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Solutions to the complete time-dependent scalar wave equation in the mixmaster universe are
presented. Differential equations for the mode amplitudes are given corresponding to field
expansions in terms of the asymmetric- and the symmetric-top wave functions and for both
minimal and conformal couplings of the scalar field to gravity. The theory of quantized fields
in the mixmaster space is summarized. Creation and ~»ihilation operators in the Heisenberg
picture develop in time under a general Bogolubov transformation which expresses mathemati-
cally the physical processes of particle creation and mode mixing. The problem of particle
creation is discussed here in the light of the classical theory of wave propagation. In the
adiabatic limit when the expansion of the universe is slow, little production takes place.
Higher-order expressions for the production amount are derived by the method of succes-
sive WKB approximations. Finally, numerical solutions of the wave equation for the uncoupled
modes are presented. The effects of geometric shape, level energy, and particle mass on
production are studied for the characteristic "small oscillation" and "bounce" solutions of
the mixmaster universe. The anisotropic dynamics of the background gives rise to strong
directional effects in particle creation. Production of particles of higher mass or energy is
less abundant and less sensitive to the shape or level. The process of mode mixing, which
is,a distinct feature of the mixmaster universe, will be studied in a later paper.

I. INTRODUCTION

In an earlier paper, ' hereafter referred to as I,
we have presented solutions of the scalar wave
equation for a fixed background in the mixmaster
universe, assuming the three principal curvatures
of the universe to be time-independent. The solu-
tions are found to be equivalent to that of the
quantum-mechanical problem of an asymmetric
rotator. In this paper, we turn to the solution of
the complete time-dependent wave equation. In
Sec. II, we consider the wave equation in which
both the Laplace-Beltrami operator and the basis
function are dependent on time through some ex-
ternal parameter. This corresponds to the field
expansion in terms of the asymmetric-top wave
functions discussed in I. Interesting physical
phenomena such as wave coupling become im-
mediately apparent. Alternatively, if the time-in-
dependent symmetric-top wave functions are used
as basis functions, the expansion coefficients
(mode amplitudes) satisfy a set of simple coupled
wave equations. The physical significance of
"conformally coupled" wave equation as compared
to the "minimally coupled" wave equation is
brought into attention. In Sec. III, we recapitulate
the main results on the quantization of the scalar
field in a closed anisotropic universe as presented
in Ref. 2 and introduce the physical notions of
particle creation and mode mixing. The rest of
this paper deals with particle creation in uncou-
pled modes. The phenomenon of mode mixing and

its implications will be treated in paper III.
The modes of oscillation of scalar waves in a

time-dependent background can be described in
analogy to a system of parametric oscillators. In
Sec. IV, the problem of particle creation is dis-
cussed in the light of the classical theory of wave
propagation. In a statically bounded expansion of
the universe, particle creation can be visualized
as wave reflection off a potential barrier arising
from the time variation of the background geom-
etry. If the relative change of the natural fre-
quency of a particular mode is small compared to
the characteristic expansion rate of the universe,
the adiabatic approximation is applicable. In this
limit, the variation of the adiabatic invariant re-
mains small. Little particle creation takes place.
Violation of the adiabatic condition gives rise to
the coupling of waves and the mixing of positive-
and negative-frequency components. These pro-
cesses are understood in the context of quantum
field theory as particle creation and mode mixing.
In Sec. V, we use the method of successive WKB
approximations to derive higher-order expressions
for the production amount. Following this ap-
proach, one is able to take into consideration
more rapid variation of the background and can in
principle obtain as close an approximation as de-
sired to the exact solution.

The behavior of particle creation is brought in-
to full display with a complete solution of the
wave equation. In Sec. VI, we present the results
of numerical integration of the combined wave
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equations and the field equations on a computer
and discuss their implications. The effects of
geometric shape, level energy, and particle mass
on production are studied for some characteristic
solutions of the mixmaster universe. The results
obtained in this paper will be employed in the dis-
cussion of paper III on mode mixing and in our
subsequent investigations on the possible mecha-
nism of anisotropy damping due to these effects.

II. THE TIME-DEPENDENT WAVE EQUATION

A. Expansion in asymmetric-top functions

Our treatment here follows the method originally
introduced by Guttinger and later expounded by
Tolman. ' Consider the Laplace-Beltrami operator
on the three-dimensional space with a form de-
pendent on some time-varying parameters (r(t).
In our case, these are the three principal curva-
tures of the universe l, (t), or, equivalently, the
volume Vand the asymmetry parameters a, P
[Fig. 2 in IJ. (Here, and throughout this paper, I
refers to Ref. 1, and all equations, tables, and
figures referring to it are written with the prefix
I.) A certain configuration of the spatial geometry
is described by and is equivalent to a set of values
of a. For any configuration one can determine a
set of energy eigenfunctions u(x, n) with the help
of the equations [Eq. (Ill)]

&3)A(x, o)u„(x, n)+ k„(o.)u„(x, ().) =0, (1)

where k„(o) are the eigenvalues of the system
with that value of the parameter a. The solution
of the wave equation for the system [Eq. (I10)]

C'(x, f) —('h(x, o)e'(x, I)+tI, 'C'(x, f)=O (2)

could then be expressed as a superposition of
steady-state solutions in the form [Eq. (I12)]

4'(x, t)=Q c„u'„(x, n)e ' n', n=(Z, }t, M, y)

c (x, f)+2r(f)C (», f) —'"&(», ~(&))@(»,&)+ t '@(», f) =0

(r
-=4 g ,') (4)

(3)

where the amplitudes c„are a set of constants
which will in general be complex numbers, and
&u„= (k„+g )'i' is the energy of the nth level.

Consider now that the external parameter o., in-
stead of being held constant, is made to change
with time. The wave operator itself would then be
a function of time through its dependence on a,
and one should have to write the wave equation in
the form, appropriate for nonconservative sys-
tems [Eq. (I9}],

As a form of solution for this equation one takes
the superposition expressed by

I

4(x, t) =g c„(t)u„(x,a(t)) exp i -u)„(t')dt'

(6)
where at each time t the steady-state solution cor-
responding to the instantaneous value of o. holds,
and the amplitude changes with time as dictated
by the wave equation. Combining the two factors
giving an explicit dependence on t,

t
c„(t)— (t)exp=(„-iJ „dt)' (6)

one writes

e(x, f) =g C„(t)u„(x, o(t)) .

where u)r„z(8, P, g) is the properly symmetrized
symmetric-top wave function (the Wang function)
and ar„(l, ) are the elements of the expansion co-
efficient matrix 9 dependent on time explicitly
through the I, (8=(al„) is the transformation
matrix that diagonalizes the Hamiltonian, H, i.e.,
8 'HS = A [see (132)], and is orthonormal with re-

The quantities C„(t) are then the mode amplitudes
for the different states that correspond to the in-
stantaneous forms of the eigenfunctions u„(x, n).
To determine how these probability amplitudes
depend on time we first substitute the proposed
solution ('l) in the wave equation (4). Carrying
out the differentiation, multiplying through by
u*(x, n) and integrating over the configuration
space, while making use of the normalization and
orthogonality of the eigenfunction u„(x, c(), we ob-
tain

C„(t)+2r(o.)C.(t)+ ~.'(o.)C (t)

