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A calculation of the nn scattering amplitude based on the nonlinear 0 model, including

pions and nucleons, through the one-loop approximation of perturbation theory is given.
Unitary partial-wave amplitudes are obtained by constructing the first diagonal Pad& apprax-
imant for the perturbation series. The s- and p-wave shifts are computed and compared
with recent experimental analyses.

I. INTRODUCTION II. KINEMATICS

The SU, x SU, current algebra and the notion of
the partially conserved axial-vector current
(PCAC) have led to a number of low-energy theo-
rems for processes involving pions. ' These low-
energy theorems are off-shell (pion mass shell)
theorems, so it is necessary to make some
smoothness assumption, or to introduce some
model to extrapolate to the physical, on-shell,
threshold. It is also an important problem to ex-
tend these results to energies above threshold, in-
to the resonance region. The framework in which

we approach these problems is that of field-theory
(Lagrangian) models which incorporate the SU,
x SU, current algebra and PCAC as a (formal)
canonical operator relation. In this approach, the
first order calculation (Born term, or tree dia-
grams) gives an amplitude which satisfies the off-
shell low-energy theorem, and defines an extrap-
olation on to the pion mass shells. The extension
to energies above threshold, and some correction
to the on-shell threshold amplitude, is obtained by
including higher-order calculations. Ordinary
perturbation theory will not do because it neces-
sarily fails to converge in the presence of reso-
nances. We attack this problem by use of the Pads
algorithm for summation of divergent series.
Field-theory models which incorporate the SU,
x SU, current algebra and PCAC are the linear o

model (LoM) and the nonlinear o model (NLoM).
A first diagonal Pads approximant calculation of
mn scattering based on the LcrM, including pions
and sigmas, but not nucleons, has been carried
out by Basdevant and Lee' with fair success in
predicting the ww scattering amplitude (s- and p-
wave phase shifts below 900 MeV c.m. energy}.
The main embarrasment of the LOM is the experi-
mental nonexistence of a a particle. We have
therefore carried out a Pads calculation of mm

scattering based on the NLcrM, including pions and
nucleons.

+ i(2w)'54(p+q -p'- q')

x M„~(p, q, p ', q'),

has the isospin decomposition

M, q,q(p, q, p', q')=5 qs A(p, q, p', q')

(2. l)

+ ~.c~u&(p~ ap '~ q')

+5 5..C(P, q, P', q') . (2.2)

The invariant functions A, B, C, are, for arbitrary
off-shell external pions, functions of the usual
scalar variables

s=(p+q)', t=(p -p')', u=(p -q'}',
s+ t+u=p +q'+p" +q'

and the squares of the pion four-momenta,

(2.3a)

(2.sb)

A(p, q, p', q') =A(s, t, u;p', q', p", q"), etc
(2.4)

We will use these two sets of variables inter-
changeably. When the pions are on-shell we write
simply A(s, t, u), or A(s, t), etc

The crossing relations are

A(p, q, P ', q') = A(P, q, q', P ')

=A(q, p, p', q'),

&(P, q, p', q') =A(-q', q, p', -P),
C(p, q, P ', q') =A(-P ', q, -P, q') .

(2.5)

III. THE NONLINEAR 0 MODEL

The Lagrangian which formally defines the non-
linear &x model' (NLoM} is

~ =&. ~ +&ss, (S.la)

The momentum and isospin labels are shown in
Fig. 1. The invariant matrix element for ww scat-
tering, defined as

s., (P, q, P', q')=l. (P, q, p', q')
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FIG. 2. First-order Feynman diagrams for nw -NN.
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FIG. 1. Kinematics of 7jm scattering.
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+fzAr. &k 4-z.P4(f. -4 } (3.1b)

(3.1c)

J., is invariant under ordinary isospin transfor-
mations of the fields and also invariant under
chiral transformations of the fields

2 2
—8'. (0')'+fr.$r.rC e+ 2' ICE'+" .

0 mJ
(3 6)

The Lagrangian (3.1), or (3.6), is not renormal-
izable in the conventional perturbation theory
sense. Eventually we must face this problem, but
we may proceed a while without doing so. Given
a Lagrangian, renormalizable or not, we can com-
pute the first-order approximation (Born term, or
tree approximation) to the invariant matrix ele-
ment for mn scattering.

M'a'o~ = —.l~oo~~(' —V')+ ~oooo (f - u')

(3.2a) +5~5„(u —u')] . (3.7)

g-/+st —,
'

vy, g . (3.2b)

(3.3)

Again formally, i.e., ignoring operator product
problems, the divergence of this current satisfies

So& =foui'4. (3 4)

which identifies f, as the "bare" pion decay con-
stant. (The role of the renormalized version of
this PCAC relation in constructing the renormal-
ized perturbation series will be discussed later. )

After expansion of the denominator factor and

square roots in (3.1), and identification of

mi =rofo (3 6)

the Lagrangian of (3.1) takes on the form

The nonlinear chiral transformation (3.2a) is a
special case of the general nonlinear chiral trans-
formations discussed by Weinberg. 4 The axial-
vector current formally derived from this Lagran-
gian ls

The momentum-dependent terms arise from the
derivative pion coupling in (3.6). If we identify f
=f„ this is just the rr invariant matrix element
constructed by Weinberg' from current algebra,
PCAC, and an assumption about the chiral trans-
formation property of the SU, x SU, symmetry
breaking. The Lagrangian (3.1), or (3.6), incor-
porates all of these features. This matrix element
is purely real and increases rapidly with energy,
i.e., it violates unitarity as the energy increases
above threshold.

Next, we may think of introducing unitarity cor-
rections by iteration of (3.7} in the unitarity equa-
tions

discM, ol,o =i g (2m)4&4(P +q -P&„~)M&~) o M(&)
(y)

(3.8}

In this iteration the sum includes (y} = wv and (y)
=NN. The wn contributions are computed by sub-
stitution of (3.7) into (3.8). In order to compute
the NF7 contributions we need the first-order in-
variant matrix element for mm -NN computed with
the Lagrangian (3.6). The corresponding first-
order Feynman diagrams are shown in Fig. 2.

M."'))' 0»»') ))""))")I—)). +*'r(p —1) )). (( ).=~ + .)
-1 1

(3.9}
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Here g' is an effective mN coupling constant which may differ from the conventionally defined nN coupling
constant g by a finite renormalization. (See Appendix B for details. ) Then, substituting (3.7) and (3.9) in-
to (3.8), and computing the discontinuities in all three (s, t, u) channels, we obtain

ImA '~(sE, u P', q', P ",q") = —4(-2 (s —p')(2s+ t+ u —Sp')Iml„(s)

+~6(st+ 2tu+2p'(s —u) + (2p'/t)(p' -p ")(q' —q")
—2(p'q ' +p "q~) —(p'q" +p "q ')]Iml„(t)

+-', [su+2ut+2p'(s —t)+(2p'/u)(p' —q")(q'-p )

-2(p'q'+p "q")—(p'p "+q'q")]Iml„, (u)}

+g~{-4(s/m')Iml„„(s) + 4(p'q" +p "q' —st)ImH„(s, t, u; p', q', p ",q")

+4(p'p" +q'q" -su)ImH„(s, u, t; p', q', q",p")
-4(p'q'+p "q"—ut)ImH„(u, t, s;p', q",p", q'}}, (3.10)

where

2i ImMabcd = dis cMabcg

and A(s, t, u;p', q', p", q") is the invariant function
defined by the isospin decomposition (2.2). The
functions ImI, „, ImI», and ImH„are defined as
integrals over nn or NN phase space in Appendix
A where the calculations leading to (3.10}are out-
lined. Explicit formulas for these functions and
their relation to the Feynman integrals I„„, I»,
and H„are given in Appendix C. The relation of
the result (3.10) to ordinary perturbation theory
with the Lagrangian (3.6} is that if we write the
(divergent) Feynman integrals corresponding to
the one-loop Feynman diagrams of Fig. 3 and use
the Cutkosky rules' to compute the (finite) discon-
tinuities, we reproduce exactly (3.10).

To compute the real parts of A'), we can either
substitute (3.10) into the appropriate dispersion
relations, or compute directly the Feynman in-
tegrals corresponding to the Feynman diagrams
of Fig. 3. In either case subtractions are required.
If we were dealing with a conventionally renormal-

izable theory, the subtraction constants introduced
would be determined in terms of the renormalized
coupling constants of the theory and no new con-
stants would be required in higher orders. In the
present case, in the one-loop approximation, one
more subtraction is required than can be fixed by
mass and coupling-constant renormalizations.
However, we remark that the LOM includes the o

mass, which is an arbitrary parameter, so on the
one-loop level the number of parameters, com-
paring the renormalizable LoM and the nonrenor-
malizable NLOM, is the same. The nonrenormal-
izability of the NLQM, as reflected in the highly
divergent integrals, does lead to certain technical
problems, even on the one-loop level. This is
particularly so in the approach through Feynman
integrals which suffer from the well-known ambi-
guities with respect to choice of integration vari-
ables, lack of covariance, etc.; when the diver-
gences are worse than logarithmic. This was a
primary motivation for our dispersive approach to
the one-loop approximation. In fact, analyticity,
combined with (3.10) and the preceding equations,
determines

A'"(s, I, u p', q', p", q") =—,[n(s, t, u p', q', p", q" )l„,(s)+ p(s, t, u; p', q', p", q" )r„„(t)

+P(s, u, t p', q', q",p")l„„(u)]
+g' [-4(s/m')l„„(s)+4(p'q "+p "q' —st)H„(s, t, u;p', q', p ~, q")

+4(p'p" +q'q —su)H„(s, u, t;p', q', q",p")

where

—4(p'q'+p "q"—ut)H~(u, t, s;p', q",p", q')]
+P(s, t, u;p', q', p", q"), (3.11)

u(s, t, u;p', q', p", q") =--,'(s —p, ')(2s+t+u —Sp, '}, (3.12a)

p(s, t, u;p', q2, p'2, q'2)= ~~[st+2tu+2p2(s —u)+(2p /t)(p -p'2)(q -q'2) -2(p2q'+p' q'2) —(p'q'2+p "q )],
(S.12b)
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I'IO. 3. Feynman diagrams for ~n scattering in the
one-loop approximation of the nonlinear 0. model.

P(p, q, p', q') =~ [Xs'+S(t'+2)+ps(t+u)

and P(s, t, u;p', q', p ~, q~) is a function which has
no discontinuities in any of its variables. In this
equation T„„andE„„are subtracted "bubble" inte-
grals, and H„ is the standard Mandelstam scalar
"box" integral. (Detailed formulas are given in
Appendix C. ) The function P depends on how one
specifies the subtractions, i.e., subtractions. at
different values of s, t, u, . . . lead to different sub-
traction functions. We make the additional re-
striction on T', specific to the one-loop perturba-
tion approximation, that it should be at most
quartic in the momenta (quadratic in s, t, u, . . . ).
Then the most general polynomial consistent with
Lorentz invariance, four-momentum conservation,
and the symmetry properties of A(P, q, P ', q') may
be written

whi. ch vanish in the limit M-~. There will re-
main finite terms, independent of M, and also
terms, dependent on M, of order lr&P, M',
M'1&M', etc. For these latter terms, Mplays
the role of a cutoff. Their presence indicates the
nonrenormalizability of the limit theoxy, but allthe
arbitrariness of the nonrenormalizable theory is
now contained in its dependence on a single arbi-
trary parameter M. Furthermore, we will see
that in the one-loop approximation, the rm scat-
tering amplitude depends only on lnM', i.e., is
not so sensitive to that parameter.

