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i'Despite the fact that t is negative, by definition do~" /
dt is positive. The variable of integration we have
chosen to be ltl, and the lower limit of the integral is
0, while, for example, the upper 1imit will be (s -4m2)
if the reaction is of type (54).
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ror the elastic scattering (s =0) in small Itl regio n, t»s
is simp1y the "shrinkage of the diffraction peak. " See,
for example, D. Horn and F. Zachariasen, Hadhon
Physics at Very High Energies (Benjamin, Reading,
Mass. , 1973).

22%ithin the framework of the ordinary bremsstrahlung
model (describirg only the gross features of high-
energy collisions} we can easily see how the violation
of inequality (C11) can develop by analyzing the elastic
differential cross section [which is obtained from (10)
by setting n =0]. In fitting experimental data one usually
writes

dfJ ~dt =(dv'/dt)t Oexp[-a(8, t)],

where in a small Itl region o (s, I) =o(s)ltl -P(s) ltl

+o(ltl') with o(s)ltl BIO and o P(s)/o'{s—) «1. [See,

for example, L. Van Hove, Rev. Nod. Phys. 36, 655
(1964).] On the other hand, from the ordinary brems-
strahlung model we have d&"/dt = (do' /d't) Wo where, as
mentioned in the text, do" /@ has a smoother depen-
dence on ltl than Ivo has. Consequently, we approximate
Wo as Wo(s, t) = exp[- (1-&)a(s, t)], where the factor
1 —& (0 ««1) takes into account the fact that do' '/dt

also depends on ltl, although not as much as +'0. {That
this form for Wo is consistent with the ordinary brems-
strahlung model was shown in the second paper of
Ref. 3.) So we have
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In a low-s region (where (ltl) by virtue of ldnematics is
required to be small), (Itl& (da(s, -(Itl&)/d(ltl)) is a
smail number, and, since d a(s, —(Itl))/d(ltl) can be
neglected, we see that (C11) can be satisfied. However,
in a high-s region, neither can dna {s,—(lt'I))/d &ltl)t be
necessarily neglected nor is &Itl&(da(s, —&Itl))/d&ltl))
small, and we see that (C11) should eventuaQy be vi-
olated.
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A model for deep-inelastic ep scattering is presented, where the virtual photon propagates as a
vector-meson state, emitting pions until it loses most of its momentum transfer. It then interacts with

the nucleon. The nucleon receives a finite-momentum-transfer hck that depends on the scaling variable

co, but not on q . If the average multiplicity of the emitted pions now grows essentially as lns, then

Sjorken scaling results. Quarks forming a nucleon core will not emerge as free particles in this model,

since the core is only elastically scattered.

Present SLAC experiments have established that
the deep-inelastic electron-proton scattering ex-
hibits Bjorken scaling. ' This has been widely in-
terpreted, following Feynman, as being due to the
highly virtual photon interacting with pointlike con-
stituents of the nucleon. '3 Such an interpretation
in turn raises the question: Why are such point-
like constituents (partons) not observed'P Recent
investigation' indicates that even with final-state
parton-parton interactions it is difficult to explain
why quark-parton quantum numbers are not seen
experimentally. ' In this paper an alternative in-
terpretation of the Bjorken scaling phenomenon is
proposed where quarks ean form a nucleon core
and do not emerge as free particles.

Our model is shown in Fig. j. where the photon
first converts to a vector meson p' or &u (for sim-
plicity we disregard the Q meson}. The vector
meson, say, p', emits a pion and becomes cg,' u
then emits a pion and becomes p', and the process
continues. Finally the vector meson interacts with
the incoming nucleon and scatters it. ' We work in
the ep c.m. system and take the direction of the
initial nucleon momentum P as the positive z axis.
We assume that the transverse momenta of all the
produced hadrons in the eP c.m. system are bound-
ed.

Our interest is in the electron-proton c.m. ener-
gy going to infinity, and so we int'roduce the plus
and minus components suitable for infinite-momen-
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turn frame discussions. The plus and minus com-
ponents of a four-vector a„=(ao, a~, a, ) are de-
fined by a, = —,'(a, +a,), a =a, -a„and we obtain
a. b =a+5 +a b, —a~- b~. In the eP c.m. system,
the initial proton brings in an infinite plus compo-
nent P„and the initial electron brings in an in-
finite minus component P . %b now examine the
over-all kinematic description of the model and
see how the initial infinite +, —components are
conserved.