+P R "&[2aC„+(6+2m)c„]
n

+p R&.'&[d.'c„]=o .
n

The coupling constants

g()= ug dy g()= ug dy 9
Bu u

mn m g+ & mn m ~&2

(dVis the group invariant measure dV
= sin8 d8d(II)dwt)) govern the rate of exchange between
levels m and n of the system, where m, n denote
different sets of quantum numbers (J, M) and sym-
metry types y characterizing a given wave func-
tion. To see what these quantities are, let us re-
call the form of the original wave function u„as
given in Eq. (I26):

u~„q(8, y, tI), I, ) = Q ar„(l, )u)~~„~(8, y, y), (10).
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spect to column multiplication, i.e., Q»a»xa»x.
= 6xx, . g is a labeling index number for the eigen-
values of the asymmetric-top wave function within
a given 8 value. } Since the only dependence on I,
in the wave function ux~„& is through the coeffi-
cients u~x and swee the Wang functions are p~oper
ly orthonormalized with respect to the indices
{Z, K, M, y), the only contribution of R„„comes
from levels of different g but within the same
angular momentum numbers (Z, M) and belonging
to the same symmetry type (y). Hence

R"x {~}=Zs.*x{~)s x '{~)

and similarly

R'x'x' {~}= Z"*x{~}"'"{o»

8. Expansion in symmetric-top functions

Substituting the expansion

~ f»«}C „x(x, t) =~~( ( )]~, w»„„(x) (12)

(where w»~„„ is the Wang function) into Eq. (19)
we obtain an equation for the coefficients f» (here
we have suppressed the Z, M, y indices):

d2 2'- It«)f»+&»» (t)f» =o (13)

It(t) = I'(t)+ I (t), (14)

where H«, is one of the four O', E' energy sub-
matrices in the eigenvalue equation Hce~ =H«, sv~,
(see Appendix A in I)

H=-&'&a+ p' .
From Eq. (I) and (12), it is easy to relate f» to
Cx

2
d@xx g tI d @zv

~~x —
d~ ~Ex

f (t)=~V g C„(t)s,„(t,(t)}.
x=-~

(16)

and n here stands for some deformation parame-
ter. The B's will be nonzero only for levels be-
longing to the same energy submatrix; hence the
number of terms in the summation is equal to the
rank of the submatrix minus one (excluding self-
coupling). For example, for Z=1 (see Table Il)
all three levels are independent of each other; so
is the case with the levels

coax 2yy 2p& 2 g However
coupling exists between the two levels 2, and 2,.
For J =3, three groups of levels couple pairwise
but not among themselves. They are (3„3,),
(3„3,), and (3„3,). The 3, level is independent.
Following this we can also deduce that, for ex-
ample, when J =5, there are three groups of three
coupled levels and one coupled pair, all four groups
being independent of each other. In general, there
exist three n-tuples (of B„B„B,types) and one
(n+1)-tuple (of A type) for even Z=2n, or one
(n-1)-tuple for odd Z=2n+I (n=l, 2, . . . ). For
high J, the multiplets are grouped into 4 classes
each containing approximately —,

' J coupled levels.
As the mode expansion is made in terms of the

asymmetric-top wave functions n~„„(8,Q, Q, t),
which is itself time-dependent through the trans-
formation matrix coefficients a»x(l, (t)}, the cou-
pling of modes as exemplified by the terms in-
volving R ~„'„~ and R~'„» in the wave equation (8)
arises precisely from the change of such coeffi-
cients. As will be shown in the following, it actu-
ally proves simpler to describe the system in
terms of the symmetrized symmetric-top wave
functions (the Wang functions), which are time-
independent.

In fact, if we put Eq. {16)into {13)we recover Eq.
(8), with R '& and R&'~ arising from the time de-
rivatives of a x.

Notice that with a, change to the time element d7

defined by

s'4 (», r) + v'(~}[ ~'&t(~, »)+t ']c(», ~)=o.

Under the expansion
(18)

C (x, 7 ) = Qh»(7)w»(x)

we obtain an equation similar to (13}for h», i.e.,

where

+ +3C»» {&}h»«)=O
x'

(2o)

&»»'= V {~)B»»' ~

C. ConformaHy coupled wave equation

So far in our discussion we have treated the
wave equation (I7),

(o-q'}4(», t) =o,
as the simplest fully covariant generalization of
the Iaein-Gordon equation describing a spin-zero

dt= v(r)d~,

where V= l, l2/, is the volume of the universe, the
scalar-wave equation contains no first-order time-
derivative terms:
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field "minimally coupled" to a curved background. '
A modified form of Eq. (21), the so-called "con-
formally coupled" wave equation, '

the g time defined by

dt= v(q)dg, v= V'I (26}

(0 —p —'—R)C (x, t) = 0, (22)

p2

Equation (4) now is replaced by

i+2r4-"i'+(q'+ -', R)4 =0. (24)

The forms of Eq. (13) and (20) remain the same,
except for the change in H in Eq. (15), which now
contains an extra term

(25}H= — 4+/, + 6B
In the conformally coupled equation, a more

convenient time coordinate as used in Ref. 8 is

was treated earlier in Ref. 2. It contains an ad-
ditional term involving the four-dimensional curva-
ture R, and is conformally invariant in the mass-
less case p, =0.' If an isotropic metric like the
Robertson-Walker type is assumed, and the con-
formally coupled equation is adopted, no massless
particles will be produced. As was remarked
earlier, this is a consequence of the conformal
flatness of the space and the conformal invariance
of the equation. Therefore, for significant particle
production, it is essential that an anisotropic ex-
pansion be postulated. " This is especially so in
the case of the empty space, because the two types
of equations (21) and (22) become indistinguishable
(as R= 0} and thus they are both conformally in-
variant when JL[. = 0.

The question as to whether Eq. (21) or (22) more
correctly describes the physical field remains
largely open, the answer still awaiting better ob-
servations and deeper understanding. For the
present purpose, since we are dealing with an

empty background, as long as the dynamics of the
universe is governed by the Einstein equations
(R,, = 0~R= 0), the question does not arise. How-
ever, when one investigates the problem of aniso-
tropy damping, the energy-momentum content due
to the particles produced will be allowed to react
back on the geometry, thus modifying the space-
time significantly. Also, since it is in the case of
conformal coupling that isotropy tends to reduce
the rate of particle creation, one expects to find
the effect of anisotropy damping in such case most
evident. For this reason we shall also work with
the conformally coupled equations in the following.

In (22), the four-dimensional scalar curvature
R of the mixmaster spacetime is given by (cf. Ap-
pendix A of Ref. 16)

3
'"R= P l, /l, + V/V

Thus, defining C = v C and denoting differentiation
with respect to g by a prime, the wave equation
becomes

2 II
2 (3) 2 Z V, +v — 6+p, + 6R- —, 4=0.

Bg v

Under the expansion

4(x, g) =Qy»(q)tv»(x),
K

we obtain in place of (20)

+ M [+ }»»'+ @»»']4»'
d'ii»

K'

where

g2 v2( (3)t + ~2)

(27)

(28)

(29)

(30)

Q(7}}= v'R/6 —v "/v

6v4

III. QUANTIZED FIELDS, PARTICLE CREATION,
AND MODE MIXING

[e(x, t), C (x', t)] =O = [s(x, t), »(x', t)],

[C (x, t), s(x', t)J = N&'&(x x'), -
where

(32)

After having obtained useful forms of the wave
equation, and before going on to seek their solu-
tions, we pause here for a brief description of the
theory of quantized fields in curved space and in-
troduce the physical notions of cosmological par-
ticle creation. ' ' The principal ideas and re-
sults pertaining to a closed, homogeneous, and
anisotropic spacetime like the mixmaster has
been treated in detail in Ref. 2. In order to facili-
tate better continuity and uniformity of our pre-
sentation, we will recapitulate only the main
points and write down the useful formulas.

