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Using language of statistical mechanics, we discuss the agreement between two-particle correlations at

fixed multiplicity (canonical ensemble) and correlations defined inclusively (grand ensemble), with

particular emphasis on the corrections to asymptotic equality expected for these observables. It is

furthermore shown that multiperipheral models with predominantly positive correlations imply

asymptotically the increase of two-particle semi-inclusive correlation functions with increasing n near

( n ). Recent data at 205 GeV/c do not confirm these expectations, and alternative interpretations are

discussed.

I. INTRODUCTION

Striking new data from the 205-GeV/c 30-in.
ANL-NAL-Stony-Brook collaboration bubble
chamber exposure have recently been found' on
semi-inclusive rapidity correlations. As a func-
tion of the number of charged particles n, and the
c.m. rapidities y of each charged particle, the
functions

have been obtained. As defined here, C,(y„y„n)
is the difference between the two-particle semi-
inclusive normalized rate (o„ is the prong cross
section) and the uncorrelated product of normal-
ized single-particle semi-inclusive rates. We
focus on the empirical observation' that C,(0, 0, n)
is near zero and almost independent of n for na4
charged prongs. The new observation is made
here that asymptotically, for an important class
of short-range-order (SRO) models, semi-inclu-
sive correlations increase in strength for increas
ing multiplicity for n near (n). The data at 205
GeV/c indicate an opposite trend. If confirmed at
higher energies, this trend would be compelling
evidence against all such models.

First we review the experimental and theoretical
situation prior to these new data. Qbservation of
the fully inclusive correlation"

(2)

indicated a strong positive value for C, (0, 0),
translation invariance, namely

c,(y„y,) =c;(ly, -y.l),

and a possible exponential falloff of

«(~y -y.l)-exp(-ly -y, )/L)

with a correlation length L=2 The .naive inter-
pretation of these facts" has been some form of
a Regge-pole dominance of the Mueller n-n am-
plitudes. Such interpretation is usually coupled
with simple assumptions about factorization,
which imply that the inclusive n-particle rate is
calculable'from the couplings used in the (n -I)-
particle rate. Taken together, these interpreta-
tions and assumptions amount to a claim of sup-
port for the multiperipheral description of the

data, ' at least for particles produced in the cen-
tral region. The multiperipheral description can
be framed either in inclusive or exclusive lan-
guage'; a combination of these languages will be

useful for discussing the significance of the new

semi-inclusive data.
Exclusive multiperipheral models (EMPM)

which can correctly account for data on C, (y„y,)
are constrained by data on multiplicity distribu-
tions. We know that C, integrates to a positive
value, since it is known that the second moment

y = fCdy dy =( (n,. —1))—(

is positive. Such positive correlations must

arise in an EMPM through the assumption of a
predominantly positive two-particle correlation
in the exclusive kernel. Resonances are a com.-
mon way of introducing such a correlation,
though positive exclusive pair correlations is a
more general concept. We now give arguments
that models having positive exclusive pair corre-
lations needed to describe inclusive data neces-
sarily have, at asymptotic energies, C,(0, 0, n)
positive in (I), and increasing as n increases,
near n =(n). Note that
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C,(y„y„n) dy, dy, =n(n —1)-n' = -n

is negative, so that the average value of C,(n)
does not suggest the above behavior.

II. RELATION SET%PEEN INCLUSIVE AND
SEMI- INCLUSIVE CORRELATIONS

In simple models it is not hard to verify explic-
itly the increase of C, with n. To see the result
more generally, it is convenient to use a different
measure of the exclusive correlations which can
be more readily compared with the known positive
inclusive correlation. In statistical mechanics,
from which our intuition of correlation functions
has been derived, there is a natural unified rep-
resentation of both exclusive and inclusive cor-
relations. ' All inclusive and exclusive informa-
tion about cross sections can be exhibited in a
generating (grand ensemble partition) function

Q(s, z) = Q o„(s)z" .