In their paper Bessis and Zinn-Justin justified
this procedure by showing that in this limit the
generating functional for the Green's functions of
the LoM goes to the generating functional for the
Green's functions of the NLOM. Additional insight
into the significance of this prescription can be
gained by considering it in the context of our dis-
persive approach to the NLoM. First we recall
the well-known fact that in the tree approximation
the LoM nm matrix element goes to the Weinberg
matrix element (3.7) in the limit m, -~ [see '

(B3m)J
(~) (~)
LeM ™NLaM

m a
(4.1)

Next, take this &arne limit in the iterated unitarity
equation for the LoM

+ Dtu+ EI1's+F'P'(t+ u)

+ 0p, '+ fI (P'q'+'p "q")
+I(P'+q')(f "+q")j (3.13)

11m d1scM~M = li111 x+ML ~+M1 Jg
my~ o mfa» o

= discM ~)M (4.2)
The polynomial (3.13) contains nine subtraction
constants. Even when the kinematic variables a.re
restricted to the mass shell, this only reduces to
four subtraction constants. Thus further analysis
is required to show that only one of these constants
is undetermined by conventional renormalization
prescriptions. Finally, in listing the difficulties
associated with the renormalization of the NLaM,
we are faced with the possibility that new arbitrary
constants may have to be added in each order of
calculation.

IV. REGULARIZATION OF THE NONLINEAR a MODEL

To deal with the renormalization problems de-
scribed at the end of the previous section we adopt
an approach suggested by Bessis and Zinn-Justin. '
Most simply stated, their suggestion is to use the
renormalizable LvM as a regularization of the
nonrenormalizable NLoM. Their pxescription is
to first compute all one-loop diagrams in the LoM
and then expand the resulting invariant matrix ele-
ment in powers of 1/M' (M = m, ) and drop all terms

We can take the limit m, ~ inside the unitarity
sum because it only involves integrals over finite
regions of phase space. So we have demonstrated
that the proposed prescription does reproduce
correctly the Born term and absorptive part of
the one-loop matrix element, which we were able
to compute unambiguously starting from the NLoM
Lagrangian in Sec. III. Then analyticity determines
the complete one loop-matrix element (3.11)up to
an undetermined subtraction polynomial of form
(3.13). Thus we see that the role of the limit pre-
scription is simply to fix the subtraction polyno-
mial (3.13), in terms of the one arbitrary constant
M.

The foregoing discussion has been oversimplified
in one x espect. The Lo'M contains an additional par-
ticle relative to the NLoM and hence involves addition-
al renormalized coupling constants. If these finite
constants survive the limit M -~, then the sub-
traction polynomial (3.13) will depend on these ad-
ditional constants also. One has to carry through
the renormalization of the LoM in accordance with
all the Ward identities which follow from the chiral
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structure of that model, and see to what extent
these Ward identities fix these additional constants.
It turns out that this analysis leaves one constant,
in addition to M, undetermined. We then consider
the p, -0 chiral-invariant limit. It is known that
using only chiral invariance, the chiral invariant
one-loop NLoM wg matrix element admits two ar-
bitrary constants. However, there have also been
advanced more or less plausible heuristic argu-
ments' that fix the ratio of those two constants.
If we accept these arguments, then consideration
of the p -0 limit (after the M ~ limit) fixes the
additional constant and we obtain the result de-
scribed above, that the subtraction polynomial

(3.13) is determined in terms of one arbitrary pa-
rameter M. The details of the analysis of the
LoM are lengthy; first, because there are many
more diagrams than in the NLvM, so simply con-
structing the one-loop matrix element consistent
with all the Ward identities is a more lengthy
task; second, because there is considerable can-
cellation of singular terms in the limit M ~, one
has to keep several terms in the asymptotic ex-
pansions of the individual Feynman integrals,
which also become quite lengthy. We have there-
fore relegated these details to Appendix B and
here give only the resulting NL0 M matrix element
(on-shell)

1
A(s, t, u) = —,(s —p')

+ —
» [ n(s, t, u)I~0~(s) + P(s, t, u)It„'l(t) + P(s, u, t)IP (u) —4sm'I~„')(s) +4(2g' —st)m'H„(s, t, u)

+4(2p» —su)m»H„(s, u, t) —4(2p» —. ut)m»H„(u, t, s)+4p, (s —p )m INN(p )

+ Qs +(Stu+ep, s+K)p ], (4.3)

n(s, t, u) = --,'(s' —p»),

p(s, t, u) =—', [-t(t —u)+2p'(t-2u)+2p»],
(4.4)

M, (s, t, u) =A(t, s, u) -A(u, t, s),
M, (s, t, u) =A(t, s, u) +A(u, t, s),

(5.1b)

(5.1c)

where A(s, t, u) =A(s, u, t) is the amplitude given in
(4.3). The partial-wave amplitudes are

I, = ln(M'/p') .

(4.5)
ar ~(s) = —,

' dcos 8P~(cos 8)M, (s, t),

s =4(p'+ p, '),
t=-2p'(1 —cos8),

u = -2p 2(1+cos 8) .

(5.2)

(5.3)

The subtracted integrals are

I'„'„'(s)=I.,(s) —r„(0),
IN'„'(s) =INN(s) -INN(p ),

INN(IJ ) — —INN(s) ids s =@2

(4.6) s —4p,
2

Ima, ~(s) =
32 (a, ~(s) )' .

Hence

(5.4)

The normalization is such that the elastic unitarity
relation for two identical particles is

and l and H are the integrals which were introduced
in Sec. III. Detailed formulas are given in Ap-
pendix C. The constant P is defined in Appendix B.
Although it is not identical to f„ in the one-loop
approximation, it differs from f, by something on
the order of 1%; so in numerical calculation we
simply use $=f„.

V. ISOSPIN AND PARTIAL-WAVE PROJECTIONS

The I= 0, 1, 2 isospin amplitudes are

M, (s, t, u) =3A(s, t, u)+A(t, s, u) +A(u, t, s),
(5.1a)

Z/2

a, ~(s) =32w 4, e' '~~' sins, ~(s) . (5.5)4 2

The partial-wave amplitudes projected out of the
matrix element (4.3), which was constructed to
satisfy the perturbative unitarity equation (3.8),
will satisfy a perturbative partial-wave elastic
unitarity equation

4 2 1/
1m a~'~(s) =

3277 S ~

a&'&(s) j'IJ' (5.6)

The partial-wave amplitudes projected out of (5.1)
and (4.3) are
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&0.(»= —.(2s-p')+, -~(s-4~')'-~g'(s-4p')-2Vp' +&[~(s-4V')'+0 u'(s 4-V')+. V']

——,'{2s-p')'E(s)+, [(Sp,'s -3Vp )g'G, (s) + (-Ss+32'')g'G, (s) - 10'eG, (s)]12P'

+28m'p, ' 1—, tan ' --, , —
2 2 tan '

+4 *(s-SS') }-R(," ) lsn'(,",
)

4m2 2 4 2 2

-12(16s')m'sI~„~(s), G „(s)p2 jg

S

2m4 .- s RB+ 41 Rs t+ 2@4 s s+ 4pR+16~' '.
,

ds'4 s', 4p, '- s —8' -4s'-Sp'+
8

(5.Va)

a„(s)=~(fp')+ - ~ —,p, '(s -4p')+-R'p'(s —4g')I- ——,
' (s-4p')'Io(s)

2 2+, (4S's+S')S' (:,(s)s ~S(:,(s) +(-S's —RS')S' (:,(s)s-"RO(s))

2mB m'
2 GRds)+

2 2 G2s(s)
2P

Rls
) 4 4(, )

( 4, 4 ( ss +)(RS' s+}R)Rs +RP

)p' S

a„(s)= —,(-s+2p')+ -PRO (s -4p')'- —', p, '(s —4g')+2g' + J[~9(s -4p')'+ ~3 p, '(s -4p')+Sp']
16m'p'

(5.Vb)

——,'(s-2p. ')'I,(s)+, [(-4p's+5p')p'G, (s)+(s+2p, ') p. 'GR(s) -4p'G, (s)]12P'

-emap2 1- i' tan 1 P ~ ta ~ I"

,(,)
(Rss'-S')'l',

(
S,
' )'i'

2 2 4 2 2

2m' 4m'
G»(s)+16m ds'h{s', 4p, ' —s -s')pi 1N

lT y Qygg

s +4p s +2/,
1

s +4Px -48'-Bp + Ip' 8

(5.Vc)
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In these formulas the functions I,(s), G. ..,(s),
G»»(s) are the results of doing the angular inte-
grations over polynomials times I(o](s), I(,'](t),
and I(s'„~(t}. Explicit formulas are given in Appen-
dixes C and D, both for the physical range s & 4p.'
and for the continuation below threshold to thy
range 0 & s &4p, '. The functions h are disconti-
nuities of the Mandelstam box integral. Again,
explicit formulas are given in Appendixes C and
D. The integrals involving h, i.e., the partial-
wave projections of the nucleon box integral, could
only be done numerically by computer. However,
in the region below threshold, and also for a
small range above threshold in which 4p,

' ~ s
«4m', these integrals are very well approximated
by polynomials in s/m' and p, '/m' which provides
a check on the numerical integration.

For numerical calculation we use

5 =f = ~(0.96'') =0.68p' =949 MeV,

p, =138.1 MeV,

m =938.9 MeV,

(m/p =6.80) .

(5.8)

VI. PADE APPROXIMANTS

f [s,z]( .~)
q„(z;X)

f (z;X) —f '" (z ]()=O(A. "'"")
(6.2a)

(6.2b)

These conditions have a unique solution for any
N, M; we make use of only the first nontrivial ap-
proximant

(6.3)
There does not exist any proof of the convergence
of the sequence of Pade approximants in a real
field theory, but it has been proved that the diag-

Even after achieving a regularization of the in-
dividual terms in the perturbation expansion of
the nm scattering amplitude, we are left with the
first few terms of a series which cannot converge
for energies in the resonance region and may not
converge for any energy. In recent years it has
been suggested by a number of people that one
might hope to overcome these problems by appli-
cation of the Pade algorithm' to the perturbation
series. Given a perturbation series

f(z;](}=f (z)+](f(' (z)+A. f ( ](z)+ ~ ~ ~ (6.1)

the N, M Pads approximant is defined as that ra-
tional fraction approximation to f(A. ) which agrees
with its Taylor series expansion to order A. "'"",

(2)
a(, (s) =azz(s) 1-[k,x] (i)

a~~ s

satisfies

(6.4)

s-4 ' '~2
lma["'(s) = )a["](s)P (6.5)

32m s Id'

which follows directly from substitution of (5.6)
into (6.4). Then the phase shifts are given by

[x,x]
tan6 (s) [g j]

Ima ~~ (s)

lJ
(6.6)

VII. CALCULATIONS, EFFECTIVE mNN COUPLING,
RESULTS

A computer program was written to evaluate the
functions and integrals appearing in (5.7a)-(5.7c),
substitute the resulting a(z')(s), a(z~](s) into the [1, 1]
Pad(s formula (6.4}, and compute the phase shifts
from (6.6). The results are that one can get 1=0
and 2 s-wave phase shifts that agree reasonably
well with experiment, and one gets an I=1, J=1
resonance (p) as output of the calculation, but
there is not enough p-wave binding to get the p
mass below 1000 MeV for any value of L which
gives reasonable s-wave phase shifts. The con-
clusion is that the complete one-loop calculation
treated by the first diagonal Pads approximant is
in qualitative, but not quantitative, accord with
experimental information on low-energy (below
900 MeV) zz scattering.

