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A prediction of the possible failure of Koba-Nielsen-Olesen (KNO) scaling at CERN ISR
energies is given on the basis of the eikonal tower-graph approximation. For high multi-
plicities, the simplest Cheng-Wu impact-parameter forms yield approximate KNO scaling
quantities in agreement with the NAL data. A formula for the calculation of all inclusive
moments, from the knowledge of the elastic absorptive eikonal, is written for a wide class
of dynamical approximations, of which the simplest is the tower-graph eikonal approxima-

tion.

Multiplicity distributions at NAL energies' are
described surprisingly well by a semiempirical
set of relations known as Koba-Nielsen-Olesen
(KNO) scaling.? Over the range of CERN ISR
energies, o,, (pp) now appears to increase® by
10%, an effect which some* have attributed to and
parametrized in terms of the eikonal tower-graph
approximations of field theory.® Alternately, the
NAL multiplicity distributions may be fitted by
a variety of models, in particular the two-com-
ponent picture of hadronic production.® If one
interprets the diffractive component as coming
from multiple Pomeron exchange, the rise in
0, Over ISR energies can then be understood in
terms of the same mechanism: It simply corre-
sponds to the rise in the diffractive dissociation
cross section, and may be considered a transient
effect.”

At this time we do not wish to address ourselves
to the relative merits of these two seemingly
opposite approaches. Rather, we would like to
comment on the question of asymptotic KNO sca-
ling within the context of currently popular Cheng-
Wu physics. Independently of any such model, the
lack of rigorous KNO scaling has already been
proven, ® and the formulas we exhibit may be re-
garded as a moderately realistic example of this
situation, where possible KNO scaling is directly
correlated with 0,,,. In addition, we give a simple
formula, of validity greater than that of the tower-
graph eikonal approximations, which permits
straightforward calculation of all inclusive mo-
ments once the elastic eikonal is specified as a
function of energy and impact parameter.

Although the retention and iteration of only the
relatively simple tower graphs may be severely
criticized® in the extreme asymptotic limit, at
present ISR energies the approximation may in
fact be relevant, and it becomes a matter of some
interest to examine the higher -multiplicity pre-
dictions suggested by the tower-graph approxi-
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mations. In general, specific expressions for

the moments (n') or fluctuations f; are sensitive
to the detailed form of the energy and impact-
parameter dependence of the (assumed absorptive)
eikonal function, ix = -p(s,b). However, certain
less precise predictions — such as constancy with
increasing s—may be made most simply (but not
necessarily crucially) on the basis of the product
form, p=V(s)K().

Such predictions are possibly more general than,
but not at variance with, recent estimates of one-
and two-particle inclusive cross sections given by
Cheng and Wu,'° who find that V(s)~ s (all Ins
dependence multiplying power dependence is here
omitted) produces (n) ~ §%/(1*20)  (y2)~ 520/01+20)
etc., after these power exponents have been cor-
rected to enforce energy conservation, thereby
preventing kinematical impossibilities. The same
type of energy conservation may be imposed below,
when necessary, and for simplicity is omitted
everywhere; the asymptotic ratios of Eq. (3) are
unaffected by the energy conservation prescription
used by Cheng and Wu. Testing KNO scaling may
be a simpler matter, experimentally, than study-
ing specific forms of the s dependence of the
higher inclusive moments. By KNO scaling we
mean the constancy in s of C;={n’)/(n) as s in-
creases at fixed 7.

Based upon an existing and simplified but typical
field-theoretic eikonal model,'! a general state-
ment of the form of the absorptive part of the
eikonal, as a function of a multiparticle fugacity,
will first be written down; this includes as a
special (and the simplest) case the conventional
tower-graph summations. Assuming a product
form for p(s,b), the simplest situation, one may
then qualitatively describe the energy dependence
of the (n). Assuming, further, the specific V(s)~s®
behavior of the tower graphs, it will then follow
that KNO scaling is violated when o, varies ap-
preciably. It is amusing to note that, at NAL
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energies where o, ~ constant, use of the simplest
Cheng-Wu forms suggests that KNO scaling is
approximately valid, and that the multiplicity
ratios C; ={(n’)An) are not unrelated to their ex-
perimental (constant) values.