Our assumption of bounded transverse momenta
implies q, = P,/a-r, ' where &u= —2P q/q' is the
scaling variable. In our model the J = 1 photon
state that propagates along the chain in Fig. 1
carries a finite fraction I/&u of the infinite plus
component P, of the incident nucleon and thus ac-
counts for the relation q, = P,/e -The r. est of the
plus component P, (1 —I/&u) of the incident nucleon,
as we see below, is carried off by the final nucle-
on. Furthermore, since p, =m, '/2p -0 and q,
= (P -P'), = —P,', the final electron has infinite plus
component P,' = P,/~, and moves along the positive
z axis. Regarding the minus component P, we
have p =q +p' =q [p' =(pI" +m, ')/2p, '-0]. Hence
the infinite minus component of the incident elec-
tron is taken up by the photon. Each of the emitted
pions then carries off a finite fraction of this infinite
minus component, so that q =Q"; Ik& . The pions
are therefore photon fragments in the present mod-
el. Since each pion has a large minus component
and the transverse momentum is limited, its plus
component (k&, = m&~'/2k&, m&~' =k„'+ p, ') is neg-
ligible. Therefore, K, (K =Q, k&, total 4-momen-
tum of the pions) is negligible, and we get from
4-momentum conservation P'+E =P +q the result
P,' = P+ +q+ ——P+ (1 —I/&u). From these considera-
tions we also obtain

(P' -P) = 2M —2(P,'P +P' P,)
P' +M= 2M' —(1 —I/v)M'—
1 —I/(a

PI +M /(aP

1 —I/(u

This result shows that because of the limited

~{g„) m(kp) vr(k() e(p')g(q)
~ ~ 1

P'(q, ) ~(q,) p'(q, )

transverse momenta, the momentum transfer
(P'-P)' remains finite even when q'- -~, and
is a function only of P~" and the scaling variable
CO.

As mentioned above, the energetic pions have
vanishingly small plus components and so q;,=q,
(i = 1, 2, . . . , n + I). In other words, all plus com-
ponents of the propagating photon state in Fig. 1
are equal. Because each q, (except i =n+1) is a
finite fraction of q of the photon and q„=q„we
find that the momentum transfer q&' —-2q„q,
(i= 1, . . . , n) for a propagator is a finite fraction
of q' and so is infinitely large as q'- -~. This
shows that even though our model as described in
Fig. 1 appears like a multiperipheral model, in
reality it is not, since in multiperipheral models
the momentum transfer along the chain is always
bounded. ' One may wonder at this point whether,
if each q&2 tends to be infinitely large, then every
time we introduce a vector propagator, the matrix
element in Fig. 1 will be highly damped. However,
as we shall see, this does not happen. The reason
is that each VVx vertex, being a derivative cou-
pling, brings in two components of q in the numer-
ator. The large +, —components in the denomina-
tors arising from the propagators are canceled by
the large +, —components in the numerators com-
ing from the vertices.

The diagram in Fig. 1 gives us the following
matrix element of the current J„(x), where J&(x)
is the hadronic part of the electromagnetic current:

PP& ~2~2

JyÃJ 2 2 P&O2N&82 L q2 2 2
q2 —Sl

here (P'l J~v lP& is the vector-meson current be-
tween the nucleon states, and we have taken the
VVv vertex as a point coupling: fez, 8e('e2q, q~s Io.
To evaluate Eq. (1) in the ep c.m. system, we keep
only the +, —momentum components at each VVv

vertex, since only these are the dominant compo-
nents in the asymptotic region we are interested
in (q,- -~, q -~). This gives"

( I)n+ If (If )n I- 2- 8-
qn- qn+Z —~

FIG. 1. Model of deep-inelastic ep scattering studied
in this paper. The photon converts to a vector meson,
say, p 0. p 0 emits a pion and becomes m; m then emits
a pion and becomes po, and the process continues.
Finally a vector meson interacts with the incoming nu-
cleon. where

n

"T"(P' P)II (2~ )v.fo
(2)
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T"(P', P) =(- I)""[g"'(P'I~",
I p)