We have made some conjectures about the effects
of higher-order (two or more loops) calculations
and found a simple two-parameter model which

onal (N=M) approximants converge to the scatter-
ing amplitude in potential theory. This is a strong
indication that at least the bound state (resonance)
problem (poles in f as function of X) is handled by
the Pads algorithm. Some indication of the power
of the Pads algorithm to sum series which fail to
converge for any value of X has been obtained
from consideration of the anharmonic oscillator.

a=p'+x'+Xx4 .
It is known that this Hamiltonian possesses eigen-
values E„(X)which are analytic functions of X in
the A. plane cut along the negative real axis, i.e.,
A =0 is a branch point, so the perturbation series
for the energy levels must diverge. Nevertheless,
Loeffel equal. ' proved that the diagonal Pads ap-
proximants formed from the coefficients of the
divergent perturbation expansion do converge to
the correct E„(X}.

An important feature of the diagonal Pads ap-
proximants, applied to the partial-wave ampli-
tudes, is that they satisfy elastic unitarity ex-
actly.
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gives a very good account of the nm scattering up
to 900 MeV. In particular, we observed that the

p wave is not so sensitive to the parameter L„but
is quite sensitive to the effective wNN and mnNN

coupling constants because it is the nucleon loop
terms which are providing the p-wave binding in
this calculation. " There are a set of two-loop
diagrams, some of which are illustrated in Fig. 4,
whose effect at low energy is to modify the effec-
tive nNN and wwNN coupling. Of course these dia-
grams have momentum dependence as well, and
there are other two-loop diagrams which are not
gNvertex corrections; but at the moment we are
not contemplating a full two-loop calculation, we
only seek a crude but simple parametrization of

FIG. 4. Some two-loop diagrams which modify the
effective ~N couplings.

the modifications of the one-loop calculation by
higher-order calculations. We can get some idea
of what to expect by comparing the first-order
perturbative mN- n K matrix element with the non-
perturbative threshold matrix element determined
by current algebra and PCAC."

In terms of the conventional decomposition

M„( q„qP„P)2=u(P2)(5„[A~'~(s, t, u)+-,'y(q, +q, )B'~(s, I, u)]

+[~2„-7][A& &(s, t, u)+-,'y(q, +q, )B~ ~(s, I, u)]]u(P), (7.1)

the Born term from the Lagrangian (3.6}gives while the isospin-even terms are the same if
l2

m
("l.2a)

2
I2 2

a (7.5b)

g (+) gIP.

f)„(-11) {7.2b)

The current-algebra plus PCAC (two-soft-pion)
calculation gives in the limit

q,"= q,"= (IL, 0) =0, (7.3)

(7.4a)

f,' my 4m'

(7.4b)

m2
gI2 (7.5a}

2
r

The odd-isospin term B~ ) is the current-algebra
term; the even-isospin terms come from the nu-
cleon-pole contribution to the matrix element of
two axial-vector currents, which brings in the
factor g„~. Taking the same limit {V.3) in (V.2),
we see that the first-order perturbation theory
matrix element has the same isospin-odd terms
as the nonperturbative threshold matrix element
if

We therefore introduce a second parameter into
the calculation by multiplying all nucleon-loop
terms by a factor (g„')' and treating g„' as a vari-
able parameter. The value g„'=1 gives the orig-
inal one-parameter one-looy calculation, and we
have argued that use of a value of g„' greater than
one is a way of taking into account some of the ef-
fect of higher-order calculations. "

In Appendix E we consider a simplified model in
which the pion mass is set equal to zero and the
nucleon-loop integrals are approximated by ne-
glecting terms of order s/m'. In this case the
rather complicated formulas (S.V) and (DI)-(DV)
simplify enormously, and the dependence of the
various amplitudes and phase shifts on the two
parameters I, g„' becomes transparent. In partic-
ular, in this limit, the p wave is independent of
I.. Thus we expect the complete P-wave amplitude
(5.7b) to be only weakly dependent on I, So our
procedure is to choose g„' to get the right amount
of binding from the nucleon loops to get the ob-
served value of m~, and then to vary I.to get the
best possible fit to the I=O and I=2 s-wave phase
shifts. One problem is that although there is gen-
eral experimental agreement on the qualitative
behavior of the s-wave mn phase shifts below one
QeV, there is still considerable uncertainty as to
the precise details. In particular, the scattering
lengths are not at all well determined experimen-
tally; so it is not feasible to fix I. from any com-
bination of the experimental scattering lengths.
Therefore, to determine an allowed range for the
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FIG. 5. I =0 and I =2 s-wave phase shifts.

parameter L, we have considered the difference
of the I=O and I=2 phase shifts at center-of-mass
energy equal to the kaon mass. The reason for
this choice is that this is the only combination of
phase shifts and energy for which one has a hope
of getting a reasonably reliable experimental val-
ue by two completely independent methods. First
is the Chew-Low extrapolation to the pion pole
in the reaction n+N w+s+N(d), the source of
almost all of the experimental information about
the nv phase shifts. Second is through the depen-
dence of the branching ratios of the various X-2n
decays on the final-state mn s-wave phase shifts.
The validity of the second method depends on the
assumptions that the observed LI+ —,

' component
comes from an I=-,' piece of H„k, rather than from
electromagnetic corrections, and that there is no
(o'r negligible) I= ', piece of H—„„.If these assump-
tions are correct, then the determination of the
phase shift difference is rather clean because
there is no background from additional hadrons in
the final state. Using 1972 Particle Data Group
values, "we find

6» —6» = 50'+ 6' (from K-2w

branching ratios) .
('l. 6)

It is encouraging that values from recent high-
statistics Chew-Low extrapolation analyses appear
to be consistent with this value although there is
still considerable uncertainty in 6» (which gives
the smaller part of the difference).

These considerations determine g„'=1.3 and I.
=4 to 5. In Figs. 5 and 6 we plot the computed I
=0 and 2 s-wave and I=1P-wave phase shifts,
from threshold up to 900-MeV center-of-mass
energy for g„'=1.31 and L=4.0, 4.5, and 5.0. We
have also plotted some representative experimen-
tal data for comparison. We have included the

(40
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FIG. 6. P-wave phase shift.

three low-energy 5«points given by the K,4 ex-
periment of Beier etal. " We have included as a
wavy line with "gates" the constraint (7.6) obtained
from the K-2g data. And we have included points
from the Chew-Low extrapolation analysis of the
LBL group. " This experiment and analysis gives
values for 5«and 5» from 500 MeV to 1100 MeV.
Results of an even higher statistic Chew-Low ex-
trapolation analysis have been reported" by a Cern-
Munich group. At the time of writing of this arti-
cle, they had not published as detailed a phase-
shift analysis as the LBL group, but published
figures indicate that their "down" solution for 5«
is essentially the same as the LBL 5« in the range
500 to 900 MeV. We have not plotted any experi-
mental 52o points. A review of recent experimental
work is given by Poirier. " All experiments are
agreed that 5» is small and negative, but some
experiments give only -10' to -15' between 700
and 900 MeV while others may be as large as -25'
or -30 in this range.

In comparing the calculated curves with the ex-
perimental data described above it is seen that we
fit almost exactly the experimentally rather well
determined p-wave phase shift up to 900 MeV. An
empirical fit would require at least two param-
eters, -m~ and I'~ for an elastic Breit-Wigner
form-plus specification of the background function
over the entire energy range. In our calculation,
only one parameter, g„', is adjusted to fit the p
wave and furthermore that parameter is not com-
pletely arbitrary; the sign and order of magnitude
are determined by the arguments we gave to intro-
duce it. The calculated I=O and 2 s-wave phase
shifts are at least in qualitative accord with the
experimental phase shifts up to 900 MeV. The
primary deviation is that the calculated 5« is flat-
tening out above 700 MeV while the experimental
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TABLE I. Some properties of the partial-wave amplitudes calculated for various values of
the parameters L,gz .

~oo-~2o
(v s —m~)

I"p

QCe7}

4.0
4.5
5.0

4.0
4.5
5.0

4.0
4.5
5.0

1.29
1.29
1.29

1.30
1.30
1.30

1;31
1.31
1.31

1.34
1.40
1.47

1.35
1.41
1.47

1.35
1.41
1.48

0.98
0.97
0.96

0.98
0.97
0.96

0.98
0.97
0.96

46
51
59'

46'
52
59

48'
520
60'

799
794
788

775
770
764

150
144
150

64'
75'
88'

640

75o
88'

64'
75'
88'

5zo(s)(p 0)Pa, .
So (5.5) and (6.4) give

('l. v)

phase shift continues to rise, roughly linearly.
We have cut off our calculation at 900 MeV be-
cause experiment indicates a very rapid rise of
5~ through 180' just below one GeV, presumably
associated with the opening of the KE channel,
which our calculation, based on an SU, x SU, mod-
el with no kaons cannot account for.

We have also computed the correction factors to
the Weinberg (Born terms) scattering lengths im-
plied by our Pads calculation. The scattering
lengths are defined as

tions are

IO=I2

0=

S=P
~l

gft ~tf

where

(I,) "„~4 )
2a (x)

l(f, )l
=., 5~,(x)

(v. ll)

(,) ag'(4 p, ')
(V.B)

dx(4 —x) (3x 4)
l(J,) „, " " " -2g, (x))l

(v. 12)

a~'& = ao"'m~'~& = M~'~(threshold) .1
I I 32~~ I

From (2.V)

a~'~ = ~ Vp '~0 15@ '1
0 22s f 2

(V.9)

(V.IOa)

(S) „, ( 1

l

S l= dxx(4 «)l 4 x l[2a„(x)-5~,(x)],
~o ( (4 - x)')

/'P i .4 ( 1

dx(4 —x)'l x la»(x) (»= s/u').
(W» 4))

a,"& = —, (-2ij. ')=-0.04' '.x 1 0 -x
22m f„ (v. lob)

The computed correction factors (V.8) are given in
Table I.