All correlation functions can then be defined as
in the inclusive case, but with these partition func-
tions replacing everywhere the usual inelastic or
total cross sections. Thus we write

1 dQ 1 ~ do'~

1dQ1 ~dG~
Pz(yxiymiz)=f1 d d

=
fl ~ dy dy

very useful quantities for comparing data with
models in more detail than the two-particle total
inclusive (z =1) correlations allow. We note that
we could also define a normalized correlation

ft (yli 32i z) = C (3 li 32i z)/P 1(yli z) Pl (ymi z) i

in analogy to the correlations presented in experi-
mental publications. We prefer not to discuss 8
here since the characteristic z dependence of
EMPM shows up most clearly in C(y„y„z).

An exact relation between C, and C(z) can now
be derived, based only on the definitions above.
If C,(y„y„n) is given for all n (these are the can-
onical ensemble correlation functions), then

C(y„y., z) =&C.(y„y., n)&.

+( p, (y„n) p, (y., n)&.

-& p, (y„n)&. & p, (y., n)&. ,

where we define, for any function f(n) of n,

&/(n)& =—g z f (n) o /O (z)
tl=o

and where p, (y, n) is the semi-inclusive single-
partiele rapidity density for multiplicity n. Con-
versely, if C(z), the grand ensemble correlation
function, is given as a function of z, then

C.(y, y, n) =D.[C(y„y., z)]

+ D.[p, (y„z)p, (y., z)]
-D.[pi(yi, z)1D.[pi(ym, z)], (9)

where we define a linear operator D„acting on
any function E(z) by

D.P'( )l =-„.[&( ) Ii( )] (10)

A dependence on 7 = lns is understood to be pres-
ent, although these functions should approach a
(scaling) limit as Y-~. We also define integrated
z -dependent moments:

f,(z) = &n&. , f,(z) = (n(n —1)&.—&n&.',
etc. [cf. Eq. (8) below]. Whenever z =1, the quan-
tities (3)-(6) are the total cross section, single-
partiele and two-particle inclusive densities, and
inclusive two-particle correlation C&(y„y,), re-
spectively. Intuitively we see that as z passes
from 0 to 1, the interpretation of the above quan-
tities changes from being exclusive to totally in-
clusive. For z &1, these "cross sections" em-
phasize multiplicities greater than the mean.

The quantities (3)-(6) can be easily computed
in models and from data; particularly, we note
that C(y„y„z) is far easier to obtain in MPM's
than are the C,'s. They should, therefore, be

We note for later discussion that if, as expected
at asymptotic energies, the single-particle canon-
ical densities p, (y, n) for y near zero are linear
inn, i.e.,

p, (y, n) = a+nb/Y

in the central region, then we find the grand en-
semble density

p, (y, z) =a+&f,(z)/Y

and a simple relation between canonical and grand
ensemble correlations:

$2
C,[y„y„f,(z)] =C(y„ym, z)- Y, [f,(z)+f,(z)],

(11)

when f,(z) is large (we keep only the dominant cor-
rection in a steepest-descent computation of &Cg,).
In MPM's, we expect thatb- l, a -0, and f,/Y and

f, /Y approach constants, as Y-~ for fixed z.
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This implies asymptotic equality between

C(y y z) and C.[y, y, f (z)]
In the language of statistical mechanics, this is

the statement that grand and canonical ensembles
must yield identical observables in the bulk limit
f, (z) =n-~, (n/Y) fixed. In more general models
retaining cluster decomposition (11) continues to
hold (with b-1, a-0 as Y-~), although the cor-
rection term may decrease with Y more slowly
than Y '. For z =1, (11) implies asymptotic equal-
ity of inclusive correlations with correlations at
the mean multiplicity. We note that (f, + f,)»;
thus C,[f,(z)] must approach C(z) from below.
Also note that for C(z) =0, i.e., strict Poisson
distribution for o„'s (as would hold in a strong-
ordering limit of a Chew-Pignotti multiperipher-
al model), "we would obtain

C( „y„yn) = -n/Y',

independent of y, and y, .
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(z)/Y=zz(a+b)+zzL(z)[(l&-l2)(a b)+z(-(a —b) +4ab)],

FIG. 1. Two examples of the asymptotic correlation
C(0, 0,z), Eq. (15), are given such that the asymptotic
density,

III. ASYMPTOTIC BEHAVIOR OF C(z) IN MPM

The precise statement we make about EMPM
having positive correlations is that, at asymp-
totic energies, C(0, 0, z) will increase as z in-
creases from unity and decrease as z decreases
from unity. Our task is to explain in general
terms how this comes about in such models, and
illustrate z dependence and associated n depen-
dence with a simple algebraic calculation. Numer-
ical results of a typical simple MPM are shown
for comparison in Fig. 1.