The Lagrangian density of a scalar field mini-
mally coupled to a curved spacetime is given by

g = ——,'(-g)'I'(g""s„cs„c +p'c') . (31}

The metric is here treated as an unquantized ex-
ternal field. The scalar field is quantized canon-
ically by imposing the equal-time commutation
relations
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v = sz/s 4 = (-g)"'4 (33)

is the conjugate momentum to 4.
Since the field C (x, t) is quantized, the wave

equation (4) now becomes an operator equation.
The solution can be given in at least two ways. In
terms of the time-independent symmetric-top
wave functions wk

C(x, t) =
72 Q[C,(t)ae, (x)+C,at, (x)],1

k

(34)

where the zok, as usual, are the time-independent
symmetric-top wave functions and the C, are
operators satisfying the coupled equations [in 7

coordinates; cf. Eq. (20)]

d Ckd' +Z Xkk C, =0.
T AI

(35)

Alternatively, in terms of the asymmetric-top
wave functions u& regarded as instantaneously
static (say, at t„a fixed background),

e(x, t,)=Q (2E,.) ~'[A,.(t )u, (x)+A)(t )u&(x)]

A, (t) = Q ['IL~~.(t)A, i(to)+'U~~, (t)At, (to)], (38)

where%, , , and'U, , , are complex c-number func-
tions of time.

The canonical nature of A&, A~ yield the following
familiar conditions for the transformation coeffi-
cients:

(39a)

(39b)

(36)

Here we use the collective indices k= (J, K, M, y)
and j = (J, g, M, y) to denote the symmetric- and

asymmetric-top indices, respectively.
The creation and annihilation operators A, , A~

are defined in a way such that the states with a
fixed number of quanta in each mode at a given
time are the eigenstates of the Hamiltonian of the
field theory at that time. As a consequence of
(32), they satisfy the commutation relations

[Aq, A, ,] = 0 = [At, Aqt ],
(37)

[A, , A, ]=6,q

The time development of the operators A, (t)At(t)
is described by a general Bogolubov transforma-
tion:

l~ «)i' —IP.«)l'=1 (41b)

The quantity ~P~(t) ~' gives the average number of
particles present in the kth mode at time t if the
state is the vacuum at tp.

Laplacian operator (see I), the expansion coeffi-
cients 8» [Eq. (10)], and the c-number field quan-
tities h» and h, [Eq. (19)]. In this way, the dy-
namics of the field is again reduced to a c-number
problem, the essence of it amounting to solutions
of the classical field equations [Eq. (20) or (13)].

For a general time-dependent metric like the
mixmaster, the transformation matrices are in
general nondiagonal. Hence, if one starts out with
a pure positive-frequency wave component in a
certain mode j„ then at some later time one will
find a certain amount of negative-frequency j,
component, as well as some positive- and nega-
tive-frequency waves of some other mode j,.
These effects correspond to particle creation and
mode mixing, respectively [the amounts are mea-
sured by'U, .

~ and%(, . &,'U,. z, respectively, as one
&l~l

can easily see from Eq. (38)]. The latter is a new
phenomenon absent in simpler model universes,
such as the Robertson-Walker, Kasner, and Taub
universes. Wave processes in the mixmaster
universe are rather complicated. In order to
understand the problem in some depth, it is easier
for the purpose of presentation to deal with the two
processes separately. Thus in this paper II we
direct our attention to uncoupled modes only and
discuss particle creation associated with them.
Wave coupling and mode mixing will be discussed
in a following paper (III).

In the basis of the symmetric-top wave functions,
the uncoupled modes in the mixmaster space con-
tain only the low-lying levels J= 1, 2; K = -1, 0, 1
(see I and Sec. II). There, like the simple model
universes, separation of variables in the scalar
wave equation allows for mode decomposition and
the field amplitudes develop in time obeying a
wave equation of the form (20) with diagonal R», (t)

j„(t)+W, '(t)y, (t) =0 . (40)

(A dot here denotes a time derivative. ) Since
there is no mode coupling, the process is de-
scribed by a diagonal Bogolubov transformation
[cf. Eq. (38)]:

A (t) = o.'„*(t)A„(t,)+P,(t)At, (t,) . (41a)

The transformation coefficients satisfy the con-
dition [we set j=j' in Eq. (39a)]

The coefficients of the Bogolubov transformation

Q, ,',p, , , give a complete description of the sys-
tem. In Sec. GI of Ref. 2, they are calculated in
terms of the eigenvalues E,. of the mixmaster

IV. PARAMETRIC OSCILLATORS, BARRIER
REFLECTION, AND PARTICLE CREATION

The wave equation (40) has been a subject of ex-
tensive study. With arbitrary time dependence of
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the natural frequency W(t}, exact solution does
not exist except for certain special functional
forms. Various methods of approximation pre-
vail, however. " It is not our intention here to try
to cover different approaches; rather, as one way
to understand the problem, we review the analogy
between the process of particle creation and the
excitation of parametric oscillators~ and relate
them to the scattering of classical waves" over a
barrier. (This relationship was implicitly as-
sumed in Ref. 8.) The amount of particle creation
in the adiabatic limit is shown to be small.

R =

IWt

+Re-IWf

(a)

IWf

A. Parametric oscillators

Consider a one-dimensional classical oscillator
with variable frequency W(f}. Assume that W(&)

takes the constant values 5', as t +~. The real
solution of the oscillator equation

j(i)+ w'(f)y(f) = 0

e-IW -IWt

+p I IW f

(b)

has the asymptotic form as t-+~
(f) L(n sl wpt+ sg s-iw~t)

A complex solution of the wave equation also
exists which asymptotically approaches

4 (t)=s'+- +Re '+ for t

C,(t) = Te'e+', for t-+~
where R and T are related to (a„a ) by

(42)

(43)

(c)

v (t)

a =1+R*,
(44}

in an alternative view, Eq. (43) describes the

problem of reflection over a one-dimensional bar-
rier. If we regard t as a spatial variable and

W(t) as the potential function, then the wave equa-
tion corresponds to the time-independent Schro-
dinger equation and P becomes a state function.
Thus, in the picture of barrier reflection, Eq.
(43) describes the situation where a wave of unit
amplitude comes in from t = -~ traveling to the
right and is reflected at a potential barrier. This
results in a reflected wave of amplitude R to the
left and a transmitted wave of amplitude T to the
right [Fig. 1(a}].

