase we use simple fcc lattice
sums for E, and E*„ for small A. our Y(X, X) ex-
trapolation is unsuitable and we use instead a
quadratic compressibility term, obtaining the
compressibility from corresponding-states extrap-
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olation"; and we use the high density value P =2' '.
We then obtain F, = —1730 cal/mole, V, =26.3 cc/
mole, which are considerably closer to the ex-
perimental values (F, = —1660 +60 cal/mole,
V, = —26.2 +1.5 cc/mole) than are those (F,
= —1460 cal/mole, V, =29.6 cc/mole) predicted by
a direct corresponding-states application with a
pure 6-12 potential (e =96 'K, o =3.72 A). The
method can be applied similarly to other systems
not well fitted by a simple 6-12 system, although
there are few cases in which 4 is much different
from zero.

V. SYMMETRIC NUCLEAR MATTER

The approach of the previous sections allows
an immediate computation of e and o for symmet-
ric nuclear matter (—,

' neutrons, —,
' protons), using

Fp 16 MeV, V, 5 9 fm With Lak 0 50 +0 05,
p=1.00+0.02, a=1.38+0.04, we obtain a=56
+10 MeV, 0 -60 =0.88+0.05 fm, A. =3.07+0.05.
We have included in the bounds a generous allow-
ance for the uncertainty in the extrapolation curves
F*,(A) and V~0(A), obtained by artificially perturbing
these curves. Errors in the core shift and energy
shift do not appreciably increase the total uncer-
tainty; in fact most of the uncertainty comes from
that in 4. If nuclear matter were fully charac-
terized by a single effective potential of the C-6-12
shape, then the results above for e, v, and A,

would follow. Our results seem considerably
more plausible than the large e and o found in
Sec. II from the unmodified corresponding-states
law (we should note that it is o —b,o, not o, that
represents the zero-crossing point of the poten-
tial). Indeed the depth and core size of the effec-
tive potential are about where we would intuitively
put them, and we have chosen the shape (A) inde-
pendently.

We now consider what predictions may be made
with our results. In principle we can compute the
free energy F(V) of nuclear matter for any V, but

in practice this is likely to be quite inaccurate
far from V„relying as it does on the crude
Y(X, A) extrapolation. We content ourselves with
estimating the compressibility parameter

150-200 MeV) or Migdal's'~ Fermi liquid approach
(K -700 MeV).

Our original goal was to predict the solidifica-
tion pressure P, and density p, of nuclear matter
and, particularly, neutron-star matter. These
are difficult to treat microscopically because they
depend on small energy differences between solid
and fluid phases, which must usually be treated
by different methods. We may construct extrap-
olation curves P,*(h) and p,*(A) for the reduced
solidification pressure and density of 6-12 sys-
tems, using not only the He and He' points but
also the negative values of P,* obtained by extrap-
olating the melting lines of H„D„and Ne back
to absolute zero. However it is still not straight-
forward to obtain P, for nuclear matter. It is not
even a simple matter of differentiating Eq. (6)
with respect to V, allowing for a factor o' s V*/
8 V t1, because P, depends on both solid and liquid
properties. We must consider the conditions for
equilibrium between these phases, assuming that
our model applies separately to each. We first
make the following approximations:

V~ V*
(t) +3 IKI +3 sol qg

Vhq V )

where V~ and V, represent the volumes per par-
ticle of the liquid and solid phases when in equi-
librium, and the remaining quantities are eval-
uated at these points [V* being related to V by
Eq. (7)]. We define Q by (i). The first approxima-
tion is supported by the data for helium, "the two
quantities differing by less than 5/o for 6 = 0.5.
The second approximation will also be good if the
liquid and solid densities are not greatly different.
In any case SE/S V only contributes a small fraction
(-10%) of the total pressure.

