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A detailed calculation of the asymptotic behavior of electromagnetic form factors of the
Bethe-Salpeter ladder model of the S-wave fermion-scalar bound state for large spacelike
momentum transfer has been carried out. In contrast to earlier results, it is found that the
magnetic form factor behaves as (q ) ln5(-q ) when the fermion constituent is charged. Im-
plications of this high power of the logarithm are briefly discussed.

The Bethe-Salpeter (BS) ladder model for the
fermion-scalar bound state has become a subject
of renewed interest in recent years as a simple
theoretical approach to the properties of composite
nucleons. A major aim of studies of this model
has been the calculation of matrix elements of
operators between bound states, in particular,
matrix elements of the electromagnetic current.
It is well known that, with a scalar gluon, the
electromagnetic form factors which result from
giving an elementary coupling to one of the con-
stituents have dipole falloff in momentum transfer
squared, to within logarithms. ' '

Although previous calculations based on this
model have all resulted in the same asymptotic
power behavior for the form factors, the situation
with respect to logarithms is less clear. With the
electromagnetic vertex expressed a.s y„E,(q')
+io„„q"E,(q'), we find both the dependence
(q') 'ln'(-q') and (q') 'ln(-q') quoted for E,(q'),
as well as both (q') ' ln(-q') and (q') ' for
F,(q').""We may note that these differences
do not correspond simply to choices of which con-
stituent (spin-0 or spin-&) is taken as charged. In
any case, the low powers of the logarithm which
occur seem basically consistent with experimental
data at large -q', so that the calculation of form
factors has been considered an indication that such

models, although oversimplified, might be useful
in the analysis of other reactions such as electro-
production. It is the purpose of this. note to re-
consider the question of the logarithmic behavior
of the form factors. We find, among other things,
that, with the fermion constituent charged, the
magnetic form factor of the bound state behaves
asymptotically as (q') 'ln'(-q'), which differs
appreciably from previous results with respect
to the power of the logarithm.

We can give a rough argument for the existence
of a (q') 'ln'(-q') contribution to E,(q') when the
fermion constituent is charged, as follows. The
form factors are calculated from the Bethe-Sal-
peter wave function of the bound state by means of
the expression'

(P, ~ J„(0)~P,)=e d'k @J, (k)L„@J,,(k).

L„ is taken as (k' —p')y„or (-g —m) (2k+P, +P,)„
for charged fermion or scalar constituent, re-
spectively, and 4~(k) is defined as -4$(k, k,*).'
Here, and below, m is the fermion and p, is the
scalar, constituent mass. Figure 1 illustrates the
situation. We shall see below that when -k' denotes
the scalar momentum, the wave function 4~(k) be-
haves as (k P) ' ln'(-k ~ P) for k ~ P- -~ with k'
fixed and less than p, '.' Since q is a spacelike
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FIG. 1. Electromagnetic form factor in the ladder
model.

momentum, we may choose the Breit frame to
evaluate (1). With q=(0;0, 0, Q) we have, with
k, =(kook, ), P2'k=(k Q)+O(k, /Q) and P, k

=(k, Q)+0(k, /Q). Now consider the region of the
k integration in (1) given by

u„(P) is a free Dirac spinor of mass M. The ap-
propriate Bethe-Salpeter equation with a pointlike
scalar ladder of mass ~ is

Cr (k')I~(k) X d k
( )2

(3)

I' (k) = [I',(k', P ~ k)+(/+M)I', (k', P ~ k)]u„(P)

M' —p, ck +k 2&M2 p2

2-6 Qf-1 & y ~~ 6@]-6
0 + 0

E is a small fixed positive number, while the M
&

aye fixed masses with My & M2 & M,'. The volume
of this domain in Minkowski space is easily seen
to be proportional to ln(Q'}. On the other hand,
the integrand of (1) is already of order Q 'ln'(Q')
throughout the region. The fifth power of the log-
arithm will then be present in the asymptotic be-
havior in the absence of cancellation.

