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Electromagnetic corrections to X* Ae v decays are investigated with a view to the detection of a

possible nonelectromagnetic charge asymmetry. A single renormalization of the Fermi constant renders

both rates finite. The electromagnetic asymmetry is due mostly to electromagnetic XA isospin mixing,

and may be as much as 10%. The remaining electromagnetic asymmetry depends on the hypercharge

densities of the hyperons, and approximate bounds on it are estimated.

I. CHARGE SYMMETRY AND THE Z DECAYS JP = J JL&+ —JP(+) + JP(+i 2 (2)

The semileptonic decays of the Z hyperons to
the A hyperon' provide a possible experimental
test for charge asymmetry in the weak interaction.
There are several reasons for considering these
decays for such a test. The absence of any nu-

clear structure corrections and the isospin selec-
tion rule on the weak current (r).I =1) are perhaps
the most persuasive, while the large energy re-
lease (-80Me'V) opens up the possibility of mea-
suring the weak magnetism and pseudotensor
components of the current matrix element. The
subsequent decay of the A hyperon to a proton and

a pion serves to measure the helicity of the A,
allowing an almost complete reconstruction of the
Z decay. (The electron helicity is fixed by the

V -A form of the lepton current. ) Also, these
matrix elements of the current are interesting in
that they are the only accessible examples of the
matrix element of the current between states of
zero hypercharge, owing to the instability of the
neutral Z hyperon.

The semileptonic Hamiltonian density is

Zv = (J)v lt +H.c.),

where the weak hadronic current responsible for
the Z decays to A carries isospin 1 and may be
written as the sum of a first-class and a second-
class' 4 piece:

These satisfy
(- ) &

k r l2 r p (+)&- k 'ff I2

+Ji1(+)t
1,2

where the negative sign refers to J, , the second-
class piece. The weak current is defined to be
charge-symmetric if it contains no second-class
term, in which case

(4)

The decay amplitudes are
T'+ u)( )y„v(1 —y, )v(e)(A

~

J' "t(Z+)

and

T' '=u(e)y„(1 —y, )v(v)(A~Z~v~Z ) . (6)

where

)T (4) ~2
) ff (k)L))v(+)

it V

Las [gaa VS + gsa Va gasVa kfeaea~V j

x (e wm, s)', (8)

and s is the lepton helicity vector. If time-rever-
sal invariance holds, as we shall assume, then

On forming the transition probabilities, and carry-
ing out all hadron spin summations, one obtains
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the antisymmetric part of II„"„' is also odd under
parity, and comes from the VA interference term.
Then, for a charge-symmetric current, the rates
for the mirror transitions are equal only in the
case of a pure Fermi or Qamow-Teller transition.
In the Cabibbo theory' these decays are pure
Qamow-Teller, and the hadron current is sym-
metric. Thus in the Cabibbo theory the two tran-
sition probabilities are equal (up to kinematic ef-
fects due the mass difference of the charged Z
hyperons).

The hadron current matrix element may be para-
metrized by a set of spinor functions and form fac-
tors,

e

(bj

and

where

(10) (cj

FIG. 1. (a)-(c) represent the usual radiative vertex
corrections; (d) is the mixing diagram.

—f (%)y&L + f (()
q + f (k&

io~" i &

4) 1 2m " ' 2m

OPv u
+ g(k)y y)) + g(k) y q + g(k) y5q (11 )

2m= mA+ mg. (12)

Time-reversal invariance requires that f, , f, ,
g„and g, be real, and that f, and g, be pure
imaginary. If the current is charge-symmetric
then all form factors satisfy

p(+) y(- ) (13)

In this case, SU(2) symmetry requires f, to vanish,
by CVC (conservation of vector current), and re-
lates f, to the Z' lifetime, while PCAC (partial
conservation of axial-vector current) implies

2mg, = f,g~+A, += (m, ' —q')g, /2m, (14)

(16)

where Eq. (13) has been used, and p()I) is the
anomalous magnetic moment of the neutron, in
particle magnetons.