Approximations (i) and (ii) allows us to write the
conditions for equilibrium (equal pressure and
Gibbs energies) as

2
d2F '

K=r
dro y

where r, ~ V' ', which gives the curvature of F(V)
at equilibrium point. Our best estimate is K = 320
MeV, but the uncertainty is large; being pessi-
mistic about the various inaccuracies and approx-
imations we find 200&K&600 MeV. The result is
quite reasonable, agreeing better with recent
empirical estimates (around 300 MeV) from finite
nuclei" than with nuclear matter theory (typically

Fhq —F &

v~-v„*, ' (9)

which may be compared to the equations for the
6-12 solidification pressure



3288 R. G. PALMER AND P. W. ANDERSON

Vhq —V )
(10)

The 1/Q factors in the second and third terms
of Eq. (9) imply that the correct construction in
the equivalent 6-12 system for the nuclear solid-
ification point is not a double tangent [as for Eq.
(10)], but a chord which meets the Fh, (V ) and
F ~(V*) curves at points where the slope is Q
times the chord's slope (see Fig. 7). If the solid
and liquid curves are of similar shape in this re-
gion this chord will be nearly parallel to the double
tangent, and anyhow the slope of the chord will be
largely dictated by the relative displacement of
the solid and liquid curves. We therefore take

The error in this approximation may be estimated
by solving Eq. (9) exactly with helium data (and
h =0.5). We find less than 1% difference between
the left-hand sides of Eqs. (9) and (10).

To evaluate P, from Eq. (11) we need to know
the solidification density p, =1/V, (in the fluid
phase, say) since both Q and BE/8 V are density
dependent. We find this self-consistently from our
equation of state for the fluid phase [Eq. (6)] by
adding to Eq. (11) the condition

F

Vs v

FIG. 7. Construction, in the equivalent 6-12 system,
for the liquid-solid equilibrium in a nuclear system. The
chord AB illustrates the required construction, joining
points where the gradient (broken lines) is Q times the
gradient of AB. If the shapes of the solid and liquid
curves are fairly similar, AB will be nearly parallel to
the double tangent CD.

(V.) .

An alternative procedure is to compute V, from
an extrapolation curve for V,*(X), making some
allowance for the volume reduction due to the fac-
tors 1/Q in Eq. (9). This gives results for P,
agreeing with our chosen method to within 15'.

For symmetric nuclear matter we obtain P,
=16+8 MeV/fm' and p, = 0.32+ 0.02 nucleons/fm, "
the uncertainties allowing for everything but the
error in describing nuclear matter by a single
effective potential (see Sec. VII). The result for
P, is not the same as that previously reported, '
for the earlier model did not include the energy
shift, and made no allowance for the effect of the
core shift on P,. Our value for p, represents
about twice infinite nuclear matter density (1/V, ).
Small nuclei have densities higher than 1/V, due
to the surface tension (but reduced by Coulomb
effects), and it might be wondered whether the
surface pressure could be enough to cause crystal-
lization. We estimate the internal pressure due to
surface tension to be y/(2wr') -2.2A ' ' MeV/fm'
from the surface energy y of about 19A' ' MeV.
Thus we do not predict solid nuclei, but the margin
is not very great. Pauling" once proposed such
an idea, and CoolP' has recently put forward an
fcc lattice structure for nuclei, but these models
must be considered unlikely.

Another property of nuclear matter that we can
easily compute is the critical temperature. In
general the critical properties belong to too low
a density regime for our core-shift approximation
to be valid, but the critical temperature should not
be greatly affected by the core shift, and will be
approximately the same as that of the equivalent
6-12 system. This is intuitively clear from a
kinetic theory approach, and is supported by de-
tailed calculations employing the core shift and
a Van der Waals equation of state"; these cal-
culations are crude, but indicate a 10/p correction
to T, and much larger corrections to P, and V, .
We thus take kT, =@T,*(X) for nuclear matter using
an extrapolation curve for T,*(A).' This gives
kT, =18 +3 MeV, which is in good agreement with
a recent Thomas-Fermi calculation. "

The existence of a finite critical temperature
shows that ordinary nuclear matter must be re-
garded as a liquid phase below its critical point. "
This phase is distinct from a neutron-proton gas,
which casts doubt on formulations of nuclear mat-
ter theory which do not distinguish the two."

VI. NEUTRON-STAR MATTER

We now consider the application of our model to
nuclear matter containing only 5% protons, which
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we call neuA'on-star matter. The matter com-
prising the central region of large neutron stars
is of similar composition (together with electrons
and muons), the exact fraction of protons depend-
ing on the equation of state adopted. The diffi-
culty with this case is lack of knowledge of any
experimental properties from which to deduce ~

and o. In the case of symmetric nuclear matter
we used P'0 and Vo, but for neutron star matter
these are unknown and may not even exi,st; most
nuclear matter theories predict a monotonically
decreasing E(V). In our earlier report' we at-
tempted to calculate E, and Vo for neutron star
matter from the empirical mass formula, but we
now regard this as inadequate, even with the add-
ition of a quadratic compressibility term. Instead
we believe that it, is better to extrapolate e and c
themselves.