We have considered the question of the violation
of crossing symmetry which is induced by the ap-
plication of the Pads algorithm to the partial-wave
amplitudes, resulting in exactly unitary (elastic)
partial-wave amplitudes. Because our calculation
gives the partial-wave amplitudes in the unphysical
region 0 ~ 8 «4p' as well as in the physical re-
gion, we can use the relations derived by
Roskies. " For 8 and p waves Roskies gives five
integral relations which are necessary and suf-
ficient conditions for crossing to be exactly satis-
fied by these partial waves. These integral rela-

The values of these integrals are given in Table II.
It is seen that four of the five relations (V.ll) are
very well satisfied (agreement to the order of one
percent), but the fifth is not. However, the mag-
nitudes of the two integrals involved in the fish re-
lation are very much smaller than the magnitudes
of the integrals in the four well-satisfied relate. ons.
The difference between the two integrals S" and
P", although somewhat larger than the differences
between the othex integrals, is small compared to
the magnitudes of those integrals or compared to
the integrals of the absolute values of the inte-
grands of the S", P" integrals (which integrals are
about 200). The polynomials in the S",P" inte-
grands have the property that they annihilate the
Born terms in the respective integrals. The par-
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TABLE II. Values of the integrals (7.12) involved in the test of crossing symmetry.

4,0
4.5
5.0

4.0
4.5
5.0

4,0

5.0

1.29
1.29
1.29

1.30
1.30
1.30

1.31
1.31
1.31

67.4
69.7
72.2

67.5
69.8
72.3

67.6
69.9
72.3

67.9
70.4
72.9

68.0
70.5
73.0

68.0
70.5
73.1

107
109
112

107
110
112

108
110
112

106
108
111

107
109
111

107
109
111

159 159
162 162
165 165

160 160
163 162
166 165

160 160
163 163
166 165

128
130
132

128
130
133

128
130
133

129
130
133

129
131
134

0.7
0.4
0.9

0.9
0.5
0.9

1.0
0.6
0.9

3.8
3.9
4.0

4.0
4.1

4.3
4.5

92 138 138 ill 111 0

tial-wave amplitudes projected out of the first-
order invariant matrix element satisfy all five
conditions exactly, but only for the fifth relation
does the equality reduce to 0 =0. We have also
listed in Table II the contributions of the Born
term to each of the ten integrals. One can see
that even after subtracting out the contributions
from the crossing symmetric Born terms, the
first four relations are still satisfied to within 5%
accuracy.

In investigating the properties of the partial-wave
amplitudes below threshold, 0 ~ s & 4p. ', we have
discovered that both the I=O and I=2 s-wave am-
plitudes have a weak pole in this region. A little
reflection indicates that this should be a general
feature of the [1, 1] Pads approximation in any
theory in which the Born terms have a zero (im-
plied by current algebra and PCAC) inthis region,
and the second-order terms are small corrections
to the first-order terms (also in the below thresh
old region, not necessarily at higher energies).
This follows simply from inspection of the form of
the [1, 1] Pads approximant (6.4}

[1 Il( ) [ I[a (s)]'
a, (s) —a, (s)

(7.13)

if a, (s) has a zero in 0 ~ s- 4p, ', and la, (s)l
« la, (s) l

in this region [except for a small subin-
terval which includes the zero of a, (s)], then the
[1, 1] Padd denominator should have a zero close
to the zero of the amplitude. The "weakness" of
the corresponding pole in a~"&(s) follows from the
fact that the residue is proportional to [a,(s}]',
which is very close to its zero. In our particular
calculation, the I=O pole at s = —,'p, ' is a ghost
while the residue of the I= 2 pole at s =2p.' is of
the correct sign for a particle pole (cali the par-
ticle E for exotic), but very weak, i.e., expressed
in terms of an effective coupling constant A.

'

z'= -x'z.~y.ya

we find (A. ')' =10 '. However, we believe that both

of these poles are specific to the [1, 1] Pads ap-
proximant. The mechanism of its appearance in
the [1, 1] approximation —a zero in the dominant
term in the [1, 1] denominator-is absent in the
next diagonal approximation.

[,,2] (ga3 - a2'}a, + (a,a3 - a,')a, + (a,a,a, —a,'a.)
Q 2 2

QyQ3 —Q2 + Q2QS —QgQg+ QBQg —Q3

(V.14)

In this case a,a, and a,' are of the same (fourth)
order with the other terms being of higher order,
and presumably smaller for small s; so that the
zero of a, (s) does not imply the vanishing of the
denominator, Q, Q, —Q,'+smaller, nearby.

Finally, we give a brief comparison with the
earlier one-loop Pade calculation by Basdevant
and Lee based on the LoM. First, the LvM cal-
culation did not include any contribution from
nucleon loops and it did start with an elementary
o-particle as input (in the s-channel the a-pole is
displaced into the second sheet by the Pads ap-
proximant). In the strict one-loop approximation
the LoM has one parameter, m, or equivalently
the coupling constant A, = (m, ' —m„')/3+'. How-
ever, Basdevant and Lee also treated 5 =f, as a
variable parameter to approximate the effects of
higher-order calculations and to improve the fit
to the experimental data, so the two calculations
have the same number of free parameters. The
calculated s-wave phase shifts are quite similar,
but the flattening out of the I=O s-wave phase shift
above '700 MeV, in disagreement with recent ex-
perimental determinations, is more pronounced
in the LoM calculation than in the NLaM calcula-
tion. In each calculation the parameters may be
adjusted to get the correct p mass but the width
is not adjustable. The NLoM ealcu1ation gets the
correct p width while the LaM gets much too
small a value for Fp (35 MeV). The only phenom-
enological advantage of the LOM calculation is that
the o exchange terms in the t and u channels gen-
erate all partial waves so that Basdevant and Lee
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could also apply the [1, 1J Pads approximant to the
d waves and generate an f ' resonance of reason-
able mass. In the NLoM the Born term contains
only s and p waves so the d waves cannot be
treated in the Pads scheme until higher orders
are calculated. However, this advantage of the
LoM is offset by the fact that the LcrM calculation
also gives an 1=2 (exotic) d-wave resonance 200
MeV above the f ', and one must appeal to higher-
order approximation for its elimination. Finally,
the s- and p-wave amplitudes coming from the
NLoM calculation satisfy the Roskies relations
required by crossing symmetry significantly
better than do the partial-wave amplitudes from
the LoM calculation.

VIII. DISCUSSION

We have given a complete one-loop calculation
of the nn scattering amplitude based on the NLcrM
which incorporates all the features implied by the
SU, x SU, current algebra and PCAC in a model
which starts with a Lagrangian including only the
stable pions and nucleons. We have adopted and
slightly refined a regularization procedure for the
NLOM based on the m, -~ limit of the LvM, so
that the complete one-loop nn scattering matrix
element depends on only one undetermined param-
eter. We have then applied the Pads algorithm to
the divergent perturbation series, in order to have
an approximation scheme which has some hope of
converging and which is capable of predicting the
spectrum of resonances. Thus the input is a La-
grangian, a regularization scheme which involves
one undetermined constant in addition to the ex-
perimental values of the pion and nucleon masses
and the pion decay constant, and a systematic ap-
proximation scheme. In the first order of approxi-
mation —the [1, 1] Pads approximant constructed
from the zero- and one-loop diagrams we can get
reasonable I=O, 2 s-wave phase shifts and an I=1,
J=1 resonance but there is not enough binding in
the p wave to get the p resonance near its experi-
mental value. We then made a handwaving argu-
ment that higher-order approximations would give
increased p-wave binding and further, that the in-
creased binding could be simply taken into account
by the introduction of one additional parameter in-
to the scattering matrix element constructed in
the first approximation. This led to a two-param-
eter model which gives a rather good account of
the known experimental features of nw scattering
up to 900 MeV including the p resonance and no
narrow e(o) resonance.

There are a number of aspects to be considered
in assessing the significance of these results.
First, one cannot hope to calculate wm scattering

above 900 MeV in a purely SU, x SU, framework
because of the great influence the opening of the
KE channel is observed to have on 500. We are
currently considering how to include the kaons in
the scheme described above, in order to open the
way to calculations at higher energies, and also
to see if inclusion of the kaons will lead to a cal-
culated 600 which does not flatten out below the
KK threshold. The second general area of con-
cern is the approximation scheme used. It is
basically a low-energy approximation and to go
higher in energy it may well be necessary to go to
higher-order Pads approximants. These will al-
most surely be necessary to produce higher reso-
nances and it may also be that the flattening out
of the calculated 500 between 700 and 900 MeV is a
feature of [1, 1] Pads approximant. It would also
be very desirable to have an honest, no additional
parameter, calculation of the second diagonal
Pads approximant ([2, 2J) to check that the claimed
additional p-wave binding actually appears, and
that the weak I=0 ghost and I=2 particle poles
below threshold disappear. Unfortunately such a
detailed calculation may be out of reach, because
the [2, 2] Pads requires two more orders of per-
turbation theory, i.e., through three loops which
is probably prohibitive" for the LvM which is
needed to regularize the NLoM in the present
scheme. What may be feasible, and is currently
under investigation, is a two-loop perturbation
calculation in the simplified chiral-invariant
(zero pion mass) model discussed in Appendix E.
This would be sufficient to construct the [1,2] ap-
proximant, which is also unitary, and to get some
feeling for the stability of the successive steps in
the approximation scheme and whether the changes
are improvements. A two-loop perturbation cal-
culation would also be valuable to verify that the
regularization scheme, the M- ~ limit of the
LvM, does provide a finite matrix element in
higher orders with no additional undetermined
parameters. We speculate that the two-loop ma-
trix element would include terms proportional to
[In(M2/g')]' as well as In(M'/p, '), but this does
not introduce any new parameter. A third general
area of concern is one common to all model cal-
culations of nn scattering. That is the mn system
at low energy is highly constrained by crossing,
unitarity, and analyticity; one can obtain nontriv-
ial confrontations with experiment proceeding just
from the "axioms"." Thus one has the feeling that
any model which satisfies some of these properties
exactly and the others to a good approximation and
has the feeling that any model which satisfies
some of these properties exactly and the others to
a good approximation and has one or two adjustable
parameters should give a reasonable account of



K. S. JHUNG AND R. S. WILLEY

wm scattering over some greater or lesser energy
range. In fact, there do exist a plethora of model
calculations of mw scattering, too numerous to
list. One attractive point in favor of a calcula-
tional scheme starting from a Lagrangian is that
it is not in any way specific to just one process.
In particular, if there is any wider significance
to the calculations reported here, the same scheme
should work also in the kinematically more comp-
licated case of sN scattering (and possibly also
NN scattering and sN st, etc ) .In. fact, Filkov
and Palyushev" have already published a mN cal-
culation which starts from the NLcM Born term
(7.2), computes the second-order s- and u-channel
discontinuities by iteration of the Born term in
the unita, rity equation, parametrizes the second-
order t-channel discontinuities by a subtraction
in the fixed-t dispersion relation, projects out

partial-wave amplitudes, and computes the [1, 1]
Pade approximant s-, P-, and d-wave I= —,

' and
& phase shifts from threshold to 1800 MeV center-
of-mass energy. The agreement with the exper-
imentally mell-determined mN phase shifts is very
good. The lowest-lying resonance is found cor-
rectly in each channel and no resonance is found
in those channels which do not have low-lying
resonances. However, Bergere and Drouffe"
have done similar calculations and report poor
agreement. We (and presumably others) are
currently engaged in Pads calculations with the
NLO M for the nN system in the hope of resolving
this discrepancy. If the Filkov and Palyushev
results, or something like them, hold up, those
wN results together with the mm results reported
here constitute some impressive success for
Pade calculations based on the regularized NLo M.