+g"2(P'
~ J2 ~p)) (n even),

(3a)

( 1 )!((-3)/2 [ g ((1(p (
~
g V

~
p )

g"-'(P']J", ~P)] (n odd),

(u =o, 3).
(3b)

(3c)

Using the relation q„=Q," „k( and summing over
all possible permutations of the emitted mesons,

we obtain from (2)

(k„, . . . , k„P''i j"]P)

"(P',P)('f
fl

"II (2k„)" . (4)

We find that all +, —components in the numerator
and in the denominator have canceled out, and that
each pion simply provides a multiplicative factor.
The inelastic structure tensor W"" is now given by

W"" = (2s)'~Q 5(P+q P' K-) (-P) J"(P'; k„. . . , k„) (k„,. . . , k„p') J")P)
fl

dsP I 1
fl 3

d 4 i(P+q P') kf -2 T(((P P)4c Z(((P P) ( f )2n TT e -Ikl *
2wM ~ (2v)' v' [(P'-P)'-n3']'

(5)

Equation (5) shows that the pions contribute only

to phase space and the energy-momentum conser-
vation. So the production of pions in this model is
completely statistical.

It is convenient at this point to construct the in-
variants A(v, q }=g»W"" and B(v,q')=P„W "~P~/

M', in terms of which the usual inelastic structure
functions W, (v, q') and W, (v, q') can be expressed. "
Because of Eq. (3c), W"" given by Eq. (5) vanishes
whenever v, p. =0, 3; in other words, only the trans-
verse components of the virtual photon contribute.
Since P„=(P„O,P,}, we get B=0. It then follows
that 2MW, =(dvW2, i.e. , az/or=0.

From Eq. (5) the invariant A„(v,q') correspond-
ing to the production of n pions is

A f 2 4y(q 12,p(2)1, M d'P' 1
23( "" P' (2v)3 ' n!

g2 f3

d 4 i(P+q-P') x J
16m'

!kK,[ (-!lx2ie+x,)"']
(-x + jcxo)'

((' I&t, l(') =('p p, ) 3(("(1, G~ —G~
2M " 1 —q "/4M'

X34(P) . (8)

x 5(P+ q P' K)8(K )-8(K'-)

f2 (I 1
16m' n! (n —1)!(n —2)! 4

(1O)

To do the x integration in (6), we assume that the
x = 0 region dominates. " This gives

!3K,[!l(-X'+3Ex(()' ]
" 1

(-x'+iexq)'~ (—x +ibex )

Introducing the Fourier transform of the right-
hand side of (9), we get from Eq. (6)

2 3

A = — ' — P(q"P")d4K(2v}'
16 2 P( (2 )3 s J.

where q" —= (P'-P)' and

g2. P(2l 1 (2G 2 (G»' —Gs )Pl.p(q' ~ '=2M -q' G. -2(1 q "/4M )

(6) Writing d'K=dK, dK d'K~, we carry out the dK
and d'K~ integrations which give K =P + q -P'
=q and K =q -P~. However, for P, -~ and

K,/P, -O,

5(P, + q, P,' -K, )= 5(-1 —(I/(d} —()/P, ,

1
(q(2 ~2)2

G» = Gz(q") and G„=G„(q")are the vector-meson
nucleon form factors defined by

where ( =P,'/P, . So this —5 function does not deter-
mine K, in the above limit, and the integration
over K, in Eq. (10) has to be carried out up to
some cutoff value K, . This cutoff value deter-
mines the largest invariant mass squared K
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of the produced pions allowed in this model, and in fact, as we shall see below, also determines the pion
multiplicity.

Using the cutoff we obtain from (10)

OO

1
z " 1 x+ max

Converting the K, integration to an integration
over K', we get

tv f' 1
A~= —

16 z 8sM PP/F(q';P, ' ) 16, 2p~16m w +K

1 f'Km~', " '

n! (n —1)!(n —1)! 64z/

is violated when the number of pions emitted is
fixed.