In the particle creation problem, the splitting
of waves are arranged differently [Fig. 1(b)J:

=e s-', for t--~
(45)

+ +Pe + for t~+ .
The assumption of asymptotically constant oscil-
lator frequency corresponds to the situation of a
statically bounded expansion of the universe.
That is, the universe evolves in such a way that

FIG. 1. (a) Wave scattering. R and T are the reQec-
tion and transmission coefficients. (b) Particle creation.
lPl2 measures the amount of production. (c) Barrier
reQection. The "effective potential" arises from the
time variance of the backgramd.

it is static in the beginning and the end, but can
vary smoothly in the time in-between. A static
metric is necessary at t= -~ for an unambiguous
definition of the vacuum and at t=+~ for an un-
ambiguous determination of produced particles. '

In (45), P measures the degree of mixing of the
positive- and the negative-frequency components.
In the context of quantum field theory, lPP gives
the amount of particle production (in a particular
mode). The condition for the conservation of cur-
rent density (the continuity condition) yields the
following relation between R and T in the scatter-
ing problem:

(46)

If there is no change in the frequency, then

This corresponds, for the particle creation pro-
blem, to the relation
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I
o'I' - I@I' =I, (47)

which was obtained earlier [Eq. (41b)] from the
Wronskian condition.

1 dW
g' dg

(48)

a good approximation to the solution of the wave
equation is given by the (first-order) WKB approxi-
mation (also known as the quasiclassical, or
adiabatic, approximation). We now use this meth-
od to calculate the rate of particle creation under
the adiabatic conditions.

Consider a wave of energy g propagating towards
a one-dimensional potential barrier described by
the potential functions(t). If the quasiclassical
approximation is assumed to hold in the regions
outside and inside the barrier, the solution of the
wave equation

d2

,, y(t)+ w'(f)y(t) = 0

can be written as [see Fig. 1(c)J

A,P(t) =
( ( )), , exp 'J) t»dt)

(49)

())», exp -t I»dt) (te )
a

t
—(-())."-(I -')

t
e *.„, exp t Wdt) (te), ,wfj"' (50)

where W(t) =[(g -t)(t}]'~' and a&& are the classical
turning points. The wave amplitude before and
after the scattering are related by the matrix re-
lation"

Az 28+ 1 28 g 28 1 28 B

(A2) (-i(28 —1/28) 28+1/28 I ()B2J (51}

or

A=SB,
where the "opacity parameter"

b

8=exp i W(t)dt
a

measures the height and thickness of the barrier

B. Quasiclassical approximation

In the case in which the natural frequency W(t) of
a particular mode of the system changes sufficient-
ly slowly in time relative to the change in the back-
ground, e.g. , when

as a function of energy. Since the scattering ma-
trix S is unitary, B can be obtained from A via the
action of St. In the wave-reflection problem [Fig.
1(a)] the initial and final conditions are

A~=1, B)(= T,
A =Re B =0. (53}

From (57), the transmission and reflection coeffi-
cients are given by"

T= 2/(28+1/28),

R = --,'i(28 -1/28) T,
(54)

One obtains easily from (57) the amount of par-
ticles produced:

2

IPI'=l 28-—
28 (56)

For a "high and broad" barrier, 8» 1 and
I pI = 8 .

Thus, in the adiabatic limit, the "opacity param-
eter" of the barrier gives an approximate measure
of the amount of particles created. The "barrier"
here arises from the variation of the time-depen-
dent background in a statically bounded universe.
One can therefore gain a good deal of knowledge
about the qualitative behavior of particle creation
by studying the details of the effective potential.
In the wave equation (13) with diagonal H, the
effective potential W, '(t) = —U(t)+ e~'(t) consists
of two parts: U(t) =I' '(t)+I'(t), which is related to
the logarithmic dependence of volume on time, is
a, purely geometric quantity, while ~, '(t) = k'+ p'
depends on the particular energy level and on the
mass of the particle created. It should be noted
that here, as different from potential scattering,
k' is regarded as a fixed parameter and p' as a
varying parameter.

The above approach is best illustrated by dia-
grammatic methods. From a solution of the
Einstein's field equations, the time dependence of
the volume is used to calculate U(t}, and from a
solution of the scalar field equation one obtains the
eigenvalues k' as a function of time through their
dependence on l~. The sum of these two terms
yields the effective potential W'(t}. Then, just by
examining the profile of the potential barrier, one
can infer the qualitative behavior of particle crea-
tion. For example, in Fig. 1(c), the area of'0
above the line g (corresponding to y, ') measures
the amount of production. From this, one can
draw the conclusion almost immediately that for

wherea, s in the particle creation problem [Fig.
1(b), the initial and final conditions are

Az=o y Bx=~ y

(55}
A, =l, B,=o(.
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the same geometry, in the same level, fewer mas-
sive particles are produced than light ones [cf. Ap-
pendix B of Ref. 16].

For the model universes considered here, par-
ticle creation is not so easy to analyze since the
quasiclassical approximation is not valid near the
cosmological singularity. Hence the asymptotic
form for t --~ in Eq. (45) does not hold and an un-
ambiguous definition of the vacuum state near the
singularity does not exist. To study particle crea-
tion in the mixmaster universe, one must make
adhoc assumptions about the initial state. Such
will be done in Sec. VI so that numerical solutions
can be found.

1J, =-, tV, a, a*, , (57)

which can be written with the help of Eqs. (44) and

(46) as

z =-,'w JI+R]2,

J, =-,'w (1 —I&l') .
The variation is thus

aJ=J -Z, =W ((R('+Rex).

(58)

(59)

In the adiabatic approximation, the reflection
amplitude was given earlier" by (54). Substituting
it into (59) one obtains

J= W (e~'+sin2p e "),
to

p+io = W(t)dt,

where p and 0 are real numbers. We see that the
variation of the adiabatic invariant is an exponen-
tially small quantity. Besides, the variation de-
pends on the initial phase, owing to the presence
of the term ReR in Eq. (59). The result is proved
to be valid also for a quantum oscillator. Further-
more, it can be shown that if the kth derivative of
the function W(t) has a finite discontinuity on the
real axis, the variation of the adiabatic invariant
is proportional to the kth power of the small pa-
rameter ~(1/W'}(dW//dt)~. 22 In the context of quan-
tum field theory, the adiabatic invariant here cor-

C. Adiabatic invariants

Adiabatic invariants are physical quantities
which change so slowly in response to slight vari-
ations of the external conditions that they may be
taken as constants of motion. " The action J=E/W
(the ratio of the energy to frequency) of a harmonic
oscillator is such a quantity. " If the external con-
ditions can be described by an analytic function of
time, the variation of the adiabatic invariant of the
classical oscillator can be shown to be exponen-
tially small. 22 Thus, from (42), the asymptotic
values of the action for t a~ are given by

responds to the particle number created in a given
mode. The above result states that in the limit of
an infinitely slow expansion of the universe, the
average number in each mode before and after the
expansion differs by an exponentially small quan-
tity (cf. Ref. 4, Sec. D).

