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lead to a quantum theory, with % as the derived
constant.

CONCLUSION

We have shown, via a simplified model, that one
should not dismiss a priori the Planck length as
being irrelevant to observational physics. Break-
down of special relativistic dynamics in this model
occurs at 10"°-10%° eV, within the observational

regime of high-energy cosmic-ray events. Pos-
sible manifestations of the lattice structure could
be anisotropies in distribution, cutoffs in energy,
and anomalous stability of composite systems.
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The Poincaré and de Sitter groups are well known to imply a deep connection between the
structure of space-time and particle properties (mass and spin) for cosmological models
with constant four-dimensional curvature. An analogous relationship is constructed for any
isotropic spatially homogeneous cosmological model. The spin is proved to be constant;

a time variation of the masses of all physical systems may well exist. It is shown that the
variation m ~¢~!, which arises in the context of the Friedmann model, is not precluded by
present observational and experimental evidence.

I. INTRODUCTION

The investigation of the representations of the
Poincaré group' implies a deep relationship be-
tween the geometry of space-time and the funda-
mental properties of particles. The Poincaré
group itself is the group of motion in flat space-
time. It is indeed remarkable that the eigenvalues
of its Casimir operators can be interpreted in
terms of the masses and spins of particles.

Investigations of the representations of the
de Sitter group?®:3 have revealed a similar relation-

ship for curved space-time with constant curva-
ture. The de Sitter group is the group of motion
of the de Sitter space-time, and the eigenvalues of
its Casimir operators can, again, be interpreted
in terms of masses and spins of particles (Sec. II).*
On the other hand, cosmological models, the
curvature of which is not a constant, do not have
corresponding groups of motion.> Consequently,
the group-theoretical approach, which works so
well for flat and constant-curvature space-times,
cannot be applied, and one is left in the dark as to
the relationship between the geometrical structure
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and the fundamental properties of particles. This
problem is all the more intriguing because all the
cosmological models with nonvanishing matter
density and zero cosmological constant fall under
this category.

The present paper presents a derivation of such
a relationship for cosmological models which are
isotropic, spatially homogeneous and otherwise
arbitrary. It is shown (Sec. III) that for such mod-
els it is always possible to define, at any time ¢,
an associated de Sitter space-time, having the fol-
lowing properties:

(a) The constant (four-dimensional) curvature
of the associated de Sitter space-time is the same
as the four-dimensional curvature of the cosmo-
logical model at time ¢,

(b) The hypersurface ¢ =const of the associated
de Sitter space-time, for an appropriately chosen
t, is identical with the hypersurface ¢ ,=const of
the cosmological model.

It is then postulated that the masses and spins
of particles in a cosmological model at time t
are given by the eigenvalues of the Casimir oper-
ators in the associated de Sitter space-time. The
hypothesis is based on the following consideration:
In spite of the curvature of space-time, the eigen-
values of the Casimir operators of the Poincaré
group do correspond to the masses and spins of
particles. This amazing correspondence can be
understood if the flat space-time of the Poincaré
group is taken as a limiting case of curved space-
time, and the Poincaré group representations are
obtained from the de Sitter group representations
by the process of contraction,®~® as the curvature
K of the de Sitter space approaches zero. It
seems, therefore, that the associated de Sitter
space-time, as defined in Sec. II, is a better ap-
proximation to the reality of the cosmological
models, since the limit K~ 0 is not taken.

The consequences of this hypothesis are investi-
gated in Sec. IV and lead to the possibility that tze
masses of particles (and, in fact, all physical sys-
tems) vary in time and are inversely proportional
to the four-dimensional curvature of the cosmolog-
ical model.

This time variation is model-dependent; in the
representative case of a Friedmann universe the
variation m ~¢ ~! is obtained. In Sec. V the obser-
vational and experimental consequences of a time
variation of this nature are investigated, following
a recent review paper by Dyson.® It is shown that
the wealth of available data from beta-decay ex-
periments, planetary orbit observations, inter-
planetary ranging experiments, solar and stellar
evolution considerations as well as cosmological
data does not preclude such a time variation of all
masses.