APPENDIX A: CALCULATION OF THE IMAGINARY PART OF THE ONE-LOOP AMPLITUDE IN THE NONLINEAR 0 MODEL

The sum in (3.8), for (y) =sr, includes an integral over two-pion phase space,

d'A g 4 2 1/2
-'Jl 2„,(2s)'5, ((&+0)'-V')~.((&-q)'-))')= 15," t)(s-4p') =--lm&„.(s) .

In terms of this integral, the contribution of the mv intermediate states in the s channel is

(A1)

2) 1
s a~~ =

~f [5.~~~&~.(.)(P q P', q')+&..5~B~.(.)(P, q, P', q')+&„~„C„(.)(P, q, p', q')l[-&1m&„„(s)],

(A2)

A„(,)(P, q, p', q') =(s-)),')(2s+f+u-Sg'),
(ASa)

B„„(,)(P, q, P ', q') = —', s'+ ~~ s(t —u) -&s(s+ f+ u) —-', p'(f —u)

4 ~ P2 q2 pt2 q/2 + 1 p2+q2 pl2+ql2 (ASb)

C,„(,)(P, q, P', q') = ,'s'+, s(u —t) —,s(s+t—+u)--',)).'(u —t)
2

P -9' P -0 +2p +0 P +0 (ASc)

We have computed this discontinuity for arbitrary off-shell extemaE pions, because we want eventually to
impose off-shell current-algebra and PCAC conditions on the corresponding real part of the matrix ele-
ment. There are similar discontinuities in the t and u variables from the contributions of the 2g inter-
mediate states to the unitarity equations for the t- and u-channel reactions. Defining

discM = 2i ImM,

and including the t- and u-channel discontinuities, we obtain

Im, „~&')(s, f, u;p', q', p", q") = —,[a(s, t, u;p', q', p", q")Imf„,(s)n f2 1

+ p(s, f, u; p', q ', p ",q")Imf, „(t)+p(s, u, t; p', q ', q",p")Imf„„(u)],
(A5)

where a(s, t, u;p', q~, p", q") and P(s, f, u;p', q', p", q") are the functions given in (3.12a) and (3.12b). The
imaginary parts of the invariant functions Bt') and C~') follow from (A5) by the substitution rules (2.5).
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(AGa)

To compute the (y) =NF contributions to (3.8) we have to substitute the first-order ss-NN invariant ma-
trix element (3.9) into (3.8). Then for 'the s-channel discontinuity we require the following lntegrals over
the NN phase space

f
d4 s-4'' '~'

2s', (2s)'5, ((k+P)' -m')6, ((k- q)' -m')= — e(s -4m') = 3-i ImI„„(s),Bx 8

, (3s)'6,((u+p)' -m') 6,((a-q)'-m') +, = -31m', (s;p', q') =- -3lmrf„(p, q},. (&s' ~ fS

(
~)(&)6+((&+p) )~+((& q) )( )[( ) ]: 31 H( t 'p q p q )

=- -2 Im, H„(p, q, p', q') . (A6c)

In texms of these integrals, the contribution of the NF intermediate states is

disc, ~&',& = g'4 6„6, -8 r jlmI„„(s)+8(p'qi2+p~q'- st)tlm, HN(p, q, p', q')
(EN )

+ 8(p'p" +q'q" —su)i Imps(p, q, q', p')

+6„6~[8(p2qi2~p~q2 st)tim+ (p, q p', q') —8(p p' +q q' - su)iim jE„(p, q, q', p')]

+5„5,.[-8(p'q" +i q'-si)ion&(i, qp', q'}+ i(p'p'*+@'q"-s )iimJI (p, q, q iHIt',

The K integrals (A6b) appear at intermediate stages, but cancel out in the result.
Again, there are discontinuities in the t and u variables from the contributions of the NN states to the (-

and u-channel unitarity equations. Taking these into account we obtain

Im„yA&" (s, t, u p', q', p", q~) =g"[-4(s/m')ImI„„(s) +4(p'q" +p ~q' —st)ImH (s, t, u p', q', p ~, q~)

+4(p'p" +q'q" —su)imH„(s, u, t;p', q', q",p")

-4(p'q'+p "q"-ut) ImH„(u, t, s;p', q",p", q')] . (A8)

Combining (A5) and (A8) gives (3.10) of the text.

APPENDIX 8: THE LINEAR 0 MODEL, RKNORMALIZATION,
AND THE m~~ LIMIT

Renor malization of the llneax' 0' models consis-
tent vrith broken chiral symmetry, has been
carried out by Lee, '4 by 3ymanzik, "and by Bessis
and Turchetti. " The m, -~ limit has been pro-
posed and discussed by Bessis and Zinn-Justin'
(for the L&zM without nucleons). This appendix is
included partly for completeness, partly to give
the straightforward generalization required to in-
clude the nucleons in the m~ ~ limit discussion,
and partly because me differ from the treatment; of
Bessis and Zinn-Justin in regax d to the details of
the p. -0 chix a1-invariant limit.

Although the renormalization of the LcM has been
more then adequately tx'eated in the references
cited, it is necessary to include at least a sum-
mary of the definitions and formulas involved in
order to be able to discuss the m ~ limit, which
is the point of interest for the calculations of this
paper. The I agrangian for the LeM is

& ~ =5[(se )'+(sx)'] ku. '(0 '+-x') V+~ 's4

-l&.(e '+x')'-g. N(x-t~~~ 4 4'

Here g is the unrenormalized canonical o field,
vrhose inclusion admits lineax chix al transforma-
tions for the n field. The axial-vector current is

&~..= 4. aux - xs p4. + Oru&5''1. 0

and satlsf les

(E3)

The scalar field X may have a nonzero vacuum
expectation value

(S4)

so ere define a translated field

In terms of this field the LQM Lagrangian ls
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& =-.'((sy )'- l .'V'}+-.'((6X)'-bf. 'X'&

+g(ir e -~ }4 -X.5:.x(4 '+x') --'x.(4 '+x'}'

+igo/1, rg re -ZOA'X .

The relations

9 i = PO +&O&02= 2 2

0 +3aogO

(86)

(87)

mq =gOPO

come out directly from the algebra of going from
(Bl) to (86) by the substitution of (85). In order
to ensure the consistency of (85), i.e., to ensure
that(x)=0, it is also necessary to impose the con-
dition

c=fa&'. (Bl lb)

Note that the renormalization of the o field is not
the conventional one; i.e., in the presence of sym-
metry breaking Z wZ„so the renormalization
(89) gives (Q~o~lo) ra 1. Since we are interested in
the limit m -~ in which there is no asymptotic
one-sigma state, this unconventional normaliza-
tion does not create any problems, and it does
lead to simple Ward identities. Since the com-
mutation relations of the canonical fields with the
generators of chiral transformations are linear
in the fields, the renormalized boson fields, re-
normalized according to (89}, satisfy the same
chiral commutation relations,

2 3= 2
CO FOP 0 0PO $0+1 ~ (88) 6(xrr -yrr)[A,'(»), w~(y)] = i6(x-y) 6„(o(y)+5),

As we shall see, these conditions have their coun-
terparts in renormalized perturbation theory.

The renormalized field operators are

(812a)

6(xrr -y, )[A,'(x), &x(y)] = i6(x y-)w, (y-) . (812b)

1 1 „1" mz&" ' ~zx " mz'.
Also,

Fo, c= v'Z~ co;
I

(89)

(810)

Using (811}and (812), one can derive Ward iden-
tities relating the two-point, three-point, and four-
point renormalized Green's function.

The functions with which we are concerned are

(Q~(w. (x)w, (y) },~Q) = iD.,(»-y).
so

e "A„.= c~, , (81la)

= 6„iD„(x-y),
(Q)(o(x}o(y)},IQ} = iD (x-y),

(813a)

(813b)

(Q)(w, (x)w~(y)o(z)}+)Q} =J dx'dy'dz'iD (z -z')i Va(x'y', z')iD (x' x)iD, (y-'-y), (813c)

(Q~(w (x)wa(y)wa(z)w&(w))+)Q) = dx dy'dz dw'iD„(z z')iD (w —-w'}iVa~(x'y'z'w'}iD (x' —x)iD„(yr-y)

+(Q((wa(x)w, (y))+ +(Q)(w, (z)w~(w}}+)Q} +(ac)(bd) +(ad)(bc) .
The Fourier transforms of these functions satisfy the Ward identities.

(I) D, (q=o) '=-p'f, l&,
(11) pV, „,(p =O, q) =D, (q) '-D (q)-',

(III) 5A(p =0, q, p', q')D, (q) '=D„(q) 'V, „,(p', q'),
where

V.,(p, q) =6.,V...(p, q),
V„(p, q, p', q') =6„6aaA(p, q, p', q')+6.,6~B(p, q, p', q')+6„6„C(p, q, p', q') .

(814a)

(814b)

(814c)

(815a)

(815b)

D, (q) '(, a „a = 0 , (816a)

The third Ward identity, combined with the con-
ventional pion renormalization

A(p =or qrp r q )la =p;P'ra'arbirrary (817)

and the Adler-Weisberger-Weinberg low-energy
theorem (two soft pions)

(816b)
d aA(p=o, q, p'=0, q)(

1 (818)

gives both the Adler zero (one soft pion) These results are independent of perturbation the-
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ory, and independent of m, .
The next task is to construct these functions

through the one-loop approximation in perturba-
tion theory. We follow the perturbation treatment

of Symanzik, in which the Ward identities play a
central role. This approach is based on the
Bogoliubov-Parasiuk-Hepp-Zimmerman (BPHZ)
formulation" of perturbation theory.

f

De(: (DI(e, e 2 N )~ ID)=P.P(0 „e;„N,„N eee ( 2„,(e...e, N,„,N,„) 0)..