V. HIGHERARDER WKB APPROXIMATIONS

In the Sec. IV it was shown that there is little
particle creation in a slowly changing universe.
The adiabatic limit was reached as the first-order
WKB approximation. As higher-order approxima-
tions are taken into account, the solution depicts
an increasingly rapid varying background. " In

this section we make use of the formalism of suc-
cessive WKB approximations to calculate particle
creation up to the fourth order (in T ', where T
is a long time characteristic of the system}. The
results obtained here are useful in studying the
problem of regularization of the energy-momentum
tensor by the adiabatic method. "

Higher-order WKB approximations to the wave

equation (49) are obtainable by introducing the
transformations22

dt„= W„ ddt„, -=K„dt (W2=- W, t2=-t),

y„= W„"2y =K "y
Kr = WOW~

' ' ' 5"„,.
(60)

where

8'r' = 1+~2„)
d2

(
2r W 1/2 di 2( r-2 )'

r-1 r

(61)

If ~e2„) « I, the solution of the wave equation (49)
correct up to the rth order of derivatives of the
parameter W' with respect to t„ is then [from (60}]

A exp(i JK„dt)+ Bexp(-i fK,dt)K"'
where A and Bare complex constants.

In the rest of this paper we shall study the con-
formally coupled wave equations of the form

x"+ (&+@x=0 (63)

where g denotes a general amplitude function of a
particular mode and a prime denotes differentiation
with respect to a general time &. Equation (63)
stands for either Eqs. (20) and (25) in 7. time or
Eq. (29} in 2} time, while X stands for h or g, re-
spectively. The general solution can be written in
the WKB form

The rth order W-KB equation is then given by (2 ~ 1)

d2
2

di 2 0r+w. Ar=0
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p
)(((e) (20)1/2 — (20)1/2 +

(64)

2 = (2)( )-'2 eee (-2 J( )'i di),
where

(69)

e, =—exp +i Qd&

With the introduction of two functions n, p, one has
the freedom to impose one additional condition.
This is chosen as

- 1/2

K4 = 0 1+ ~ (I+~E)(1+E4)

Note that e„ is written here instead of c„. To the
fourth order (in powers of time derivatives, T~),

n p
(2)))~ (22))"' ') ' (65) K4=0 1+ +C2+e4+~&

From the Wronskian condition (continuity equation)
= 0(1+E~+E4)~~ (7P)

X X XX

it follows that

(66)

(6'l)

where

Eg = E~+ (2)/0

E 4=E4+E~(2)/0

Define s =—I(6I' as the amount of particle produc-
tion. We want to derive an expression for s cor-
rect to the fourth order. First, invert (64) and
(65) to find

Thus

I)(P =(2&.) '
1 1 3 2=(20) (1 —xE,(~) ~ 2(4) —~ 4(4)+ 8 g(g) ) .

(71)

Thus, making use of Eq. (66),

(68)

The number in the parenthesis following e„e4 de-
notes the order of T '. Taking the time derivative
of (69), one derives

I)('I' = (21f,)-' Ic,'+ ——induc,

Then, one seeks to express X in terms of c2 and

E4 defined in Eq. (61). To the fourth order, the
wave function X can be approximated by the posi-
tive-frequency solution" [Eq. (62), A=P, B=l]

The term in the large parenthesis reduces to (in
third order) -0'/0+ —,'E, '. Combining (71), one
gets

I)( I'=(20) '(0'+[-,0'E,(,) +-,(0'/0)']+-, O'E4(4) +-,0'E,(4) --, O'E, (,) —,(0'/0) E,—(,) +-,(0 /0)E, (,) ] .

(72)

Now, all that remains is to derive expressions of
E, in terms of (2), 0, and their derivatives. (It is
readily seen that terms of fourth order in c4 and
E, cancel in the expression for s). This involves
straightforward differentiation steps starting from
the definition of (61). (The details of this calcula-
tion can be found in Appendix B of Ref. 21.) To
the second order, they are given by

—X VPS(2) g6 2IE( ('l4a)

S(4) ~GO + ~O 0 P 0

terms of same order and putting them into (68),
we obtain to the second and the fourth order, re-
spectively,

0 4 20
qt Q @II'= ——2Q ———a'

(73a) +~+~0—~0' —3 —,II' . ('l4b)
Q

(73b)

where

Q'Q=~

Substituting (73) into (71) and (72) and selecting

This result agrees with that given in Appendix II of
Ref. 8. The method presented here can be ex-
tended to calculate higher-order terms, but as an
illustration of the method the above calculation
should serve well enough. We turn now to a com-
plete solution of the wave equation.
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VI. NUMERICAL SOLUTIONS AND DISCUSSION

1 Q' . Q, . Qp'= — —+i —e ++i —p .
2 Q Q 2Q

(V5)

To get equations for lPl3, the amount of particle
production, one then introduces the three real
variables

s= Ipl',

p =ap*e '+a*pe, ',
q=i(ap*e ' —a*pe, ') .

(V6)

After a little manipulation, the following system
of three linear equations is obtained:

ds 1 II' 1Q
p +

dg 2Q 2Q

—= —(1+Rs) — —+Rn) q,dp Q' Q
dg Q Q

We begin by reducing the second-order equation
(68) for X to two first-order coupled equations for
n and P. This is done in the following way. ' Dif-
ferentiating (64) once and subtracting from it Eq.
(65), one obtains an equation containing n' and P'.
Then differentiating (65) once and substituting in

(68), one obtains a second equation containing a'
and P'. Solving these two equations for e' and P'
in terms of e and P, one gets

1 O' . Q 3 . Qa' = ———i — e,'p —i —n,
2 Q Q + 2Q

the particle (p') and its energy (k3), which are
eigenvalues of the Helmholtz equation. Express-
ions for some low-lying levels in the rnixmaster
universe have been given explicitly in I in terms
of l, The time dependence of l,. is, of course,
solvable from Einstein's equations. Therefore, a
combined solution of the field equation and the
scalar wave equation should yield results for s,
the amount of particle production.

A. The Kasner universe

We study first the simple Kasner universe, '4

which is a spatially homogeneous and anisotropic
universe of Bianchi type I (flat). The three radii
of the universe assume power-law time depen-
dence,

(i=1, 2, 8), (V8a)

where the three indices satisfy the relations
3

4=1 4=1
(V8b)

Equivalently, in place of the triplet (p„p3,p, ), one
can use a single parameter u (1c uc ~) to describe
a particular history of the universe. (See, e.g.,
Ref. 26).

The Helmholtz equation in the Kasner universe
is separable in the basis functions

3e,(x) = e'", (V9a)

and the corresponding eigenvalues are given by

dq Q Q
d& Q
—= —(1+2s)+ —+20 p .

Q

u' u2 u' '~2
', +-sr+
I 2 3

(V9b)

The initial conditions s =P = q' = 0 for & = &0 are
specified under the assumption that no particles
have been created before the time f= &0. This
would be the case should one make the spacetime
flat at times prior to &0. In the Minkowski-space
epoch (g & f,) the vacuum state is well defined and
no particle creation occurs. This setup of initial
conditions circumvents the previously mentioned
serious problems that arise when one attempts to
define the vacuum state near the cosmological
singularity. It is quite artificial, as one commonly
visua1izes the universe at its earliest state as
possessing a strong gravitational field and large
curvature, far from being flat. Therefore, one
should not expect the method used here as capable
of yielding exact numbers of cosmological bearing;
our main aim here is to understand the character-
istic features of particle creation particular to
anisotropic universes. For this purpose the pres-
ent approach is fully suitable.