II. THE CASIMIR OPERATORS OF THE DE SITTER
AND POINCARE GROUPS

The de Sitter group O(4, 1), the group of motion
in a de Sitter universe, is also the group of trans-
formations in five-dimensional Euclidean space
with coordinates £, ..., £ which leave invariant
the hypersurface

EE+EZ+ES - ER+ES =D (2.1)

Following Giirsey,®''° we denote the infinitesimal
operators of the de Sitter group by J,, (a, b
=1,...,5). They obey the following commutation
relations'':

_i[Jub, ch] =0gqpc = Bac Joa + Obc Jag = OpaJac -

(2.2)

The Casimir operators of the group are given by
C,=ddap s (2.3)
c,=U0,U,, (2.4)

where the quantities U, are defined by
Ua = €apcde I ve Jae (2.5)

(€4pcae is the totally antisymmetric tensor with
five indices).

The Poincaré group is obtained from the de Sit-
ter group by the process of contraction,®~® as »
-, Let us define

1

H“=3J5u’ (2.6)

Vx=_%€5)\xuunx Juu’ (2‘7)
1

Wa= g5 Uos (2.8)

1

Il=—WC1, (2.9)

I =—LC ==W, W,==V V=W (2.10)

2 64b2 2 a’a AV 5 * .

If we furthermore define
P,=1limII, (2.11)

b >

then it follows from Eq. (2.2) that
(P, Pl=0, (2.12)

J

-i[ P\, J ] =05, P, =65, P, (2.13)

and therefore the infinitesimal operators P,,dJ,
are the generators of the Poincaré group. Fur-
thermore, by Egs. (2.6), (2.9), and (2.11)

1
11=—Hunu_§b_2Jouuw (2.14)
lim I,=P,P, =m?, (2.15)
b=
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where m is the mass, and by Egs. (2.7), (2.8), and
(2.10)

lim I, =m?3s(s +1),

b—>o

(2.16)

where s corresponds to the spin, for a system
with nonvanishing rest mass.

Equation (2.14) is particularly interesting. It
shows that in de Sitter universe the invariant quan-
tity is not the mass of a particle, but some combi-
nation of the mass and the total angular momen-
tum. This feature of the de Sitter space-time is
of great theoretical interest, but of no practical
significance, because, since b is the radius of
curvature of the universe, the second term of
(2.14) is numerically negligible compared with the
first. [For an electron the ratio of the two terms

is
L \V ... <L>2
~10777( =
<bmec> n)’

where L is the angular momentum of an electron,
m, is its mass, and b ~10'° light years.]

(2.17)

III. ISOTROPIC AND SPATIALLY HOMOGENEOUS
COSMOLOGICAL MODELS AND THE ASSOCIATED
DE SITTER UNIVERSES

As pointed out by Robertson and Noonan,!? “the
observational evidence allows us to assume the ex-
istence of a congruence of fundamental world lines
which fills the universe.” If the universe is also
assumed to be isotropic and spatially homoge-
neous, then it is possible to choose a canonical
coordinate system (¢, x,, x,, ¥;) such that the metric
tensor in the coordinate system is of the form?!?

dx,? +dx,? +dxg?

ds®=dt® - S3(t) Tl 2 (3.1)
where
Tz(xlz +x22+x32)1/2, (3.2)

and on the fundamental world lines ds® =d¢t?. The
coordinate ¢ in the canonical frame of reference
is called “cosmic time.”

The isotropic, spatially homogeneous cosmolog-
ical models are classified into the following three
well-known types, according to the sign of k:

(i) k>0 (spherical space). The hypersurfaces
t = const have constant positive curvature.

(2¢) k=0 (Euclidean space). The hypersurfaces
t =const have zero curvature.

(iit) k<0 (pseudospherical space). The hyper-
surfaces ¢ =const have constant negative curvature.

The four-dimensional curvature of these models
is, in general, a function of the cosmic time ¢ and
is given, in terms of S(¢), by

K(t)=—,—‘,g“BRaB=—2;—2(s§+s‘2+k), (3.3)

where R,z is the Ricci tensor.

All three types have, as special cases, models
for which the four-dimensional curvature K is con-
stant and negative, K =-1/b%

(i) The Lanczos universe,

S(t)=b coshi, (3.4)

describes a universe which contracts to a volume
272p3C® and then expands.
(ii) The de Sitter universe

S(t) = % e’ (3.5)

[S(¢) is determined only up to a constant; the con-
stant 1/c is chosen by convention].
(iii) The function

S(¢)=b sinh 3 (3.6)
describes a universe which contracts to a singular
event at =0 and then expands.

Because of the uniqueness theorem for space-
time with constant four-dimensional curvature,
all the above-mentioned three special cases can be
transformed into each other, and ave, in fact, for
a given value of K ==1/b%, the same universe. We
will refer to this universe as the de Sitter uni-
verse. The three space-times are different from
each other only in that different congruences are
used for the fundamental world lines.