Of course, the above argument is completely
heuristic. To evaluate (1) more carefully we shall
use a DGSI (Deser- Gilbert-Sudarshan-Ida) spec-
tral representation for the wave function. " Con-
sider the wave function for an S-wave bound state
of a fermion and scalar particle, which may be
written as

4~(k}= [A(k', P k)+(/+M)B(k', P ~ k)]us(P) .

a(p, cr) ~ a(p)a ',

a(P } Iv'~c, (I +P)'
8

~ rr'xc,
I p I lnl p I,

8 0

a(p, o)do ~ mc, (1+p)
0 8

tr'zc,
I p I

ln'
I p I,

8 0

J
~I2

b(P, o)d|r c,(1+P)
0 8

c, l p I.
8 0

(5)

The constants cy and c2 are expressible in terms
of integrals involving a(P, &r) and b(P, o); we shall
not need their explicit forms here. M' is any
finite mass.

The significance of the asymptotic behavior of
the weight functions for the momentum-space be-
havior of the wave function may be seen from Eqs.
(4). With -k corresponding to the four-momentum
of the virtual scalar, the limit P —-1(0) in the
spectral functions controls the leading momentum-
space contribution to the wave function when the
scalar (fermion) leg goes far off-shell, while the
fermion (scalar) leg retains a fixed invariant
mass. Define k' =s „(P+k)'=s, . Then Eqs. (3),
(4), and (5) lead to the following. For s,- -~, s,
fixed and less than m',

A(s„-,'(s, -M' —s,))-mB(s„-,'(s, -M'-s, ))-s, ',

A mB-s, 'ln'-Is, l,
(sa)

Here s(P}=M'(P+P') —Pm'+(1+P)g'. By substi-
tuting the forms (4) into (3}and using some stan-
dard manipulations, "we may transform the BS
equation into two two-dimensional integral equa-
tions for the weight functions a(P, o) and b(P, a).
These equations have been investigated elsewhere
in some detail, " and certain asymptotic properties
of the weight functions have been derived. The
results include the following, which are valid with
either a massive or a massless gluon:

= [(g +f) —m](k' —p')4~(k) .
The invariant functions A. and B are assumed to
possess DGSI spectral representations:

a(p, o)
[(k+PP)' a s(P))"

(4)
b(P, o)

[(k+PP)' —a s(P)]' '-

I',(s„—,'(s, -M' —s,))-s, ',

I',(s „(s,—M' —s,))-s, ' ln'
I s, I; .

while for s, ——~, s, fixed and less than IL(.',

A. -s, 'ln'Is, l, B-s, ',

I', -s, ', I', -s, ' ln'
I s, I .

Finally, for s, -—~, s,/s, fixed and positive,
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A-s, 'Ines, ~, B-s, ',
I', -s, ', I', -s, 'ln(s, [. (6c)

The leading behavior of I'~ given in (6) may also
be derived from a direct examination of the Bethe-
Salpeter equation based on contour integrals in
momentum space. ' We note that (6c) differs from
the behavior found by Ciafaloni and Menotti' from
a similar analysis in the zero-energy case:
A. -s, ', B-s, '. The latter solution to the equa-
tions they give, however, is a nonleading one. As
may be explicitly verified, (6c) is also a solution
and dominates the asymptotic behavior in the
zero-energy system as well. ' The limits of (6a)
and (6b}, of course, cannot be investigated in
the P=0 case. Note further that although the
dependence of I', on the large variable is the same
in each of the three limits of Eqs. (6), for I', this
is not the case.

We can now employ the spectral representations
(4) to do the momentum integration in (1). The
asymptotic behavior of the form factors for large
-q' is determined by the resulting integrals over
the weight variables using (5). The results are
found to depend on which constituent is chosen
charged. For charged scalar we find

+,(q') - (q') '»'(-q'),
+,(q') - (q') 'ln(-q'),

while for charged fermion

&,(q') - (q') '»'(-q'),

&,(q') -(q') '.

(7a)

(7b)

The high power of ln(-q') in E,(q') in (7b) comes
from the dependence on P of the weight function
a(P, o) for P -0. This is the same dependence
which is responsible for the asymptotic behavior
of A and I; given in Eq. (6b), and it is precisely
this leading behavior of A (Ref. I) and I', (Ref. 4)
which has been absent in previous detailed esti-
mates of the form factors with charged fermion
constituent.