We argue as follows. At sufficiently high en-
ergies, we expect Feynman scaling in the central
region implying translation invariance in rapidity,
both for the inclusive single-particle density
(I/o) do/dy, and for the two-particle density
(I/o) d'o/dy, dy, ; the latter is then only a function
of ~y = y, —y, . Moreover, in MPM's with SRO, this
scaling should hold not only for the corresponding
partition functions at z = 1 (by definition) but also
for a range of z's around unity. This can be ex-
plicitly verified in most models discussed in the
literature. In this range of z we expect the gross
z dependence of C(by, z) for by = e «L(z) to be

C (e, z) -
z f,(z)/[L(z) Y],

where L(z) is the z-dependent correlation length.
The precise functional form for C(y) will not, of
course, be a pure exponential. However, for
large ~y» L we expect C to fall exponentially
with slope L(z) ' so that (13) integrates approxi-
mately to f,(z), the second moment (n(n —1)),
-(n),' of the partition function Q(s, z). The z de-
pendence of C should therefore be qualitatively
determined by f,(z) and L(z) ', even though (13)

is approximately 2 at z =1. The solid curve has a = 8,b=-, and l&-l2=3; the dashed curve has a =-,2i 3

5=-, l& —l2=2. The values were chosen to give, respec-
tively, for the solid and dashed curves a maximum C of
about 2 (or 1) and a value of 1/z, =~ which, in the
6-function limit (see text), corresponds to 2 (or 4)
particles per resonance decaying on the average. Be-
cause the emphasis is on understanding C at Ay =0, we
do not interpret the correlation length in P5) to repre-
sent the large-Ey behavior; with more poles included,
we would expect to get both the small- and large-Ay
behavior reliably.

K(j)= . +.~ a b

1 ~ 2
(14)

to have two poles such that l, = 2a, -1 approxi-
mates the leading (cut) singularities and l, =2n, -1

is not an accurate estimate of the numerical val-
ue of C(e, z).

In EMPM's L(z) ' is the spacing of the leading
and next leading (secondary) Regge singularities.
Moreover, in such models z acts like a coupling
strength for the exclusive kernel. If there is posi-
tive exclusive pair correlation in the kernel, then
any increase in the strength z will cause f,(z) and

L(z) ' to increase; any decrease of z towards
zero will reduce the model to one with only weak
correlations and f,(z) L(z) ' should go to zero.
EMPM calculations of C(by, z) at asymptotic en-
ergies as well as Monte Carlo simulation studies"
using multiperipheral-like models at NAL ener-
gies confirm this behavior.

It is instructive to illustrate the above general
remarks with a concrete example. We choose the
exclusive kernel (in the j -plane representation)
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approximates the lower nonleading singularities.
Asymptotically positive cross sections require
a &0; positive inclusive correlations require b &0.
Indeed it is a straightforward calculation to show
that for s -~ the rapidity correlation is

I.(z}
C(&y, z) = z'ab

(0}
exp (15)

+z'[(a —b)'+4ab]}'" . (16)

The maximum over z of the correlation function
1s

where the correlation length L(z) is given by the
z-dependent spacing of the two output trajectories

L(z) ' =[(I,-l, )'+ 2(l, —l, )(a —b) z

correlation must be positive. In general N-chan-
nel models, the correlation for all produced par-
ticles C(Ay, z) is positive, approaches zero like
z' as z -0, and goes to a constant as z -~. The
possibility for maxima of C and L exists; for
specific models an analysis similar to the one
above could be performed. However, we believe
that except for~athological cases, the two-pole
model serves as an approximation to these mod-
els and (18) should still be valid. We note that
when charge is included, the charge correlations
can be positive or negative, and one can show that
for specific charge correlations, as z -~, C(0, z)
grows like z'.