Any deviation from Eq. (13) indicates a charge
asymmetry. The origin of such an asymmetry may
be in a genuine nonelectrornagnetic second-class
interaction or in the electromagnetic corrections.
Here we examine the electromagnetic effects,
with a view to the possible detection of a nonelec-

g, remaining unconstrained. The Wigner-Eckart
theorem of SU(3), however, gives further condi-
tions. In this case f, and g, represent second-
class terms in the weak current, and for a charge-
symmetric weak current SU(3) symmetry predicts

tromagnetic second-class interaction. In addition
to the vertex corrections and the inner brems-
strahlung, there are contributions from electro-
magnetic mixing of the neutral hyperons (see Fig.
1) and from kinematic and dynamic effects of
mass splitting in isomultiplets.

In Sec. II, the conventional corrections are dis-
cussed; in Sec. III, the effects of the strong inter-
actions. The effects of mixing are examined in
Sec. IV and the results presented in Sec. V. The
appendix contains a description of the basic for-
mulas in the text.

II. ELECTROMAGNETIC CORRECTIONS

In order to discuss the electromagnetic correc-
tions, we assume a renormalizable theory of
hadronic matter. The electromagnetic interaction
is given by the density Rem(x):

Z. =eA„~c"m+~g

where the additive counterterm 5g is inserted to
implement the renormalization of the masses and
coupling constants in the theory of hadrons. To
second order in e, where we work, this is always
possible. 5g is a local polynomial in the fields of
the theory of the strongly interacting particles.
The electromagnetic current is the sum of leptonic
and hadronic parts,

(18)

the lepton current is bilinear in the lepton fields,
and the hadronic current is a vector functional of
the strong interactions,
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where

S(+) +S(-) (20)

S"' = dx T*l„(x)Z~~(X)exp i dy X, (y),

(21)

x' '= d T*xlt(*)x" t )exxp '(dxxx, (x)

(22)

The S matrix, to lowest order in G and all orders
inc, is the sum of two pieces:

gauge invariance; thus the only effect of the photon

mass is to replace k' by k' -~' in the denominator.

The divergence appearing as X-0 is, of course,
canceled by corresponding terms in the soft-
photon emission rate.

The ultraviolet divergence is handled in a gauge-
invariant manner by multiplying the photon propa-
gator by -A'(O'-A') '. This method is, of course,
no more physical than any other, and the finite
part of the result, as well as the explicit depen-
dence on A, depends upon this choice.

This may be summarized by writing the photon

propagator as

where T* denotes the covariant-ordered product.
The generalizations of Eqs. (5) and (6) are

D„„(k)= -g„+(k),
where

(30)

iT&"(2~)'5'y, -f, ) =(AevlS' 'l~ ),
iT' '(2w)'6'(py Qt) =(Aev IS' 'l~ ) .

Under the discrete transformation

(23)

(24)

D(k) =-A (k'-A ) '(O' —Z') '

III. EFFECTS OF THE STRONG INTERACTIONS

(31)

U =CPTG, (25)

where G is the G-parity operator (which commutes
with all functions of the lepton fields), we obtain'

In order to expand the S matrix to order u, it is
necessary to assume that all contact terms in Rem

are canceled by counterterms or Schwinger terms.
Then the Hamiltonian density is simply -eJ A and

the vertex correction for Z decay may be written

Ulz'& =lz-&,

UlAev& = lAev) .

Thus

(AevlS"'lZ'& =(Aev lUS'"U '[Z ).
The condition

(26)

(27)

(28)

(e)r.(1-r,) ( )

2

x Zzt' —,JtdkD(k)(E,' —2E', +E;)+6t'

(32)

where
vs&"U-'- s'- ~ (29)

requires that the weak current have definite G

parity and that the isoscalar part of X. not con-
tribute to the S matrix. Under these conditions
the two Z decay amplitudes are equal to all orders
in electromagnetism.