Given a cosmological model, which is isotropic
and spatially homogeneous, we now proceed to de-
fine the associated de Sitter universe at a given
cosmic time ¢,

An isotropic, spatially homogeneous cosmologi-
cal model is given by a function S(¢) in Eq. (3.1).
Denote its value and the value of its first and sec-
ond derivatives at a given time ¢, by

Se=S(t,),

. _d

So= 71 s(t),,:,o’ (3.7)
. d2

So = FS(t)IFtO

The associated de Sitter universe at time ¢, is now
defined as the de Sitter universe with the four-di-
mensional curvature

1 w s
KO =—m(8050 +502 +k)

= -7 3. (3'8)
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Because of Eq. (3.3) this de Sitter universe has
the same four-dimensional curvature as the cos-
mological model at cosmic time ¢,. Furthermore,
because of Egs. (3.4)-(3.6), the hypersurface ¢,
=const of the cosmological model is the same as
the hypersurface ¢ , =const of the associated
de Sitter universe, where ¢ is given by

bocosh"< %) , if k>0

o

tp={ = In(c®S,), if k=0 (3.9)
26,

bosinh“<-s—°>, if k<0.
bO

In the general case of cosmological models, the
four-dimensional curvature and the associated
de Sitter universe vary as a function of cosmic
time.

The concept of associated de Sitter universes
will now be used to establish the relationship be-
tween the geometrical structure of space-time and
the masses and spins of particles (or any other
physical system). We postulate that the masses
and spins of particles in a cosmological model at
cosmic time t , are given by the eigenvalues of the
Casimir operators in the associated de Sitter uni-
verse.

The postulate is based on the following line of
thinking: Galactic observations clearly show that
the four-dimensional curvature of the universe
does not vanish; the universe is not flat. Never-
theless, the Casimir operators of the Poincaré
group, the group of motion of flat space-time, do
correspond to masses and spins of particles. This
correspondence can be readily understood, be-
cause the Poincaré group is obtained from the
de Sitter group, the group of motion in curved
space-time with constant negative four-dimension-
al curvature, by the process of group contraction
(see Sec. II). The associated de Sitter universe is
a much closer approximation to the cosmological
model; the process of group contraction is not
used, and one can expect to obtain a better under-
standing of how fundamental properties of particles
are related to the geometrical structure of space-
time.

IV. MASSES AND SPINS IN AN ISOTROPIC,
SPATIALLY HOMOGENEOUS UNIVERSE

It was suggested in Sec. III that a relationship
between the geometrical structure of an isotropic,
spatially homogeneous universe U with varying
four-dimensional curvature, and the masses and
spins of particles can be established by assuming
that the masses and spins are obtained from the

Casimir operators in the associated de Sitter uni-
verse D, ({-cosmic time in U). Although the Casi-
mir operator 7/, [Eq. (2.14)] includes a term which
corresponds to total angular momentum, this term
is numerically negligible [Eq. (2.17)], and for all
practical purposes I, can be considered as corre-
sponding to the mass, and I,7'/,=C,”'C, as corre-
sponding to the spin.

Consider the universe U at cosmic time ¢,, with
its associated de Sitter universe D,. Let the mass
and spin of a particle' in U correspond, at the
time ¢,, to the eigenvalues m 2 and m%s,(s, +1) of
the operators 7, and /,, or, equivalently, to the
eigenvalues

Q==2bymg, (4.1)
cy==64b2m2s,(s, +1) (4.2)

of the operators C, and C,, where b, is the radius
of curvature of the de Sitter universe D, [see Egs.
(2.9) and (2.10)]. The following question now
arises: As the particle traces its world line in
the universe U, what will be the eigenvalues of the
Casimir operators C, and C, corresponding to the
associated de Sitter universe D, at cosmic time
t,?

Considerations of continuity provide a partial
answer. Since the radius b varies continuously as
a function of cosmic time ¢, while the spectrum of
the operator C,”!C, is discrete, the eigenvalue of
C,'C, does not vary, i.e.,

si(s;+1) =5s4(s5+1); (4.3)

the spin s is constant.

As far as the mass is concerned, no further as-
sertion can be made without a further hypothesis.
The following hypothesis seems, however, quite
natural: As a particle traces a world line in the
universe U, the eigenvalue of the Casimir opera-
tor C, corresponding to the associated de Sitter
universe does nol vary as a function of cosmic
time. Because of Eq. (4.3) the eigenvalues of the
Casimir operator C, will also be constant.