(B19)

ff 2(1 —p, )(ar)' —2 (g' + f2, )ff
' + 2 (I-p )(ao)'

—2(M +a )(f2+(I —p«)Pjy aN

—(m+ of«)NN-(X -y)off()f2+(f')

-4(A. —y}(w +ff ) +i(g —5)Ny, rN fr

—(g —6)RNo' . (B20)

The constants p, , M, m are the renormalized pion,
0,' and nucleon masses; A. and g are conventional-
ly renormalized coupling constants, e.g. , the val-
ue of the nm matrix element at the symmetry point,
or the residue of the nucleon pole terms in the mN

matrix element, etc. We define effective coupling
constants"

The F.P. stands for the BPHZ finite part which in
general is a complicated but systematic subtraction
procedure which renders finite the Feynman inte-
grals generated by the Wick reduction of the right-
hand side, but in the simple one-loop case merely
instructs one to expand the integrand in a Taylor
series about zero external momenta and drop the
divergent terms. The prescription also includes
the instruction to treat the ordered product of in-
fields as a T* product, i.e., to drop noncovariant
terms. To make up for these mutilations of the
canonical, unrenormalized perturbation expansion,
one adds to the Lagrangian all finite counterterms
of dimension less than or equal to four, consistent
with the symmetry of the Lagrangian. Then one
uses the conventional renormalization conditions
and the Ward identities to fix these finite counter-
terms in terms of the renormalized masses and
coupling constants of the theory.

dition that n, —a, vanish in zeroth order, then the
second Ward identity gives the following relations
among the constants:

X =(M —p )/2(y2,

&o = &m —2y&
(B22)

g'=m/P,

D, (q) '=4' —p'-&. (q)

=q -u P.q —cf, —-, If.0&(q2)
(M' —g'}

m2-4
~Z

q'I"&(q'), (B23)

(M'- ')*lu ) [ I(0) (~2) + ~2I) (+2]

with y an undetermined constant except that it is of
order 5 4. The constants a„and P, are deter-
mined by the renormalization conditions for D„(q),
E(j(s. (B16). The first Ward identity gives an equa-
tion for W in terms of the other constants, so the
functions depend on two constants, Mand y. We
do not impose any renormalization condition on
D, or V„,because in the limit m -~, we do not
treat the 0 as a physical particle. Thus if the con-
stant y is to be fixed it will have to be through a
condition on the physical nw matrix element, i.e.,
on the invariant function A. Substituting the results
(B22) and reexpressing the perturbation expansion
in powers of p ', we obtain the results

A. '=A. -y,
(B21)

m2
+4 T I INN(P

(M -p)
P, =—,I,'„{p')

(B24a)

We first compute the functions through the one-
loop approximation in terms of the constants ap-
pearing in (B20) and (B21). If we impose the con-

m2
—4 ~[IN'«(P')+g'IN«(P')], (824b)
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D.(q)-'=q'- M*-F.(q) +2''
(M' — ')' (M- ')' m'

=q' M' p q' a —' Ito!(q2) -a ~ I( '(q') 4 —(q' -4m')I('!(q')+2y92jQ frF 2 p2 OO p2 NN

(826)
M M2 2 2

y„„(p,q)= " +2y6:, " [(M'-!!,')[K,"&.(p, q)+3K/ (p, q)]+~I'„",(s)

+ —.
' f"..'(s) + I"..'(P') +I"..'(q') }

+6 ~ [»~Ã'Ã'(s)+(s -p'-q')E NNd» 'q)]

!' + t &„&.(P, q)+2y6',
F

x(p q p' q')=at'!+a&'!+a&;„!

=Q +2@

(g) sl ~p $' ~ |IL

(827a.)

, ~. (T"!.(&, &)+('!'!.(&', &'(!- &.', M. . ~'."(*)+»(, ~&) -», (M&c(

(M'a'" = 2y — " PZ!' (s)+I"!(t)+Z '!(s)+ -'Z('&(s)

+(M' —p, ')[E~,'~, (p, q)+K(„0,', (p&, q&)+K~,'~„(p, q)+E(,o!„(p', q')

+K(.'!.(-q', q)+E"..'.(P, -P')+Kt.'!.(P, -q')+KV..(-p' q)]

+(~-l ')'[H;'.',.(P, q, p', q')+H'„"...(p, q, q', p')1 }
4

+4 ~ [4f(((]((s)+ 2(s- P'- q' )E»((&(pq)+2(s p" q' )E»((((p' q')

+(p q +p q -st)H&&&r&&&&(p& q&p & q )+(p p +q q' -sQ)Hpr&&&&sr(p& q, q, p )

-(P q +P q -+t)H»»»»r(p& -q &P & q)] ~

The integrals I, E, H are the integrals introduced
in Sec. III. (K„„N=E„and H»»= H„.) The super--
script indicates one subtraction at the point where
all external four-momenta vanish.

or

D (q = 0) ' = -t!' —n

K&"(P, q)=E(P, q)-E(0, 0), etc. (828)

Detailed formulas are given in Appendix C. Using
the identities

E„.(o, q) =, , [I,.(q') —I..(q')],

H,.„.(o, q, p', q')=~ „.[E...(P' q')1

-E...(-q', q)],

one can check explicitly that the functions of
(822-82V) satisfy the second and third Ward iden-
tities (814b) and (814c). The first Ward identity
(814a) gives an equation for 6:

(M -!!,)2 (0~=f. 1+ „. ." ' [-IV(t!')+u'1.'.(t!')l

'=f "&a~ ( s &') (829')

m2 1
+ 4 p' 0 1»(P )

In the M-~ limit, the on term goes to -(y, '/6F')/
16K . (See Appendix C for expansions of the lnte-
grals). To estimate the magnitude of the t(!H term,
we may consider the leading terxn in an expansion
in powers of!!,'/m'. Using that result, (829) be-
comes
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Because 1/160 is a small number, the solutions
of (829') are approximately

AO) ~ (s g2) (Bsl)

5 p,

96n f (Bso) Comparing this with (3.'I) we identify

Only the first solution leads to a Born term (827b)
which, in the limit M ~, agrees with the current-
algebra and PCAC result (Weinberg); so we accept
it and reject the second solution. Since the esti-
mate shows that the actual solution of (829}differs
from f„by the order of one percent, we simply
use 5 =f„ in numerical calculations.

The M- ~ limit of the Born term (82Vb) is trivial

(Bs2)

The M-~ limit is also simple for the nucleon-
loop contributions to A ' . The only M dependence
comes from the 0-pole terms and considerable
simplification ensues when we combine the nucle-
on-loop contributions to A~ and A» in this limit.
Note that we include the nucleon contributions to
o.„,P„[(824a) and (824b)].

A„=4 p[-sI(N'„'(s)+(s —p')g'I~„(p, ')+(p'q" +p "q'- «)m'&g(p, q p' q')

+(p'p" +q'q" —su)m'IIN(p, q, q', p') —(p'q'+p"q" —ut)m'II()((p, —q', p', -q)],
I')~s}= I Ã(s) 4N(&'-) ~

(833)

(834)

We will use a tilde to denote the functions (con-
stants) of (823) (2'l).with the nucleon contributions
taken out

(M' —p')'
[ I,'„'(p, '-) + I(, 'I,', (p')], (824a')

Similarly,

c , u(p=0, ))t'=0, 1)) =0,d

( , ()(p = 0, 6)' ' = 0, 0) )
= 0;d

thus (818) implies that

etc.
In comparing (82'I) with (S.ll), we note that our

use of the BPHZ perturbation theory has led us to
subtract the integrals at zero external momenta,
i.e., the I„,integrals in (3.11), for which the sub-
traction point was not specified, are now deter-
mined to be I~,'~ integrals. Also note that the nu-
cleon contributions to (82'I), collected in (BSS),
contribute the term 4(m'/5 ')p'IN~(p'}(s —u') to
the polynomial (3.13). Let us denote by P (without
the overbar), and constants A, 8, etc. , the poly-
nomial associated with subtraction at zero exter-
nal momenta, and not including the nucleon contri-
bution. Our first step in determining these con-
stants is to use the results (Bl'I) and (818) which
follow from the Ward identities, independent of
the a mass M. Since

a(p =0, q, p', q'},a „2=0,

p(p =0, q, p', q'), 2 ()p=0,

(Bss)

This gives one additional relation,

(Bss)

(839}

To obtain additional relations, it is necessary to
take the limit M-~. In principle, one could just
do this for all the terms in (82'I), but the asymp-
totic expansions of the box integrals are quite
complicated for general momenta, so it is easier
to work out a sequence of special cases. In work-
ing these out we use the M-~ expansions of the
I, K, II integrals given in Appendix C. We find-

2'+(, q, o, q), —,I (q'-v. ')'

see (3.12); condition (817) implies that

P(p =0, q, p', q'), 2 „2.~... b,.„=0.
This gives the relations

A+X+ G = 0, C+P'+ I= O,

a+0=0, a=0.

(Bss)

(836}

where we have defined a new constant F; related
to @by

M4
16/g'

Comparing with (3.11), we obtain three condi-
tions —the coefficients of q, q'p, ', and p. 4-but
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G = + (-', +2r) .1
(B41)

The next case we consider is

L = ln(M'/t-(, ')

Comparison with (3.11}gives

+ -', tJ, '+ 2l(, 'r ) (B42)

(B43)

only one is independent of the conditions already
obtained (B36), (B38). The new condition is (B44)F = + (--,'I.+1) .

16@

In computing (B39) and (B42), considerable labor
was saved by using the Ward identities. It was
possible to do this because each case involved at
least one zero four-momentum. It is clear that we
cannot obtain any more independent conditions by
considering kinematic situations with any zero
four-momentum because if any one four-momen-
tum is equal to zero, then only the combinations
D+II and C+I enter in (3.13); i.e., there must be
two conditions which can only be obtained by con-
sidering all nonzero four-momenta. We work out

SB(-q, q, —q, q)„~ -q th)( )+ q[(qq —24'2')B —44q'qqq'2, ~ 2, +25'r]I, «=44' . (B45)

Comparison with (3.11) gives two conditions consistent with previous conditions and one new (independent)
condition

(B46)

The last special case worked out is

13'"(s, t, u; o, o, o, o)„~ r IP(s)(--,'s'+2u's ——,'u')

+I'„'„'(t)(--,' t' —',st+ ', us+ —,'g't-)+I", —,'(u}(--,'u' —-',su+ —',t(, 's+ Bp, 'u)

1
+ [(-~Bs' —-', tu+ t('s) L+ Is'+~2B tu - ~By,

's+ -2Bt4']
16

(B47)

A=, (--,'L+-', +2r),
16m

16&

F =
16~ (-BL+I),

16m"

(B49)
G= 16+ (—', +2I'),

1
16n'

Comparison with (3.11) gives three conditions con-
sistent with previous conditions, and one new con-
dition,

16 (B48)

We note that in the calculations leading to (B45) and

(B47), one encounters terms of order M'lnM' and
M', as well as lnM' and 1, but these cancel out in
the final results.

Now we solve the nine equations given in (B36),
(B38), (B41), (B44), (B46), and (B48) for the nine
constants A, B, . . . , I, in terms of the two undeter-
mined constants M, F.