The quantities Q, Q appearing in the above equa-
tions are functions of l,. and l, '. Q is a purely geo-
metric quantity, whi. le Q is related to the mass of

where k,. are the components in the ith direction.
In what follows, the wave equation (68) is solved

using the 7 coordinate because the radii functions
then assume a simple form

AV'
V= l1l 2l 3 = e (V8c)

where A is some constant (an expansion param-
eter). The quantities II' and Q are given by [Eqs.
(20) and (25)]

0 =V(g +)'3 )
(T)
Kasnez 6 ~ +

3 H Pl +P3+P3)(Pl P3 +P3 P3 ,
+Pl P3 )f

(80)
where p; =—I, '/E„and a prime now denotes differen-
tiation with respect to ~. It can easily be checked
that whenever /, satisfies the vacuum Einstein
equations (VSc), Q=O. Thus, in an empty space,
the minimally and conformally coupled equations
are identical.

The coupled equations (VV) are solved on an IBM
860/91 computer using a fourth-order Runge-Kutta
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integration routine. Two Kasner solutions char-
acterized by the parameter u=1.25 (case A) and
u=10 (case B}have been studied. [The P, param-
eters are correspondingly (-0.328, 0.590, 0.738)
for case A and (-0.090, 0.099, 0.991) for case B.j
The results of numerical integration, with the ad
hoc assumption of a vacuum state at 7.,= -10, are
displayed in Figs. 2 and 3. One sees that for an

expanding universe, there is always one radius of
curvature decreasing and two increasing. In Fig.
2(a), l, » l, = l, depicts a prolate configuration.
For the time interval considered it shows the
evolution of a "long thin rod" into a nearly iso-
tropic configuration, whereas in Fig. 3(a) l, =l,
)) l 3 depicts an oblate conf igu ration and the evo-
lution of a "large thin disk". In the solution of the
wave equation we have chosen a particular low-
lying symmetric mode (k„k„k,) =(1, 1, 1) for con-
sideration, and the effects of geometric shape and

mass on particle production are studied.

1. ShaPe effect

In case A particle production increases exponen-
tially to a large quantity, while in case B it main-
tains an oscillatory behavior at a low level (re-
call that T is an exponential time). The effect of
geometric shape is apparent here. For one thing,
the change of l,. is more drastic in case A than B.

For another, the rapid contraction along the
longer axis (in 1-direction} in case A is more apt
to produce low-energy particles (long-wavelength
excitation) than the small-scale slow variations in

case B. As one can see from Figs. 2(b} and 3(b),
before ~--3, when the change is most rapid, the

production in one case is about three times the
other. After ~a -2, both cases tend to a more
symmetric configuration where the conformal
flatness of space grows in effect and (massless)
particle production is reduced.

2. Mass effect

Relative to the same background, in the same
energy range, particles of higher mass are pro-
duced in less quantity. This result is in agree-
ment with the conclusion reached earlier (Sec. Dt'

C} for a nearly adiabatic situation. Compared to
the short deBroglie wavelength of high-energy or
high-mass particles, the background expands
rather slowly. Thus, particle creation is scarce
and remains nearly constant. In fact, in both
cases as illustrated, the high mass (p,

' = 100}pro-
duction approaches a constant as the volume of the
universe becomes very large. As an example of
the effect of conformal invariance, one also noti-
ces that the decrease in the production of mass-
less particles is faster than that of higher mass.

3.0 0.3

20—

2.0 0.2

I.o O. l

0
-10 -6

r T I ME

I

—.2Q
r TIME

(a)
I o.o

FIG. 2. (a) Kasner solution, u = 1.25, a prolate configuration. l; are the radii curvatures. VOL denotes the volume.

(b) Particle production s as a function of & time for particle mass p2 = 0, 1,100. Numerical integration starts from
7 = -10, before which the space is assumed to be flat and no particle creation takes place.
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3

Crn &&tug:
P

FIG. 4. (a) Anisotropy equipotential in the mixmaster universe (courtesy C. W. Misner). See Ref. 25 for explanations.
P+, P are the shape parameters. (b) Characteristic solutions of the mixmaster universe (courtesy D. J. Okerson).
The dashed lines are the trajectories of the universe point in the shape-parameter space ("minisuperspace") describing
different world histories.

and in no way implies the singularity. At this
initial instant, the universe point is assumed to
start at the origin of the shape-parameter space,
where (P+, P )o=(0, 0) corresponds to an isotropic
configuration. Three selected sample mixmaster
solutions are shown in Figs. 5(a}, 6(a), and 'l(a),
with initial values (P, ', P '), =(2, 1), (-1, 2), (1, -2),
respectively. In all three cases, the initial velo-
cities of the universe point P'=(P, ~+P "}'"are
set equal. The case (2, 1) in Fig. 5(a) corresponds
to a "corner run" solution, but after three bounces

against the potential wall, the universe point
changes direction and drifts out. Notice that the
amplitude of the oscillations decrease. This is
because the equipotentials contract inwards with
an expansion of the universe, thus "pushing in"
the bounces with them. The behavior of the three
radii are shown in Fig. 5(h). One sees that the
1-2 radii oscillate in larger amplitude while the
3 radius decreases in time. In Fig. 6(a), with an
initial direction (-1, 2) set only slightly deviated
from the 2 symmetry axis, the universe point
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FIG. 5. (a) A "corner run" solution. The world trajectory starts at (p„p )0 = (0, 0), an isotropic configuration, with
initial velocity (p+', p ')0 = (2, 1). A prime denotes d/dg. (b) Curvature radii and volume as a function of cosmic time t .
The initial time of integration is set arbitrarily at to = 0, It is not the cosmological singularity. (c) Particle production s
for mass p, = 0 in six uncoupled levels labeled by Jz. (d) Particle production s for p, =1.

drifts deep into the two-channel. Physically, this
corresponds to a nearly oblate configuration [Fig.
6(b)] where iwo expanding major radii (1 —3) oscil-
late in turn and the minor radius (2) contracts
monotonically. The picture is a small oscillating
"pancake. " If the initial direction of the previous

run is reversed, i.e., (P, ', P '), =(1, -2), one sees
in Fig. 7(a) that the universe point bounces onto
the perpendicular potential wall in the 2-direction
and gets reflected. Afterwards, it continues to
travel until it executes a second bounce off the
wall in the 1-direction. These bounces occur in
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FIG. 6. (a) A "small oscillation" solution (P+', P ')0 ——(—1,2). (b) Curvature radii and volume functions. (c) Particle
production for p~ = 0. (d) Particle production for p~ = 1.

Fig. 7(b) at t-0.6 and 2.6 where I, and l, are at
their respective maxima. The two cases 6(a) and
7(a) a,re characteristic solutions of the mixmaster
universe and are called the "small oscillation"
and the "bounce" solutions, respectively.

The wave equation (7'I) is solved for the six un-
coupled modes J =1, 2, K=-1, 0, 1. Results are

shown in Figs. 5-8. Again, we divide our discus-
sion into three distinctive effects.