Let us suppose that we can adequately describe
nuclear matter by two effective pair potentials,
vo and vy for' total isospin T =0 and 1, respec-
tively. By performing our analysis at two differ-
ent compositions within the range for which Eo
and V, are known, we can find effective C-6-12
potentials for two different linear combinations of
vo and 'Uj and hence obtain an effective potential
for any other composition.

The effective potential for a fraction x of pro-
tons is given by

where 6 =1 —2x and p is a parameter which de-
pends on the degree of isospin correlation. " If
we obtain a C-6-12 potential for two values of 5
then the effective potential at a third 5 may be
computed by linear extrapolation with respect to
O'. The potential so obtained will not, in general,
be exactly of the C-6-12 shape, but the difference
is not large, and it is easy to refit a C-6-12 po-
tential to the result. In practice this amounts
very nearly to extrapolating & and v linearly with
5', and so this is the procedure we adopt, in-
curring negligible error. For accurate extrapola-
tion we require our two reference 6"s to be as
widely separated as possible, and we therefore
use the values corresponding to x =-,' (symmetric
nuclear matter) and x=0.35. For the latter point

Eo and Vo may be extracted from the masses and
radii of heavy nuclei in conjunction with a com-
pressible empirical mass formula. This has not
been carried out on a purely empirical basis
(most mass laws assume constant density), but
Myers and Swiatecki"'" have developed a semi-
empirical model involving a few theoretical para-
meters. We adopt their results, which imply
Fo 13 0 MeV and Vo 6 50 fm for x = 0.35. The

method of Sec. IV then leads to ~ -53 MeV and
o-1.8 fm (Ref. 34) for @=0.35. Linear extrapol-
ation with respect to 6' from these and our x =0 5
results gives us c =2&a& MeV, 0-60 =1.03+0.09,
~ =3.7+0.2 for neutron-star matter with @=0.05
(we assume A =0.5 still). The extrapolation is
over a considerable range of 5' and therefore
carries with it a considerable uncertainty, which
we have attempted to include in the above bounds.
The procedure is very sensitive to variation of
E, and Vo between x=0.5 and x=0.35, and better
data are desirable. We do believe, however, that
the quadratic dependence of & and 0 on 6' is well
founded over the whole range of 5', which is not
the case in the alternative procedure of directly
extrapolating E, and V, with respect to 5'.

We may use Eq. (8) to obtain an equation of state
of neutron-star matter. We find that there is still
a shallow minimum at E, =12+8 MeV, Vo =18'6"
fm'/nucleon, with a compressibility parameter
E =50 to 250 MeV. Nuclear matter theory pre-
dicts no minimum here, as previously noted, but
some other approaches"'" also show a shallow
minimum.

Applying the method of Sec. V we find I', =6+ 3
MeV/fm', p, =0.18+0.05 nucleons/fm'. Predic-
tion of these quantities —which are of direct rele-
vance to neutron-star structure —was the original
aim of our empirical approach.

The critical temperature is harder to predict for
neutron-star matter since the T~(X) curve ap-
proaches zero in the vicinity of ~ =3.7. The effect
of the core shift and of otherwise minor inaccur-
acies may thus be crucial. It is safe to state
kT, & 6 MeV for neutron-star matter, acknow-
ledging that a finite T, might not exist at all.

VII. DISCUSSION

We have presen. ted a model of nuclear matter
that allows order-of-magnitude predictions with

very few microscopic assumptions. It has been
necessary to make several approximations in
reaching the results, but we believe all these to
be plausible, and have estimated the errors in-
volved.

A number of criticisms have been leveled
against our corresponding-states approach to nu-
clear matter. It has frequently been stated"' 'o

that nuclear potentials are not of the 6-12 shape,
and indeed not even of the Yukawa shape in the re-
pulsive region. However, our C-6-12 potential
with OPEP tail can approximate nuclear potentials
with good accuracy except perhaps at very short
range where the repulsion becomes very strong
(& 100 MeV). At the densities considered this part
of the core is little sampled by the nucleon wave
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functions and contributes little to the total energy.
At higher densities the core shape would indeed
become very important.