We now fix the constant F by consideration of the
chiral invariant limit. The NLoM Lagrangian (3.1),
or (3.6), is chiral invariant if p2 =0. The one-loop
amplitude for the chiral-invariant theory (pions
only, no nucleons) is given by Allen and Willey' or
Lehmann and Trute'

1 -t——',t(t —u), ln-
16m' c

'1 -u——u(u —t) ln-
16m c

(B50)
with c an arbitrary constant. In fact, chiral in-
variance alone would allow one constant in the t
and u logarithms and a different constant in the s
logarithm. The two papers cited gave different
heuristic arguments for equality of these two con-
stants. Allen and Willey observed that in ordinary
canonical unrenormalized perturbation theory the
same divergent integral arises from pion "bubble"
diagrams in the s, t, and u channels. This was
taken as heuristic justification for introducing
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only one subtracted integral, i.e., the same diver-
gent integrals were all regularized (subtracted)
the same way. Lehmann and Trute, who construc-
ted the chiral-invariant amplitude dispersively,
arrived at the same result by invoking a principle
of minimal growth for large s; they observed that
the real part of the I =1 amplitude is less singular
as s-~ if the two constants are the same than it
is if the two constants are different.

To compare the pionic part of (3.11) with (B50)
we use the formula from Appendix C (C12)

or M as the single undetermined constant, but
(B54}fixes I' in terms of L and enables us to elim-
inate it from (B49). The final form of these con-
stants is

1 1 5 ~1

16zzz( BL+ (2) 2 E 16/( B + B }2

(B55)
(B51)

Then the pionic part of (3.11) reduces, in the p, -0
limit, to

F =16~ '-'L'"

16'

G= (-,'L--", ),
16m

A (s, t, u)&~D ~ ——,s ln —
z -2-(2) 1,~ 1 -s

16 p,

—,t(t —u) + ln —, -21 -t
6 16' ~2

c
ln —,=ln

P
(Bs3)

r =-,'L, -~ . (B54)

Equation (B53) only says that we may use either c

--',u(u —t) ln ~
P

+(A+B —C)t'+( 2B+D)t-ttI

(B52)
The requirement that (B52) and (B50) are the same
gives the relations"

E —8B+4C-E= 6~ (-BL+~B)=8,1
(Bs'I)

G+16B+4F+2H+4I=, (BL-~B)=Q,1
16''

Substitution of these results into (3.13) along with
the polynomial part of A„, [i.e., 4(m'/F4) p, 'I„'„
x (tzz)(s —lz')] then gives the result (4.3).

On the pion mass-shell, the polynomial (3.13) re-
duces to

P(s, t, u) = (A+B —C)s'+(D —2B)tu

+(E —8B+4C-F)p, s

+(G+16B+4E+2H+4I)tz . (B56)

1A+B —C= ~ (BL- B )—= 8,

D —2B= ~ (-BL+~B)=$
2

1

APPENDIX C: DEFINITIONS AND FORMULAS FOR INTEGRALS

We start with the scalar "bubble" integral

1 d4y
IBB(s}=z (dk)(( )z z]((k )z z] 2 J

(dk)=
(2 )4, s=(p+(I)' . (Cl)

The Feynman parametric representation is

I„(s)= -ln —+ dxln +1, A' = cutoff, s, =arbitrary mass squared;
1 A' "'

zz (1 —x)+ tz x —sx(1 —x)
S1 ~O 1

(C2)
1

g,(s) = dxln[n(1 —«)+ px-)x(1 —x)], a =2z'/s„p=b'/s„$ =s/s, ;
do

J„(s)=-2+-,'In(np)+ ln —+
2

ln
&

2 s&(m, —m, },P —n P ))1). z P+ n —t —)t1(.z

y, =~'+a'+ p' -2ag -2J3t' -2aP

=[t -(~n+~tl)'][& -(~n -~u}'] '

(C3)
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J,' (0) = -1+—,
' In(nP)+

(
ln—

The integx al subtracted at s =0 is

(C8)

s& (m, -m, )', Z = s' +a 4+f'}2-u*s 2-f'}s-2g'f'}.
The expansion for one large mass, M» p, 2, s is

1 s p, ~s M~ s2+ 9pes
16s' R}t' St' S' Rtt' )

The equal-mass case, m, =m, =p, {or M, or e(:), is

(,) 1
2

s -4p' ~' [(s -4p')/s]~'+1l„(s)= (Rp
-R+ (c

(( R )~ )c 1 I, scR .

The branches of the squire roots and logarithm may be chosen such that

(0) 1 4P 2I }t((st) 8y 2+2 tan
[(4 R )/ ]Rim R 0&8&4/

(,) 1 s -4p, ' ~' 1+[(s -4g')/s]~' . s -4p, '
18s' '

s 1 —[(s —4q2)/sP" s 4p, &s ~

The imaginary part is given in (CBc); alternatively it may be computed by using the Cutkosky rules to
compute the discontinuity of (C1)

Sisct„(s) Rittct„(s)=if=(RS}Rsts,((R+PP —S'}Rsis.((R —S)' —S, ')

X/2

8(s -4)).') .
en s

(C8a)

We also need, derived from (C8b),

I "(s)=(0 1 1 s 1 s
=16" -6M -60M- —————+' ' ~ At»s

and, from (S8c),

(C11)

I'"(s)- ln —-2 iw p'--0 (s) 0)

ln, -2, p'-0 (any s)
1 -(s+ fe)

16m' p'

For partial-wave projections, @re need the integrals

deaf "I(.')(f) =18+ 1(4p'-s)""+(p')""G„(s)
J ~pm 16+ @+1

( R)t}+lg (,) t d«. l -4) '
h l«-4) )/fl ' +1

n J [(t- 4qR)/f]&* —1

g+1
2( 4l) ) ds 2 s}}s2 ln

jz -1j
1/g

(4p.R&s) .s-4p,

(C12)

(C14)

(C14a)
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zo —1 zo —1 zo-1 zo —1
(C15a)

(C15b}

(C15c)

(C16a)

(C16b)

z, —1 3(z,' - 1)' z, —1 9(z,' —1)'

( ) 5
zo+ 1 ' 4zo(-15z, '+ 55z,4 —V3z,' —l5) zo+ 1 (45z,e- 150z,'+ 173z,' -32)

Substitution of (C14a} into these formulas gives the formulas (D7b)-(DVe), Appendix D T.he continuation
below threshold is made by means of the relations

z + 1 1+[(s -4/2}/s] 4p, —s
ln ' =ln ., 2,~ =2itan ' for 0 ~a(4p, ' .z, —1 1-[(s-4p')ys}'~ s

=i for O~s~4p2,

but note

(

='(": '}''- '(.:—.)"'

For the partial-wave projection from the nucleon bubble integral, we have

(,)„„() I' „„f-4m' ~' [(f-4tn')/t]'~'+1
[(f-4m')/f]'" —1

ce 2

(C16c)

(C17)

= (m'/p, ')""(p')""G (Z ) (C18)

4m2+ s -4p. (C18a)

G„(z.) = G„(s), (C18b)

i.e., the functions G„(z,) are obtained by substituting z, for z, in formulas (815). Substitution of (C18a) in-
to (C15b) and (C15c) gives formulas (DVf) and (D'Vg) of Appendix D.

The triangle integral is

1
[lr' —m, '][(0+p)' -m, '][(k —q)' -m, ']

The Feynman parametric representation, for the case of t~o equal masses, is

(C19)

~j. ~l j 6(1 -Px, )
K QQ(pi q) '

ding dx2 dx3 2 2 2 (C20)
16n' „, „, rPx|+0 (x, +x,)-p x,(l-x, -x,)-q x,(l-x, -x,)-sx,x,

Because of the constraint, one integration is trivial after a change of vari, able. To obtain the expansions
for m, '- ~ or m, '-~, it is necessary to do a second integration before expanding the integrand. The re-
sults are7

KPJ, (s;p', q') =, , [~s+-,'(p'+q')J+, [-p'(p'+q')]

1 4+,[-',(p'+q'+p'q'+ —,'s(p'+ q ') +,—',s') +2p'(p'+ q') -~6p's]+ ~ ~ ~ (C21)
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tt". l, (sP', 4')=1':!(s)I~[-)i+~.[ls —l(9*+4')-9'i

.[-!s'+ l (ps' qs') esp* -sps'(p' qs') l(p'+4-' ps*4') -p'
2
+(p'-4')'i+ "'I

+ ~,f-a(s -P'-q')]+ .['s -~4(p-'+q')]

+ a[as'-as(P'+q'+~u'}+3u'(P'+q')+2(P'+q'+P'q'}]

+ —,[-ss'+s(—", (P'+q')spp')-49'(tssq') -,—',(1(qt'+199'+22p'4*)]+ I,1-

s=(p+q}', L=ln(Ma/t!a) .
The box integral is

H„~(p, q, p', q') = t (dk)
1

(u'-m. ')[(u+p)a -m, '][(n+p -p')'-m, '][(n-q)a -m, a]

We need the Ma» p. ', s, t expansion of NJ~„. This is"

H &„:&„.(s, t, g p', q', p", q"}=IV(t)
i
—.[ll+ —.[lp - t+2u, ']

+ —,t'+lst t(P+4P'-)-!P*s+29'+ P'P+ P-qt P' +'''I

(C22}

(C23)

+ —,[-t' —-,'st+ t(p+et[a)+ pas —satrap ——,
'
p]

1+,[-as'+ st+2t —s—'(,sp+s'p') t( ,'p+qp*)+tsp-'p-+Pp —,—'p']+" ~ I,
(C24)

where

p =p +g +p +Q'

loj=p +!III +p +g +p g +p g +pp +g g +~p ig +gg p

(Pa Ppa}a+(qa qtap+(pa Pta)(qa qta)

We also make use of some properties of the integral~

HE(pt q pt q t) HNNshf(P) qtP 1 q )

=H„(s, t, u) for all p, '=pa

=H„(s, t) for u=4pa-s —t .
The Feynman parametric representation is

d(C -gx, }
Hs(ss t) —— dx2' ' ' dx~16s', g, [aaa -p (x, +x,)(x,+x,)-sx,x, -tx,x,]

From this we have

H„(s, t}=H„(t, s)

(C25)

tt(s, t)= + —,+ ~ ~ ) 1st 9=9 Is/ 'i, (t/« («\'1 1
162 em' (C28)
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For the projection of partial-wave amplitudes we make use of some manipulations with the single and
double dispersion relations satisfied by H„.

d(s, t) =disc, H„(s, t)=i (dk)[-t2w6, ((k+p)'-m')][ z-2w6, ((k —q)'-m')] 1
k' —m' k+p -p ' -m'

where

Z

Sw ((-st)[(4m' -t)(s -4m )+4(2m —p, ) ]}~ A —WB

A=(s —4m2)(2m' —t)+2(2m -p, )

B=-t(s -4m )[(s -4m')(4m' —t)+4(2m' -p') ] .
It is useful to rewrite this as

1
- -t+ ,'t, + [t(t - t-,)]"'

t(t —t )] -t+ 't —[t—
where

4m's —4p, '(4m' —p ')
s -4m'

We choose the square-root branches as

[t(t t, )] t' =-[t( t-+ t, )]~-' for t & 0

= i[t(t, - t)]~' for 0 & t & t,
= [t(t —t, )]' ' for t, & t .