ShaPe effect

Compare the massless particle production
curves in Figs. 5(c), 6(c), and 7(c). Here the effect
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paper I. Because of the anisotropic background,
the directional effect of levels shows up mani-
festly. The remarks in the last subsection (VIA 2) on
the Kasner universe also apply here. For example,
in the small oscillation solution [Fig. 6(c)], within
the triplet 1„„the one level 1, which corre-
sponds to the direction perpendicular to the disk
has the highest production; the other two levels
1» which correspond to the two oscillating direc-
tions are oscillatory and nearly degenerate. The
same happens for the J= 2 multiplets, although of
a smaller amplitude. A similar situation occurs
in the corner run solution (2, 1), although the axes
of symmetry are now in the 3-direction, thus
making the 1, level extraordinary compared to 1,
and 1, levels.

0.02

I I I I I I I

0.50 ) .00 &.50 2.00 2.50 5.00 5.50

FIG. 8. Particle production in the J= 2, E = 1 level for
p = 100 for the three characteristic solutions (P+', P ')p
= (2, 1), (-1,2), and (1, -2).

of the geometric shape does not appear as drastic
as that in the flat Kasner universe. This is be-
cause the addition of the curvature tends to soften
the extremities of the time dependence. (Thus,
near the cosmic singularity when spatial com-
ponents of the curvature become small compared
to their time derivatives, the anisotropic effect
magnifies in significance. ) However, qualitative
features characteristic of the different eras do
show up. In the "small oscillation" solution [Fig.
6(c)] the oscillatory feature of the production
curve reflects the periodic behavior of the back-
ground. There is more production in the first
cycle, because the change in the short radius l,
is more rapid there. Deep into the corner, the
contraction turns more gradual and the production
lessens. This phenomenon occurs in the bounce
solution too. In Fig. 'l(c), we see that the second
bounce elicits more production. This happens
when the universe point begins to migrate into the
channel and the 2-radius starts a steep contraction
[Fig. 7(b)]. Thus, the "squeezing" of the flat
"pancake" enhances particle production with large
momentum in the perpendicular direction.

Z. Level effect

The expressions for the energy levels in the
mixmaster universe can be found in Table I of

3. Mass effect

These effects are interrelated. In general, one
expects to find large production of particles of
rest mass p, in those modes of energy k when the
time rate of change of the background (ur ) is com-
parable with the natural frequency co, of the sys-
tem, ma=(k~+p )'t' (for minimal coupling). If
one measures the change of background by &u,

= ~l/l~, then the optimal condition for particle
creation is w, s +,. Therefore, under the same
background, production of particles of higher
mass or energy will be relatively fewer. This
corresponds in the wave picture to the nearly
adiabatic situation where high frequency scalar
waves, being considered as "small ripple" per-
turbations on the background, suffer little pa-
rametric amplification from the vibration of the
universe. For high enough mass (g~»k~, Q) the
effects due to differences in shape and level are
much obliterated. Compare Figs. 7(c)-7(f),
where production is plotted for various masses
p.
' = 0, 1, 4, 10, respectively. Observe that the

over-all production decreases as particle mass
increases. At the same time, the directional
effects due to the levels gradually disappear. In
Fig. 8, particle production in a particular level
2, at p, '=100 is plotted for all three solutions. It
is seen that they nearly coincide. The five other
levels under study also show the same behavior.
Average amount of production reaches a low level
of constant value (-5x 10 ). As one scans through
Figs. V(c)-7(f) and 8, one sees the oscillatory be-
havior gradually developing. The period is related
to the characteristic time I/p of the particle. For
very heavy mass or high energy, the production
curve will approach a horizontal line. The high-
energy behavior will be discussed further in paper
III, within the framework of asymptotic-level
analysis.



3280 B. L. HU

ACKNOWLEDGMENTS

The author expresses his gratitude to Professor
J. A. Wheeler and Professor T. Regge for advice
and guidance on his Ph. D. dissertation work, up-
on which the present paper is partly based. He is

grateful to the Institute for Advanced Study,
Princeton, New Jersey, for its hospitality while
some of this research was carried out. He is
also thankful to Dr. S. A. Fulling, Professor
Leonard Parker, and Professor R. V. Wagoner
for discussions

*Work supported in part by the National Science Founda-
tion under Grant No. GP-39178 to Stanford University
and by the Institute for Advanced Study, Princeton,
New Jersey 08540.

)Based in part on the author's Ph.D. thesis, Princeton
University, 1972 (unpublished).

f.Present address.
B. L. Hu, Phys. Rev. D 8, 1048 (1973).

2B. L. Hu, S. A. Fulling, and L. Parker, Phys. Rev. D 8,
2377 (1973).

~P. Guttinger, Z. Phys. 73, 169 (1973); R. Tolman, The
Principles of Statistical Mechanics (Oxford Univ. Press,
New York, 1938), Sec. 97.

4L. Parker, Phys. Rev. 183, 1057 (1969).
SR. Penrose, in Relativity Groups and Topology, edited

by C. DeWitt and B. DeWitt (Gordon and Breach, New

York, 1964).
~The case when the (rest) mass can be neglected deserves

special attention in the era near cosmological singular-
ity because the particles created then are predominant-
ly relativistic. See L. Parker, Phys. Rev. Lett. «28

705 (1972).
7Ya. B. Zel'dovich, Zh. Eksp. Teor. Fiz. Pis'ma Red.

12, 443 (1970) [JETP Lett. 12, 307 (1970)].
Ya. B. Zel'dovich and A. A. Starobinsky, Zh. Eksp.
Teor. Fiz. 61, 2161 (1972) [Sov. Phys. —JETP 34,
1159 (1972)].

S. A. Fulling, Ph.D. dissertation, Princeton University,
1972 (unpublished). See also 8. A. Fulling, Phys. Rev.
D 7, 2850 (1973).
Discussions on quantum field theory in de Sitter space
can be found in, e.g., O. Nachtmann, Commun. Math.
Phys. 6, 1 (1967); N. A. Chernikov and E. A. Tagirov,
Ann. Inst. Henri Poincare 9, 109 (1968). For Fried-
mann space see, e.g., A: A. Grib and S..G. Mamaev,
Yad. Fiz. 10, 1276 (1969) [Sov. J. Nucl. Phys. 10, 722
(1970)]. For Lobachevskii space see, e.g., B. A.
Levitskii, Theor. Math. Phys. 8, 791 (1971).

~~See, e.g., R. Bellman, Perturbation Techniques in
Mathematics, Physics and Engineering (Holt, New

York, 1964), Chap. 3; A. Nayfeh, Perturbation Methods
(Wiley, New York, 1973), Chap. 7.

~2V. S. Popov and A. M. Perelomov, Zh. Eksp. Teor.
Fiz. 56, 1375 (1969) [Sov. Phys. —JETP 29, 738 (1969)];
V. S. Popov, ibid. 61, 1334 (1971); 62, 1248 (1972)
[Sov. Phys. —JETP 34, 709 (1972); 35, 659 (1972)];
A. M. Perelomov, Phys. Lett. 39A, 165 (1972); 39A,
353 (1972).
K. G. Budden, Radio Waves in the Ionosphere (Cam-
bridge Univ. Press, New York, 1961); J. R. Wait,
Electromagnetic Waves in Stratified Media (Mac-
Millan, New York, 1962); V. L. Ginzburg, The Pro-
pagation of Electromagnetic Waves in Plasmas
(Pergamon, Oxford, 1970).