In an absorptive eikonal context, the statement
of unitarity is conventionally written as

°'tot=2fdzb(1‘e_p),
=fd2b(1-e"’)2, (1)
o =fd"’b(1—e'3p)

for inelastic processes corresponding to the re-
actions p, +p,~ pl+pi+ E, ki, where the p (p’)
momenta denote incident (final) nucleons, and the
k; represent produced pions. In terms of the
exclusive cross sections o,, 0, =24,.,0,. In useful
analogy to the grand canonical partition function
of statistical physics, one introduces!? the parti-
tion function o,,,(£)= EFO ¢"o,, thereby providing
a convenient representation for the fluctuation
coefficients f;,

= 1
O O)=0 exp 3 11 (6- 1],
=1
where 04=0,, 0,;=0;oi(1). Inclusive moments are

generated by repeated differentiation with respect
to the fugacity ¢:

a1+ (=0 = D= (1) 000

g=1e

What is the relation of oy, (£) to the forms of (1)?
For a class of nontrivial dynamical models, stated
below, this question has a specific and well-defined
answer; it is®

Ot (£) =0 + ffb e'z"("b)[ez"(‘c"’)— 1]. (2)

Knowledge (or the assumption) of p(s,d) then per-
mits the calculation of all o,, or of all {n').
Equation (2) may be derived by writing the gen-
eral statement of unitarity for the absorptive part
of the eikonal function in a theory constructed from
multiple chains (to use the terminology of Ref. 10),
linking in all possible ways a pair of scattering
nucleons, with emission along each chain assumed
to be of pionization form (i.e., the average multi-
plicity along each chain is proportional to Ins),
and computed in leading-log approximation. Not
only tower graphs but all possible nonplanar ¢-
channel connected amplitudes are included, and
always in leading-log approximation.! However,
these arbitrarily complicated unitarity sums
which define the absorptive part of the eikonal
are here constructed from “tree-graph” ampli-

tudes, which themselves do not contain internal

radiative corrections. This covers quite a large
class of models, and its simplest possible real -
ization is the familiar tower-graph eikonal.

The simplest product form, suggested by the
work of Cheng and Wu, represents p=V(s)K(b),
with V and K dimensionless functions of s and b,
respectively; one expects that V increases and K
decreases with increasing argument. It is then a
simple matter to perform the ¢ differentiations of
(2) and obtain moment distributions in terms of
derivatives of V and integrals over powers of K.
Most relevant to existing experiments is the fur-
ther choice V(s)~s?, from which follow the pre-
dictions,™ for increasing s at fixed [,

(n
(n)>' (k, )’ Ou), @)
where «, =fd’b(K)’. In order to evaluate k;, the

small b dependence of K(b) must be specified, as
below (Cheng-Wu analysis derives only the asymp-
totically decreasing ~e~*® form). But one sees
that KNO scaling, which requires C,; independent
of s, will be violated in just those (ISR) regions
where o, increases.

To illustrate the sensitivity of C; to K(b), it is
sufficient to consider two examples. That suggest-
ed by potential theory, K(b)—~K,(ub), generates
Ky~ (2m/u?)il /211 With 0, = (27/u?)L [where,
asymptotically, L - L(s)~1n®s for the tower graph
V(s)~ s®], one obtains C;=Il(3L)*', a form which
grows far too rapidly with [ to fit the NAL data,'s
even assuming that L does not increase over this
energy range. On the other hand, the replacement
K(b)—~e~*® the simplest form nonsingular for
small b, generates C,~ L*'/1?%, which may be
compared with the NAL data by calculating the
experimental ratios

1+1 14]
Ll+1 < l ) C’ .

According to this simple picture, L, should be
a constant. That this property is so accurately

TABLE I. Experimental values for the ratios C,
and.L,.

o

l (exp. average) R

2 1.24 4.96
3 1.81 3.28
4 2.97 2.92
5 5.36 2.82
6 10.4 2.79
7 21.6 2.83
8 47. 2.84
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satisfied for high-multiplicity events (see Table I)
suggests that the simplest Cheng-Wu form of K(b),
derived by them for large b and in a higher-energy
region, is not too inaccurate at smaller impact
parameters.

In summary: The possible relevance of eikonal
tower-graph approximations to o, at ISR energies
suggests that KNO scaling will be violated at the
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same energies. Equation (2) rests upon the ob-
servation that pionization along a chain implies
that each associated pion’s phase-space volume
effectively grows as a power of Ins, in a leading-
log calculation.

A simple, functional derivation of (2), and its
relation to possible singularities of o,,(¢) in the
fugacity plane, will be given elsewhere.
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