C(0, z,) = —,
' (l, -l,)' (17) IV. PHENOMENOLOGICAL DISCUSSION OF DATA

and this maximum occurs for z = z, = (l, —l,}/(b —a)
which in magnitude is bigger than the magnitude of
zz, the point at which L(z) has a maximum:

z,/zz= 1+4ab/(a —b)'.
We can now prove that the observed trend of

(2f, +f,) positive implies for our simple model

(18}

Suppose the opposite, (sC/Bz), & 0; this means the
maximum z, has 0&z, &1. Since z~&z„ then (sL/
Sz), & 0 and thus from C(0, 1) and L(1) & 0 we have

[S(CL)/Bz], &0. But twice the latter quantity is

1 sf, s, s' Ing(s, z)
Y &z Bz Bz Y

= (2f, +f,)/y,

which we infer therefore to be negative. This is
contrary to our assumption and so we cannot have

(s C/s z), & 0; hence (18) holds.
Equation (18) is our ma, in observation about

MPM's. We can ask: Is this truly what one should

expect generally in EMPM's with positive corre-
lations SRO? We note first that strong correla-
tions imply, through (17}that the effective non-
leading trajectory must be fairly low-lying; other-
wise C(e, 1) will be very small. It has been pre-
viously shown" that the limiting case of l, ——~,
with X = —b/I, fixed, gives a prototype multipe-
ripheral-resonance model (with zero Q value);
the probability of a resonance decaying into m

particles is A, '. We may reasonably expect
therefore that sophisticated cluster emission
models'3 will give (18}asymptotically, and gen-
erally conform to the qualitative behavior of (15).

The form (14) for K(j) is a special case of a
two-channel model; the results [(15)-(18)]re-
main true with the product ab replaced by an off-
diagonal coupling c'. In such models the total
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FIG. 2. The experimental values (Refs. 1, 2, and 14)
for C(0, 0,z) at 205 GeV/c. These are obtained from the
semi-inclusive data using (7) and the accurate approxi-
mation (19). %'e ignore C~ (0, 0, n) (- -0.002n~) because
it is observed to be small at this energy. The error
indicated at z =1 is somewhat larger than one obtains for
z &1, and smaller than one obtains for z &1. The curve
becomes dashed where we find the errors so large as to
make C(0, 0,z) unreliable.

We can now exhibit the behavior of C,(y„y„n)
following from the above considerations of
C(y„y„z), compare with 205-GeV/c data, and
discuss possible interpretations.

First, we can check internal consistency. of data
on inclusive and exclusive correlations by testing
relation (11). We find that (11) holds within quoted
experimental errors.

Since data show that the C, (0, 0, n) are very
small in magnitude, we can ignore C, in Eq. (7)
and compute C(z) using data at 205 GeV/c on

p, (y, n). At y =0 we see

p, (n) —= —0.8+0.3n,

which yields, at 205 GeV/c, the numerical result
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C(0, 0, z) —= 0.09[f,(z)+f, (z)] . (20)

From multiplicity data" we numerically compute

f, and f„which yields the curve shown in Fig. 2.
If asymptotic energies have been reached (for

y, =y, =0), we can ask: Do C(z) and C,(n) increase
as expected in SRO models with positive pair cor-
relation?

We see that C(z) shows a strong increase near
z = 1 expected in an asymptotic MPM, but C,(0, 0, n)
does not increase with n. The nonscaling correc-
tion term in (11) is comparable to C itself.

There are then two possible viewpoints, reflect-
ing two alternative hypotheses on the proximity to
asymptotic behavior: (a) for fixed n (canonical
ensemble), or (b) for fixed z (grand ensemble).

(a) If the C,(n) are near their asymptotic limits,
the C(z) must grow progressively negative with
increasing energy. This is difficult to reconcile
with CERN ISR data on inclusive (z =1}correla-
tions. Qn the contrary, the inclusive correlations
in the central region near 4y =0 are very similar
for the 205-GeV/c and ISR data, and the exclusive
ISR correlations' seem to be increasingly positive.
This suggests the opposite hypothesis.

(b) If C(z) is near its asymptotic limit at 205
GeV/c, then the C, (n} must increase and approach
closely the curve shown in Fig. 2 [with n replaced
by f,(z}]. This increase should be enough to be
seen clearly between beam momenta of 100 and
400 GeV/c.