~4E. Merzbacher, Quantum Mechanics (Wiley, New York,
1970), Chap. 7.

~~V. L. Pokrovskii and I. M. Khalatnikov, Zh. Eksp.
Teor. Fiz. 40, 1713 (1961) [Sov. Phys. —JETP 13
1207 (1961)];V. L. Pokrovskii, S. K. Savvinykh, and
F. R. Ulinich, Zh. Eksp. Teor. Fiz. 34, 1272 (1958);
34, 1629 (1958) [Sov. Phys. —JETP 7, 879 (1958); 7,
1119 (1958)].

6B. L. Hu, Ph.D. dissertation, Princeton University,
1972 (unpublished).

~~In classical dynamics, one example is the magnetic
moment of a charged particle in a space- or time-
dependent magnetic field, see, e.g., S. Chandrasekhar,
Adiabatic Invariants in the Motions of Charged Par-
ticles, edited by R. K. M. Landshoff (Stanford Univ.
Press, Stanford, 1958). The adiabatic invariants of
quantum mechanics are the quantum numbers of the
distribution over the energy levels. See, e.g. , Ref. 19.
R. M. Kulsrud, Phys. Rev. 106, 205 (1957).
A. M. Dykhne, Zh. Eksp. Teor. Fiz. 38, 570 (1960)
[Sov. Phys —JETP 11, 411 (1960)].
In the wave picture, one can visualize an inhomogen-
eous medium with refraction function W as consisting
of an infinite number of layers. Waves at the bound-
aries are split into reflected and transmitted com-
ponents. The total contribution from infinite times of
reflections adds up to the exact solution. On the one
hand, if the reflection is assumed to result from a
discontinuity in the refraction function of the medium
itself (the Fresnel reflection), the sum is called the
Bremmer series. Neglect of all internal reflection of
the Fresnel type leads to the first-order WKB approxi-
mation. On the other hand, if the reflection results
from a discontinuity in the f'irst derivative of the
refractive function (the Burman reflection), the above
series becomes the Sluijter series. Neglect of all
internal reflections of the Burman type leads to the
second-order WKB approximation. The method pre-
sented in this section to get higher-order WKB approxi-
mations corresponds to reflection from discontinuity
of higher derivatives in W. See H. Bremmer, in The
Theory of Electromagnetic Waves, A Symposium,
edited by M. Kline (Interscience, New York, 1951),
pp. 169-179; R. Bellman and R. Kalaba, J. Math. Mech.
8, 683 (1959); F. W. Sluijter, J. Math. Anal. Appl. 27,
282 (1969), and references therein.
L. Parker and S. A. Fulling, Phys. Rev. D 9, 341
(1974); S. A. Fulling, L. Parker, and B. L. Hu, paper
in preparation.
I. Imai, Phys. Rev. 74 113 (1948); 80, 1112 (1950);
B. Chakraborty, J. Math. Phys. «14 188 (1973). See
also Nayfeh (Ref. 11), Sec. 7.1.9.
Following the remark in Ref. 20, in the wave picture,
the rth-order WKB approximation is obtained by



SCALAR WA VE S IN THE MIXMAS TE R UNIVE RSE. II. . . .

neglecting all internal reQections due to discontinuity
in the r th derivative of the refraction function W.

Hence, correct to the r th order, the wave function
can be approximated sufficiently by the positive-
frequency solution exp( iJE—„df)/X„~ 2 Ph. ysically,
this means that the background varies slowly and
smoothly enough in the r th derivative that no particle
creation occurs to that order (absence of wave reflec-
tion). The particle operators are well defined to this
limit. This is the basic idea behind the adiabatic
quantization method in Ref. 21.

24E. Kasner, Am. J. Math. 43, 217 (1921).
25C. W. Misner, Phys. Rev. Lett. 22, 1071 (1969).

28V. A. Belinskii, E. M. Lifshitz, and I. M. Khalatnikov,
Usp. Fiz. Nauk. 102, 463 (1970) [Sov. Phys. —Usp. 13
745 (1971)l.

27This method is used to describe general type-IX
universes in R. A. Matzner, L. C. Shepley, and J. B.
Warran, Ann. Phys. (N.Y.) 57, 401 (1970); M. P. Ryan,
ibid. 65, 506 (1971); 68, 541 (1971).

SJ. A. Wheeler, in Battelle Rencontres, 2967, edited
by C. DeWitt and J. A. Wheeler (Benjamin, New York,
1968). C. N'. Misner, in Magic Witholt Magic: John
Archibald Wheeler, a Collection of Essays in Honor of
»s 0th Birthday, edited by John R. Klauder (Freeman,
San Francisco, 1972).

PHYSICAL REVIEW D VOLUME 9, NUMBER 12 15 JUN E 1974

Corresponding-states approach to nuclear and neutron-star matter

H. G. Palmer* and P. W. Anderson)
Cavendish Laboratory, Cambridge, England

(Received 11 February 1974)

The properties of nuclear matter and dense neutron-star matter are studied by an ap-
proach which largely avoids the microscopic assumptions of nuclear-matter theory. The
method is empirical, employing an extended form of the law of corresponding states to
deduce the properties of nuclear systems from those of laboratory substances such as
helium. It is possible to predict the solidification pressure and density, the compressibility,
and the critical temperature of nuclear and neutron-star matter. As previously reported,
a comparatively low solidification pressure is found for neutr on-star matter, implying a
solid core for most neutron stars.

I. INTRODUCTION

There are several reasons for attempting an
empirical approach to nuclear matter. The sim-
plicity and relative transparency of the method
to be described are worthwhile in themselves, and

may allow application to phenomena barely acces-
sible to conventional microscopic techniques. De-
tailed models of the nucleon-nucleon interaction
may be avoided as may the assumptions and re-
sults of standard (Brueckner) nuclear matter
theory. Indeed, the present approach may be re-
garded as an independent —albeit weak —test of
such theories. By working from the experimental
properties of real materials, we let nature com-
pute the bulk of the many-body effects, and only
have to concern ourselves with differences be-
tween substances. We pay for these advantages
of an empirical approach with a large uncertainty
in our results, and are only able to make order-
of-magnitude estimates. The uncertainties come
partly from the approximations used, but also
significantly from lack of sufficient source data;
there are few real quantum systems.

Our procedure is based on an extension of the

quantum law of corresponding states first proposed
by de Boer' and successfully used by him' to pre-
dict the properties of He' before any was available
for study. de Boer's model is not directly applic-
able to nuclear matter because of the considerable
difference between nuclear forces and the Van der
Waals forces typical of laboratory quantum sys-
tems such as helium. However, we are able to
generalize the corresponding-states law to apply
to a larger class of interactions by means of an
equivalent density transformation. We first apply
the extended model to symmetric nuclear matter
(-,' neutrons, —,

' protons), and then to neutron-star
matter, the latter causing more difficulty as less
experimental information is available.

Our chief goal is to predict the crystallization
pressure and density of neutron-star matter, which
bear considerably on the structure and dynamics
of neutron stars. A preliminary account of this
work' has already appeared, based on a less de-
tailed model than described here. Several other
authors ' have also examined the crystallization
question, using more microscopic techniques.
Clark and Chao' have followed an approach close
to our own —based on corresponding states —but