Another approach to the calculation of form fac-
tors is provided by a direct examination of the
behavior of diagrams in perturbation theory. "'"
In view of their close connection to the ladder
Bethe-Salpeter equation, we might expect that
diagrams like Fig. 2 contain asymptotic behavior
similar to that above for the form factors.
Straightforward calculations show that this is in
fact the case. As an illustration, let us trace the
origin of the (q') 'ln'(-q') contribution to F, with
charged fermion. First, consider Fig. 2 with m
and n greater than one. The Greek letters labeling
the lines represent the usual Feynman parameters

m+I 2
x)

I X) X& ~ ~ ~ X n+I

Ia a, a, P)

FIG. 2. Five-point ladder diagram related to the
form factor.

over which integrals remain after the loop mo-
menta have been eliminated. We want to consider
the behavior of this diagram for large values of
-q' with other invariants fixed. " If all the lines
in Fig. 2 are taken as scalar it is easily seen that
the leading asymptotic behavior is (q'} ' ln( —q').
In the terminology associated with parametric
integrals, there are two "d paths": (a„x,) and
(a,', x', ).

When the line connecting P, and P, is a fermion,
however, the situation changes and the effects
of momentum factors in the numerator must be
considered. " The presence of these factors re-
sults in the introduction of both Feynman param-
eters and explicit factors of the external momenta
into the numerator of the parametric integrals.
The extra parameters in the numerator will tend
to suppress asymptotic behavior, while the mo-
mentum factors will, of course, enhance it.
Keeping in mind that eventually we expect to sand-
wich this diagram between two free Dirac spinors
of the bound-state mass and momentum (P, +P,)
and (P, +P,), suppose we evaluate the effect of the
product of the four numerator momenta corre-
sponding to the parameters o.,', u,', n„and e, .
We find, among other contributions, a factor like

(p', +p', )(p', +p', )r„(p', +p', )(P, +P.),
which effectively becomes (q')'r ~+0(q') because of
the Dirac equation. In the corresponding param-
etric integral we now find a number of new fea-
tures. The whole integral is asymptotically of
order (q') ' so that we get (q') ' over all. We find
end-point contributions not only from the d paths
(a„x,) and (a'„x',), but also from the longer paths
(a„a„x,) and (a,', a,', x,'). These four paths ac-
count for three powers of the logarithm of q'. In
addition, the sets of lines (a„a„x„P„x,) and
(a,', a,', x,', P,', x,') become "singular configurations"
relative to this integral, raising the power of the
logarithm of q' from three to five. Thus we have
found the leading (q') ' ln'(-q') asymptotic behavior
in the ladder contributions to the five-point func-
tion. The other entries of Eq. (7a) and (7b) may
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be identified in a similar way. Standard techniques
may be used to verify that these contributions to
the five-point function survive when poles are
produced in the momenta (P, +P,) and (P, +P~) by
summing over infinite sets of graphs. '"'"

The most striking result of this study is the
asymptotic behavior of F, in the case of a charged-
fermion constituent. The proton magnetic form
factor, G„FR+F2 is found experimentally to
fall by an order of magnitude when -q' ranges
from 7 to 25 GeV', "while a function like
(q') 'ln'(-q'/m, ') (m, '=0.71 GeV') only decreases
by about 30% over this range Unle. ss the momen-

turn transfers thus far confronted are not truly
asymptotic, the agreement between predictions
of such models and the data is lost. On the other
hand, a recent analysis of the available data sug-
gests that inclusion of a suitable combination of
logarithms up to ln'(-q') actually improves agree-
ment with the data. " Future experiments deter-
mining the precise power of the logarithm of q' in
the asymptotic region will be of great interest.

The author wishes to thank Professor Joseph
Sucher and Professor Ching Hung Woo for many
helpful discussions and much encouragement.
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A simple extension of the Eilam-Gell-Margolis-Meggs statistical picture
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The statistical picture proposed by Eilam, Gell, Margolis, and Meggs for differential cross sections

near 8, = 90' has been extended to the reaction pp m+vr at all angles. The heuristic value of the

model in the case of p p interactions is pointed out.

In a recent publication, Eilam, Gell, Margolis,
and Meggs' (hereafter referred to as EGMM) have
applied a simple statistical model to differential
cross sections near 8, =90 . Their results are
restricted to m'p, E p, and pp elastic scattering
though the formalism also applies to two-body in-
elastic processes. In this note, we propose to ex-

tend the EGMM formalism to some pp interactions,
pp-n'w being given as an example.

Here is the EGMM picture presented in a nut-
shell. Assuming the scattering near 90 to be
statistical in nature, EGMM describe the differ-
ential cross section in this region by an incoherent
superposition of resonances. With a Hagedorn-