Then

(C29)

(C30a)

(C30b)

(C31)

8nk, st t, -t ' -t+-.t,

With the definition

k(s, t)= —.d(s, t),1

(C32)

(C33)

(C32) gives (D5).
The double spectral function is

p(s, t) =Im, k(s, t)

-1 1 2

32wk, [st(t —t, ~]v
2we(t t, )e(s-4m -)

„,e(s, t) =p(t, s),8(st[(s —4m')(t —4m') -4(2m' —p, ')'])"' (C34)

where e(s, t) gives the boundary of the double spectral region, determined by (C30b). The single and dou-
ble dispersion relations are

( )
l, k(s', t)
g "4m S -S

D(s', 0 ')

The s, t symmetry of H„(s, t) enables us to write

( )
1, (s, t)
W ~4~2 S -S
1 "„,, k(t', s)

(C35)

(C36)
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„,p(s', t')
t'- t

1 (suoo

a(s', t)=-,
(CSV

(t/ )
1

t d p p (s, t )
g g~ (]t) S -S

We use these results to write a dispersion relation for H„(u, t), suitable" for partial-wave projection and

subsequent numerical integration

du dh S)('u 'S )p('u, 'S )'., '. . , +, )
1 1

r u'+t'+s-4q' t'- t u'- u

1 c" 1 1
dvk(v, 4p,

' —s —v) +v-t v-u (Csa}

APPENDIX D: THE PARTIAI. -%PAVE PROJECTIONS

The partial-wave amplitudes projected out of (5.1) and (4.3) are

aoo(s) = ~ (2s —g') + —r --,'(2s —p, ')'I(, '(s0)+, dt[8y, 's —3Vp'+ (-2s+ 32g')t,- 10t 'jI &,
'& (I)

0
-12sm'I '(j( )s—~ dt tm'l~gs)(t)

P ~4p2

4 oo I -SS +2 8 +

-2 — ds'I(, (s', 4g' —s —s') -4s' —Sp'+, ln
"4NN2 p'

+4p, (2s p )m Ip(N(p, )+ 6()s +$0~3p +8(&p, s+B(&p (Dla)

~0

„(s)= usP's -u -sP')(')(s) ~, d)()u, }[ d,

'us+, 'u(s- -sPu) S P' S)I(((-))
12P

——
a ),

dt 1+ 2 tm I~„s~(t)
P w~p2 2P

&m' '" d,p. . .(, , (-ss'spu')(s'spp') s'sdp')
lnp2 S

+ du*p'su's„', (u')+sp'u'(d)ss u) I, (Dlb)

0
a„(s)= —,(-s+2p-') + r ——,'(s- '2)'pI ((s0))+, dt[-4p's+5p, +(s+2p'}t-4t']I("(t}20 p2

0
dt t '

m&„"&I( )t
~4p 2

+4— ds'h(s', 4p' —s —s') -4s' —Bp2+, ln
2 p' S

-4p'(s —2y')m'I„'„(p, ')+, dm, s'+(s, sap~+ e,g's+a), p' (Dlc)

(D2}
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ZO 8~ (DS)

(D4)

1 1
8s (ss'[(s'-4m')(4m' —s)+4(2m'- g')']]~'

x tan ' (s(s ' —4m') [(s' —4m')(4m' —s) + 4(2m' —p, ')2]PI2

(s' —4ml)(2m' —s) +2(2m' —p')' (D5a)

16s (s'(s'+s-4p, ')[(s' —4m')(s'+s+4m'-4p')+4(2m2- p, ')~])' 3 U ~V

U=(s'-4m')(s'+ s+2m' —4p, ')+2(2m' —p')',

V=(s' —4m )(s'+s —4p )[(s' —4m )(s'+s+4m -4p, )+4(2m —y. ') ) .

The functions h are discontinuities of the Mandelstam box integral, i.e.,

II„(s, t) = —
I ds', ' (s&4p, ', t&0),1 ",h(s', s)

m „4~ S'-t

(D5b)

(D6a)

1 "", , 2, 1 1
H„(u, t) = — ds'h(s', 411' —s —s'), +s'- t s'-u (Q, I&0) . (D6b)

Appendix C contains a summary of definitions and formulas for the Mandelstam box integral.
The t integrations for the functions IP (t) and I'„'„'(t) can be done in terms of elementary functions (Ap-

pendix C). After these integrations, and some combination of terms, the partial-wave amplitudes take the
form given in (5.7a)-(5.Vc). The functions I,(s), G»»(s), and G»»(s) appearing in those equations are
given here:

(s -4p. ')'~' . (s -4g')'~'
(DVa)

(D7c)

(D7e)

[s s-4p' I'I'. s -4p, '
G,(s)=(lnw)'+ ', ' Inw- (DVb}

(s —2p')[s(s -4p')]'I', s(s -4p')
2p,

(s' —Vg's+ 6p')[s(s -4y, '}]~' (s -4p, ')(-2s'+ ISED's+ 1''}

G,(s) =5(inw) + 12, Inw+
(-Ss'+ 34''s' —118p,'s+ 60''}[s(s -4p')]' ' (s -4p'}(9s' —100''s'+308p~s+ 512pe}

12pa 144'.s

G»(s) = (lnw)—, 1nw+
(2m'+ s -4g') [(s 4p')(4m-' s,

+- 4p')]'I' (s —4g')(4m'+ s -4p')
2m' 4m4

(DVf)

G»(s = 2(lnw '—[6m' —m'(s —4p, ') —(s —4g')'][(s -4p, ')(4m'+ s —4p, ')]+'
3m' lnw

(s —4g')[36m' —Sm'(s —4p') -2(s —4p')']
18m

(DVg)

where

s 4~2 1/2 s 4~ 2 1/2

(DVh}

4 2 &/2- 4 2 j./2q
gl= 1+ g 1-4m'+ s —4p.' 4m'+ s -4p, '
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The formulas are all valid for s &4p.'. The contin-
uations to the range 0 & s & 4p, ' are given in Ap-
pendix C.

APPENDIX E: CHIRAL-INVARIANT LIMIT AND

EFFECTIVE-RANGE APPROXIMATION

The partial-wave amplitudes of the complete one-
loop calculation, given in Sec. V, Eqs. (5.'I), are
rather complicated functions. In particular, one
cannot by inspection of these formulas determine
how the partial-wave amplitudes or phase shifts
will respond to variations in the parameter I„or
the parameter g„' introduced by replacing g' by
(m/E}g„' in (S.11}. On the other hand, if one sets

the pion mass equal to zero, p, -0, and in the nu-
cleon terms keeps only the leading terms in an ex-
pansion in powers of 1/m' i.e s/m' Itl/m' « ll
then enormous simplification of the formulas en-
sues, and the dependence on the parameters be-
comes transparent. The p, -0 limit is the exactly
chiral-invariant limit, as may be seen by inspec-
tion of the Lagrangian (S.1) or (Bl) and (B8). The
expansion of the nucleon-loop integrals in powers
of 1/m' corresponds to an effective-range approxi-
mation. ""

Using the integral formulas (Cll), (C12), and
(C28), and inserting the g„' factors, the amplitude
(4.S) reduces in the chiral-invariant and effective-
range limits to

1 is -u+(s) t) u) r s+ p 2 2»n ~ -2 ——,t(t - u) ln ~ -2 -~eu(u —t)5 16 5 p ](,

+(g')'l(-s'+ )+ I)+l(s'-tu)(ln, -])Ip.
(zl)

= —rs+, --,s ln —--,t(t-u)ln —--,u(u-t)ln —+-,(g„) (-s +t +u )=1 1 g2 -S 1 t 4 2 2 2
16m'r' ' c C C

(zl')

MI.--, =ln, --, =in~=I.,
P P

(E2)

The second form (E1 ) just makes explicit the fact that the first form (El) is independent of ]], after the log-
arithms are combined.

The isospin and partial-wave amplitudes projected out of (E1) are

a~(P') = r(2)+, , —~in ~ +P+-3(g„')4+~~f„+2st8(t) (ESa)

$2
air(P') = ~(s)+ 16~ . —~~+ ~g(Zg)'+ 18]](k)16

(2
a„(p') = ~(-1)+, , --'99)ln -r + Q+ ,'(g„'}'+~I„-+ 8(])—

(ESh)

(ESc)

where

4p2 (z4)

These are independent of p, and the same as the p, 0 and effective-range limits of the partial-wave am-
plitudes (Dla)-(Dlc). These partial-wave amplitudes satisfy the p -0 limit of the perturbative partial-
wave amplitude elastic unitarity equation (5.6)

&maVi'(p') =
S2, IaV)(P'}I' (v =0)2 1

and the [1, 1] Padd approximants formed from (ESa)-(ESc}
c"&a[1,1](p2) a(1)(p2} 1 Iz (p )
ag() (P')

will be unitary, and we can compute the phase shifts from

(E5)

5p.q(p. )
&maVi'"(p')

Iz ft [l,le](ap )2
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The results are

JJ„ 1 i i X4 ~2I 00= i6 2 i I- - ~~ 2 |sin x+108+ 8(g~) + iBL, (E8a)

(E8b)

~2tanD——3,2, 1 — +, ln~ —, ——,(g ) —,g,,
ImP P p,

(E8c)

The reciprocals of these formulas agree with the
effective-range formulas for cot61~ given by Leh-
mann. " We can see that for small values of L,(L),
happ has a maximum value less than —,

'
n, while for

large values of L,(L), 6~ passes through —,'w before
flattening out. From (E8b) we see that the P wave
is independent of L in this approximation, and we
see how the p resonance comes out of the calcula-
tion, with its position determined by the value of

24''p'
mp 4p

( I)4

chiral-invariant effective-range approximation .
(E9)

For g~=1, the value for the original one-loop cal-
culation, this gives mz =1400 MeV. For g„'=1.30
this gives m~ =900 MeV. This indicates that the
combination of finite-pion-mass corrections and
exact treatment of the nucleon loop integrals in-
creases the P -wave binding, since we have already
determined that g„'=1.30 gives the correct position
of the p in that case. The I=0 and 2 s-wave phase
shifts computed from (E8a) and (E8c) are also
smaller than those computed in the complete one-
loop Pade calculation based on Eqs. (5.7) and (6.4)
and (6.6) for the same values of L and g„'. In Fig.
7 we have plotted the results of the two different
calculations for 5~ and 62p for L=4.5 and g„'=1.31.

Finally, we remark that Lehmann has applied the
superpropagator technique for nonpolynomial La-

grangians to obtain a definite value for the constant
The value obtained was L, =5.73 which corre-

sponds to L=6.4, compared to L =4 to 5 which we
found as the best empirical value in the full one-
loop calculation. Ecker and Honerkamp" have done
an alternate superpropagator calculation, covariant
with respect to the choice of pion field, which gives
different fixed values for the two constants in the
chiral-invariant one-loop matrix element (see the
discussion at the end of Appendix A) and gives
phase shifts in the chiral-invariant effective-range
limit in qualitative agreement with experiment.
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FIG. 7. Calculated I = 0 and I = 2 s-wave phase shifts:
full one-loop calculation (—), chiral-invariant effective-
range limit (—-). In both cases the parameters are
L=4.5, g~ =1.31.
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