This hypothesis is most natural because the
eigenvalues of C, and C, [in contradistinction to,
say, I, and I,, Egs. (2.9) and (2.10)] are dimen-
sionless.

By Egs. (2.9), (2.14), and (2.17), if the constant
eigenvalue of the Casimir operator C, associated
with a particle is denoted by c,, then the mass of
the particle will vary with cosmic time according
to the formula

m(t)==2""2[b(t)] ', , (4.4)

where b(t) is the radius of curvature of the de Sit-
ter universe, and D, is associated with the uni-
verse U at cosmic time {. As mentioned in the
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previous section, the universe U is completely de-
termined by function S(¢) in Eq. (3.1). In terms of
the function S(¢) the radius of curvature b(¢) is giv-
en by [Eq. (3.3)]

KO- 5305

=—ﬁ[s(t)§(t)+s'2(t) +R). (4.5)
Equations (4.4) and (4.5) imply that the mass of
any physical system will vary as a function of cos-
mic time, unless the universe has a constant four-
dimensional curvature. The exact rate of change
depends, obviously, on the choice of cosmological
model. For a Friedmann universe, for example,

S(t) =S,t273, (4.6)
the mass formula becomes

m(t)=m,/t, (4.7)
where'®

my=—(V2/9)c,. (4.8)

Other general-relativistic cosmological models
give results which are not substantially different.
If one takes for the age of the universe the current
value of about 10'° years,!® it follows from Eq.
(4.7) that

% ~1071° per year. (4.9)

The observational and experimental evidence
concerning a time variation of the masses of all
physical systems of the order of magnitude (4.9)
will be discussed in the next section. Let us note
here that such a time variation of the masses in
an expanding universe is certainly in line with
Mach’s principle: If the inertial mass of a system
is due to the influence of all the other masses in
the universe, one would expect the inertial mass to
decrease as all the other masses get further and
further away.

V. EXPERIMENTAL AND OBSERVATIONAL EVIDENCE

In a recent review article Dyson® summarized
the evidence concerning time variation of the fun-
damental physical constants. In the context of the
present work, there are no grounds to doubt the
constancy of ¢ (the speed of light), 2 (Planck’s
constant), e (the electron charge), g (Fermi’s con-
stant of weak interaction, or G (the constant of
gravitation). We are exploring, however, the con-
sequences of the variation in time of all masses,
including the mass of the protonm,.

Out of the six constants ¢, 2, e,m ,, g, G, Dyson
constructs three dimensionless ratios:

a=e/hc, (5.1)
B=gm,’c/n®, (5.2)
vy=Gm ,Z/h'c. (5.3)

He also considers among the fundamental con-
stants H (Hubble’s constant) and p (the mean den-
sity of mass in the universe), whose numerical
values are uncertain by about factors of 2 and
1000, respectively. With H and p included two
further dimensionless ratios can be constructed:

6=Hk/m,c?, (5.4)
€=Gp/H*. (5.5)

A time variation of the masses of the order of
magnitude given by Eq. (4.9) will correspond to
the following variation in the dimensionless ratios:

a=0, (5.6)
B/B~10"1° per year, (5.7)
y/y~1071° per year . (5.8)

The following is a discussion of the relevant ob-
servational and experimental evidence, based on
Dyson’s analysis.

A. Weak interactions

The most accurate determination of the rate of
change of o is based on an analysis of experiments
on the beta decay of Re'®”.!” They result in a very
stringent upper limit on the rate of change of a:

a
a
in agreement with Eq. (5.6).

Experiments on the beta decay of K*, together
with the Re'® experiment, lead to the conclusion

| 8
8

A similar and somewhat less precise upper limit
was obtained by Wilkinson!® from the study of an-
cient pleochroic halos. It seems, therefore,

that such results are not inconsistent with Eq.
(5.7), and an order-of-magnitude improvement in
the experimental results is needed to provide a
crucial test. The only theoretical objection to Eq.
(5.7) is related to its consequences concerning the
initial phase of a “big-bang” cosmology: With a
fast rate of weak interaction, neutrons would have
decayed to protons before being captured to form
deuterium, and thus a big primeval helium abun-
dance is excluded. ‘“However, the evidence for a
substantial primaeval helium abundance is still

<5x107' per year (5.9)