However, there still remains the possibility
that if we sum over all n, the factor s= 2P,'K
in the denominator of Eq. (12) is canceled out, and
Bjorken scaling is satisfied by the infinite sum.
To this end, we asymptotically evaluate the series
over n (Ref. 14):

q" in Eq. (12) is given by

(12) ~
1/3

n! (n —1)!(n —1)! 4z//3
n(even or odd)

q" —= (P'-P)'= —(P,"+M'/uP}/(1 —1/v). (13)

&n the above equation, 2P,'K = (P'+K) = s and
'=2K, K =(Z, nz&„'/xz), where xz=kz /q

=P k, /P q Since t.he pions carry off only finite
fractions, ' g's, of the minus component of the
photon, Km~ & s' for any positive number e, how-
ever small. Thus Eq. (12) shows that for s-~
and n fixed, A„(v, q')-1/s. Hence Bjorken scaling

(14)

where j=f'K '—/64z/' The re. ason for summing
over either n even or n odd is that if we start with
the p' meson and take n even, then the relevant
form factors are pNN form factors; on the other
hand, if we take n odd, then the relevant form
factors are AN form factors. Thus starting with
the p;neson and summing over all n (even and
odd), we get from (12) and (14)

A(v, q') =PA„

(15)

The quantity P is not known to us as it involves
the undetermined cutoff mass squared K '. How-
ever, it can readily be expressed in terms of a
physical quantity, namely, the average multiplic-
ity:

(16)

lim A(v, q') =A(&u)
(u fixed

&'&i &p~~ e "yI'i"

+ 5' „„(q";P")]. (18)
Equations (15) and (16) show that if (n)-sins, then
the factor of s in the denominator of (15) cancels
out. In fact, if we take

(n) = —, ln —+ —,ln ln—2 S

$O So

then A(v, q') given by (15) is solely a function of &u

in the limit s- ~, and Bjorken scaling is exactly
obtained. " Thus in the present model we interpret
Bjorken scaling as due to the above multiplicity
growth, and obtain for the scaling function A(v, qz)
the result

dA„ fvv M dzP'
d'k 2z/ Po (2z/)' '

(n —1)!
j2 8

el( J'+ q-p' -a)-x f
4m 16m'

!zK,[p,(-x'+ zex, )z/ j
(-x'+ zex, }'/' (18)

To explore further the physical implications of
the above interpretation, we examine now the
single-pion inclusive distribution. From Eq. (6}
we find
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As before, we do the x integration assuming that the x'= 0 region dominates. This leads to

d'k 16w ' 4w 16w 2P,'K' (n —1)!(n —2)!(n —2)! 64w' (20)

dA„1
ko d~k 4w 16w2 A„~ (K-K') . (21)

Summing over all n and proceeding as earlier, we

obtain

where K' =K -k. Comparing the above equation
with Eq. (12), we notice that apart from a multi-
plicative factor of (1/4w) (f '/16w'), it is essen-
tially the same as Eq. (12) with n replaced by n —1

and K replaced by K'; that is,

(24) can be written in the form

——=(n) e1dg s
8 dy

(28)

(29)

Since the rapidity distribution is flat, the left-hand
side is equal to (n&/ny W.e therefore obtain the
following relation determining the width hy in
terms of (n):

dA 1 f'
4g ].6g' (22) As an approximation this gives Ay= 2 ln(n&, and

correspondingly
The single-pion inclusive distribution is therefore
given by

1 do (n)
o dy 2ln(n&

' (30)

~k do 1 f'
0 dsk 4m 16m2

' (23)

This equation shows that the inclusive pion distri-
bution is independent of s and thus satisfies Feyn-
man scaling and limiting fragmentation.

We investigate now specific features of the pion
rapidity distribution in this model. Integration of
Eq. (23) over k,' with a cutoff k, ' leads to

1 do f'
64 2 J.mRK (24)

m, e "mm-q

Hence the pions have flat rapidity distribution. To
determine the width of the distribution in rapidity,
we take note of two basic kinematic constraints in
the model: (i}k &q, and (ii} k, &K, . Since
k = m e ", the first one gives

We next tur'n to the final nucleon. Its inclusive
cross section using Eq. (11) and summing over all
nis

1 do 1
1 —— 5( 1 —(1/(g)) —g),8 dy

(31)

where ( =M~e"/2P„and M, is an average trans-
verse mass of the final nucleon.