Hypothesis (b) would be implied by a more gen-
eral conjecture: that typical exclusive correlation
ranges in rapidity are much longer than typical
inclusive correlation lengths. Such circumstances
can be arranged explicitly in some simple models.
We have suggested, in connection with the analog
equation of state, "that the grand ensemble ob-
servables are a better guide to asymptotic behav-
ior than the canonical. The latter was used by
Bander" in his discussion of the analog P-v dia-
gram, which gave no indication of critical behav-
ior; the former, we have argued, indicates crit-
ical behavior when NAL multiplicity data are
used. " Thus, hypothesis (b) would be favored
from our previous comments. Note that the be-
havior of correlation functions near &y =0 are in
no way directly related to a presence or absence
of critical behavior.

In spite of possible subtleties of individual mod-
els, if the 205-GeV/c results are confirmed at
higher energies (e.g. , NAL and ISR) then an im-
portant class of EMPM with positive pair corre-
lations can be rejected. We emphasize that these
models are currently considered attractive by
many people, and are able to explain a good deal
of existing data. 7t is extremely important to have

additional measurements at other energies. It is
also important to check our conjecture about so-
phisticated MPM Monte Carlo calculations and
confirm that they cannot give the observed trend
of the semi-inclusive data, at asymptotic ener-
gies. Note, however, that according to (11), any
model which at any given energy correctly fits

.all the canonical densities p, (y, n), and simulta-
neously fits C(z), will give a qualitatively correct
set of values for C,(n).

V. NON-SRO MODELS

We conclude with some remarks about more
general models than the short-range-order mod-
els (finite correlation length models) discussed
above. For this purpose we consider (I) a simple
long-range non-nearest-neighbor model previous-
ly discussed, and (II) two-component hybrid mod-
els.

In case (I), the KUH model, " individual C,(0, 0, n)
are small or negative, the argument being that
except for weak attractive long-range rapidity cor-
relations [C - I/(Ay)" ] and threshold effects at
small subenergies, the particles are produced in-
dependently. The net effect, in a mean field ap-
proximation, is to multiply the independent emis-
sion cross section by a weight measuring the cu-
mulative strength of the long-range forces. How-
ever, since the long-range forces act between
every pair of particles, the cumulative weight can
be quite large. In the KUH model, the weight
leads to a factor exp(an'/Y) in the n-particle
cross section where Y=lns and a is the strength
of the long-range force between one pair. For
this model the correlation C(&y, z) for small 4y
has been worked out in the literature, "and is
found to have the same behavior as in a system
having zero long-range strength: C(Ay, z) for
small &y is that for particles emitted independent-
ly, subject only to the energy momentum or multi-
particle rapidity thresholds. Nevertheless for
large Ay, C(4y, z) can behave as I/(b, y)'+ ~ (where
5 is a critical exponent), and the integral of C can
very well be positive. The scale of &y over which
the long-range behavior shows up depends on the

-density p(z), and could be of order unity for z-1;
this could simulate a finite L for experimentally
accessible Y values. We find in all such models

C, (y y.,f,(z)}-C(y„y., z)-o

asymptotically as Y-~, but not necessarily as fast
as Y-', if critical phenomena are present at z= 1."

In case (II}, two-component models, "one finds jor
z & 1 that the behavior of correlation functions C(z) is
qualitatively identical to that of MPM's. Our previous
remarks on C(z) for z & 1 apply in the asymptotic ener-
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gy regime. For z & 1, all fixed-z densities approach
zero asymptotically [in particular C(z) -0], and
C,(y„y„n) in the bulk limit remains a well-de-
fined function of n/Y. The appropriate expres-
sions for densities p, (y, n) and p, (y„y„n) are
those for a two-phase region, as discussed in
KUH [cf. their Eq. (56)]. If C;(y„y,) is the asymp-
totic inclusive correlation in the "multiperipheral"
component, we find for Y-~ and n/Y fixed the
surprisingly simple result for all n &(n)

C,(y„y„n) =
( ) C;(y„y,)+ n((n) —n)/Y',

independent of any detailed property of the "dif-
fractive" component (except the vanishing of all
"diffractive" densities p, as Y-~). Just at z =1,
we find that C(y„y„z) is not well defined asymp-
totically.
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