<107 per year. (5.10)
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equivocal, and the validity of the ‘big-bang’ model
at such early times!® cannot be considered
proved.”®

B. Gravitational interactions

The acceleration of a mass m due to the gravi-
tational influence of another mass M is given by
GM/R?. Therefore, the effect of a changing m and
M according to Eq. (4.7) on planetary orbits is the
same as the effect of a changing gravitational con-
stant, G~t"', as suggested by Dirac.?° The effect
on the orbits of Mercury, Venus, and Mars is of
the order of

¥ ~10 meters per year. (5.11)

Interplanetary ranging observations®! are expected
to be accurate enough to detect such an effect, if
it exists, within the next few years.

Other attempts to test Dirac’s hypothesis rely
on the extreme sensitivity of stellar luminosity L
as a function of the dimensionless ratio y. For a
main sequence star in which the proton-proton re-
action is dominant, one obtains

L~y™7, (5.12)

The following effects were discussed in the litera-
ture:

(a) the change in the climatic conditions and in
the interior of the earth due to the changing lumi-
nosity of the sun;

(b) the change in the solar evolution;

(c) the change in the estimated ages of globular
clusters due to the increased tempo of stellar
evolution;

(d) the possibility of an eruption of early neutron
stars because of the decrease in the gravitational
forces that hold them together.

Dyson’s analysis leads to the conclusion that our
present knowledge of solar and stellar evolution
and its effects is not inconsistent with Dirac’s hy-
pothesis. Equation (5.12) was derived on the as-

sumption that y is a constant; calculations by
Pochada and Schwarzschild®® show that if y~¢~! the
luminosity L is less sensitive to variations in y.
As far as the ages of stars are concerned, they too
are derived from evolutionary models which as-
sume a constant y. “We do not yet have a reliable
way to calculate stellar ages independently of the
behaviour of y, except in the case of the sun for
which the earth and the meteorites provide inde-
pendent evidence.”® In addition, our understanding
of solar and stellar evolution is cast into doubt by
“the mystery of the missing neutrinos,”? i.e., the
fact that the flow of neutrinos from the sun, as im-
plied by solar model calculations, does not seem
to be there.?*

In the context of stellar-evolution calculations it
is not clear whether the effects of a changing y
(y~¢~1) are the same whether the change is due to
a changing constant of gravitation (Dirac’s hypoth-
esis) or whether it is due to changing masses [Eq.
(4.7)]. Further calculations are necessary to clar-
ify this point.

C. Cosmological considerations

A time variation of all masses will certainly
have an effect on galactic luminosities and red-
shifts. Since the Hubble constant is uncertain to
within a factor of 2, and the mean density of mat-
ter in the universe is known only in order of mag-
nitude, cosmological considerations of the possi-
bility of time variation of masses lead to no defi-
nite conclusions. As pointed out by Sandage'® even
the evolutionary change in luminosity of galaxies
is, as yet, undetermined.
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An 7i-free analogy-free synthesis of classical mechanics and geometrical optics (acoustics)
is presented which embraces without distinction particles of both zero and finite rest energy.
The point-particle Lagrangian and other classical-particle properties of a photon (corpuscle)
in gallium phosphide are found explicitly. Further brief applications are given to Newtonian
mechanics, relativistic particle dynamics, fluid-immersed-body dynamics, hole-electron
recombination in semiconductors, electrostatic and magnetic lenses, standardization of
particle-flux units, and the still-controversial question of optical and acoustical radiation

pressure and momentum.

I. INTRODUCTION

It would clearly be unreasonable to arbitrarily
restrict classical mechanics (of point particles)
to the description of the geometry of trajectories.
Schrodinger’s wave equation would then become
by default the lowest-order theory of particle dy-
namics, and both the logical structure and practi-
cal value of physical theory would suffer from the
loss of classical-particle dynamics. Neverthe-
less, according to the thesis of the present arti-
cle, we do precisely this in the cases of light and

sound by endorsing geometrical optics and acous-
tics as legitimate disciplines, while at the same
time asserting!~!° that a corresponding corpuscu-
lar or classical-particle theory is, at most, an
erroneous historical curiosity and that the dy-
namics of light and sound must therefore be de-
scribed by classical or quantum-mechanical field
(wave) theories.

To support this thesis we reject as unphysical
the usual geometrical analogy?+*~¢:8-1¢ petween
ray optics and the paths of classical mechanics
and, instead, present an analogy-free #i-free set