A second criticism ' ' of our method questions
the reliability of extrapolation with respect to ~
far from laboratory values. Through the use of
the coreshift we do not have to compare nuclear
matter directly with a 6-12 system with the same
quantum parameter (X' = [h'/me(o-b, o)']'~'-6 for
nuclear matter}, but with an equivalent 6-12 sys-
tem at a more reasonable A. of -3-4, not very
far from helium. The effect of statistics depen-
dence on the reduced thermodynamic properties,
as in Eq. (2), is an important problem at large
X, made worse by lack of sufficient data to esti-
mate the effect. Nosanow and Parish' find con-
siderable statistics dependence in their Monte
Carlo estimates of the solidification density,
but Schiff'se calculated correction for the Bose-
Fermi difference is quite small even at ~-10.
%e have made reasonable allowances for the
consequent uncertainties in the extrapolation
curves, and note also that the experimental point
most heavily weighted in our method is that of He',
which at least belongs to the Fermi case. A
sA Ong statistics dependence, such as observed
by Nosanow and Parish, ' might nevertheless ap-
preciably increase our estimated solidification
density and pressure.

A further criticism""' of our approach con-
cerns the assumption that nuclear matter may be
adequately described by one or two central effec-
tive potentials, and we believe this to be the major
remaining source of inaccuracy. The effective
potentials must represent an average of the var-
ious components really present, belonging to dif-
ferent spin, isospin, and angular momentum
states. In a given phase at fixed density this is a
reasonable assumption, but it is necessary to con-
sider a range of densities, and solid-liquid equil-
ibria. The quantititative study of these effects is
not possible within the present framework, but
we make some qualitative remarks.

The worst flaw is probably the computation of ~

and o from properties of one density (V, ') for use
at another (p, ). The optimum effective potential
will not be the same at these two densities, be-
coming less attractive at higher density due to
the increasing importance of high angular momen-
turn states. Clark and Chao' are able to allow for
this effect at the expense of further microscopic
assumptions, which provide theozeIical data on
nuclear matter at all densities. %e prefer to be
more empirical, and estimate the likely magni-
tude of the effect by halving e before computing
I', and p, . This approximately halves I', , but
hardly affects p, , and this is probably an overes-

timate of the effect as v will increase at high
densities, partially compensating &.

The spin and isospin dependence of the real po-
tential may have some significance for the solid-
liquid equilibrium, favoring ordered (solid) states
and thus lowering I', and p, . The solid may take
further advantage of this and form a molecular
solid, perhaps of alpha particles. The I. depen-
dence is not likely to have much effect on the
equilibrium itself, for the density discontinuity
is small. Velocity dependence will favor fluid
states, raising I', and p, . Overall, however, we
believe that our estimates for I', and p, are if
anything too high, being most affected by the spin-
isospin dependence. Our results are nevertheless
lower than the most recent microscopic calcula-
tions' based on quantum crystal theory, but agree
quite well with the variational estimates of
Nosanow and Parish. ' Different methods are still
a long way from agreement.

There are, of course, other phenomena which
may occur in dense neutron-star matter. Hy-
perons will undoubtedly appear at sufficiently high
density, but will not at first alter our conclusions
greatly; we may find a hyperonic crystal. Pion
condensation also seems likely, and will probably
serve to enhance neutron crystallization. "

The consequences of a low solidification density,
attainable in neutron stars, are now well known
and we merely list some possible implications.
The transition to a solid phase softens the equa-
tion of state of neutron-star matter at high den-
sitits, thus reducing the maximum neutron-star
mass. Knowledge of the maximum mass is of con-
siderable importance in the identification of mas-
sive objects such as the collapsed partners in x-
ray binaries. The onset of crystallization reduces
the superfluid fraction of a neutron star, which
may explain the extent to which the Vela pulsar is
able to regain its original period after speed-up. "
The presence of a solid core, oblate due to rota-
tion, has been invoked to explain several pheno-
mena, including the large size and high frequency
of quakes in Vela, via a corequake mechanism,
and the thirty-five day cycle of Hey-X-1, by means
of a neutron-star wobble activating an accretion
gate. " Such a wobble has also been proposed by
Dyson39 as a source of gravitational radiation.
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