The final-state hadron spectra as obtained in the
present model is now shown in Fig. 2. We have a
photon-fragmentation region of width= 2ln(n) and
constant height = (n)/2 ln(n). Since (n) - lns, the
height of the photon-fragmentation region increases
almost logarithmically with s. As for the target-
fragmentation region, we simply have a 5 function
there, because the target nucleon does not really
fragment in our model. Instead, it goes off with a

or

(25} i do
cr dy

Similarly, from the second one using 2k, = m~e"
and 2K+ ~q =K~', we get

(26)
2 Jn &n&

Hence,

(27)

This relation of course does not determine Ay,
because m~m~ =k~~ + p, is unknown. However,
using (27) and (n)'=f'K '/64w' [Eq. (16)], Eq.

FIG. 2. Final-state hadron spectra in the present
model. On the left-hand side is the photon-fragmentation
region of width 2 ln(n) and height (n)/2 ln(n). On the
right-hand side the 5 function represents the nucleon-
fragmentation region.
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definite fraction (1 —I/&u) of the plus component of
the initial nucleon. This picture of final -state had-
ron spectra differs completely from the usual par-
ton -mode 1 picture" where one has a photon -frag-
mentation region of length 1 ' ' accompanied by a
hadronic plateau of length In(v —1) and a target-
fragmentation region of length two units.

At this point it is important to observe that we
are connecting the Bjorken scaling phenomenon
with the pion multiplicity growth. Our inte rpreta-
tion of the scaling requires the pion multiplicity to
depend solely on s and be independent of Q' [Eq.
(17)]. In contrast, parton models generally predict
a Q' dependence of the form (n) = C,+, In(Q'/M )
+ C„ln(~ —1)."" Other models, such as the pul-
verization model, "predict (n) - s ",while field-
theoretical" and multipe riphe ral" scaling models
predict (n) - Into for large &u. In passing we note
that the Cornell data' show no Q' dependence of
the average charged -hadron multiplicity, and in
fact the data are totally consistent with an (n) - lns
behavior .

We would now like to collect a number of results
which come out naturally in our model: (i) The
ratio of the longitudinal to the transverse cross
section o~/o& = 0; equivalently, 2MW, = sr vW, (Callan-
Gross relation). This occurs because only the +, —

(i.e. , 0 and 3) components of the q s are important
and the tensor e

p & at each vertex then forces
transverse polariz ati ons for the vector me sons.
(ii) For m 1,

scription for the pion production holds. (iv) Feyn-
man scaling and limiting fragmentation for the pion
inclusive distribution follow if Bjorken scaling is
exactly satisfied. (v) Each channel defined by
fixed n violates Bjorken scaling, while the sum
over all channels satisfies it. (vi) The conven-
tional vector dominance of p, &u, Q is quite com-
patible with Bjorken scaling, and one does not need
the generalized vector dominance" of an infinite
number of vector -meson states to explain scaling.

We draw two important physical conclusions from
the present model. (1) Quarks in a nucleon can
form a hadroni c core . This core is surrounded by
a cloud of vector gluons. When we attempt to probe
the nucleon in deep -inelastic eP scattering, the
highly virtual photon hits the gluon cloud and pro-
duces pions. The nucleon core itself is only elas-
tically scattered, and therefoxe the quarks do not
emerge as free particles. ~' ' (2) Bj orken scaling
Phenomenon rePresents taboo dynamical mechanisms
operating simultaneously: (a) the dependence of
the momentum transfer (P'-P)' on the scaling
variable w and not on q

' due to the boundedne ss of
the transverse momenta; (b) the logarithmic
growth of pion multiplicity with s, the square of
the virtual -photon -nucleon c.m . energy.

Added note: After completion of this work the
author has noticed a report by Crai gi e and Rothe, '
where the idea that the photon propagate s as a
vector -meson state emitting pions was used to
discuss e 'e annihilation.

(I I/~) + I —I/&g

where G„(q ") is the nucleon electromagnetic form
factor . Thi s shows that the threshold behavior of
the structure functions is going to be related with
the asymptotic behavior of the elastic form factor
(Drell-Yan-West relation). (iii) The pions con-
tribute only to the phase space and the energy-
momentum conservation, so that a statistical de-
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