These conditions are satisfied in the case of
radiative corrections to the decay of bare hyper-
ons, and where the bare weak vertex in J~ is pure
axial-vector, as in the Cabibbo theory. In this
case, which is one of the very few where detailed
dynamical calculations are possible, the two de-
cay amplitudes are the same to all orders in e.
Thus the electromagnetic asymmetry derives
wholly from the details of the strong interactions,
and cannot be evaluated according to the conven-
tional methods in the literature, which are based
largely on the dynamics of bare hadrons. '

The S matrix contains both infrared and ultra-
violet divergences. The infrared problem is
handled systematically' by introducing a photon
mass A. . The numerator of the photon propagator
is then replaced by -g„„+k„k„/A.'. The second
part does not contribute to the S matrix because of

(33)

E =k (g T Bk')+2m ~T kk8
018 +8 p

a (g«T ),at8X

Bq

E'=(k'-2e k) '

(34)

XT«[g ~(q+2e) +2e kk 2(Vg 8 ie e~~k )j,-
(35)

8E3~=, (g 8M )+2(k' —2e k) 'M'. (36)

A derivation of this and the corresponding expres-
sion'for T'+' is given in the Appendix, together
with definitions of the hadron tensors. The vector

q is the momentum release:

-q =8 +V.

The methods of the first perturbation calcula-

2 e ~ k '+e ~ k
zy =1+ 4 dkD(k)(k' —2e'k) '

2 2
—1,

W J
— e e2k
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tions "of the corrections to hadron P decay are
equivalent to saturating the hadron tensors with
only the initial and final hadron states. No form
factors are introduced and all terms proportional
to q are neglected. Such a technique in the present
case gives no asymmetry, by the theorem of Sec.
II, and the asymmetry derives from multiparticle
states in the implied sum over states in the hadron
tensors. The magnitude of the asymmetry is
estimated by showing that both the high- and. low-
k' regions of the k integrand in Eq. (32) give no
asymmetry. An upper limit on the contribution of
the intermediate region may be estimated by as-
suming that the antisymmetric contribution of this
region is approximately bounded by the symmetric
contribution obtained in the calculation on bare
hadrons. Consideration of the various simple

graphs which contribute to the hadron tensors
suggests that this may give a somewhat larger
value than is the case. Nonetheless, this upper
limit is the one presented here.

The effects on strong interactions are discussed
by most authors. "" The main tool in investiga-
tions of the ultraviolet behavior is the Bjorken
limit. '6 In order that the limit give the correct
divergent terms, it is necessary to assume that
the ordinary time-ordered product is, in fact, the
correct covariant-ordered product, that the am-
plitudes in T 8 satisfy a dispersion relation in k„
with a finite number of subtractions, and are
polynomially bounded in k' on the cuts, "and that
there exists a local chiral algebra of the hadron
currents. In the models considered, the Bjorken
limit gives

lim T's'= —, ~d'xe ' '(A[IJ„(x, 0), J s(0)] &I)
~o~. l~l fixe&

2 kuts+kst~, k t+ q -g~s k ~ t +e(Q)e~sq~k t (38}

The ultraviolet behavior of the corrections is con-
trolled by the last term which, by isospin sym-
metry [Eq. (A25)] is the same for both T"' and
T' '. Thus the integrands of the two k integrals
are effectively equal above the value of k' where
the Bjorken limit begins to apply.

There is also a divergent contribution from the
counterterm 5t':

« =-tJI«e ""(AIT*Js(x}5g(0)IZ ). (39)

U'Q+ tjjy U' 1 Q+cljy (40}

and the counterterms give the same divergent con-
tributions to T'+' and T' '.

The low-k' region of the integral in Eq. (31) &s,

Sirlin" and Preparata and Weisberger" have
studied this, in an attempt to test the model de-
pendence of the divergent piece of the radiative
corrections. Several authors have studied 5t' in
specific models. " " In general, there is found a
close connection between the divergences in cor-
rections to P decay and in the electromagnetic
mass shifts of the hadrons. The precise relation
is highly model-dependent, and the conditions
under which the divergence in P decay is universal
are very restrictive. " However, if the theory of
the strong interactions is sufficiently well-behaved,
the divergent contributions in 5g(x) have the same
symmetry as the theory of hadrons. On assuming
G invariance of the strong interactions, one may
show then

g„s& '=-2k t'(k'+2k p)-'

kq = -2e(Q) tg (g", k~k, /k')—
x (k'+2k p) '.

(41}

(42)

Similar expressions exist for the M tensors. The
resulting integrals are evaluated in the rest frame
of the decaying hyperon and all terms proportional
to lepton momenta are neglected. In this approxi-
mation, the contribution of the intermediate re-
gion to the vertex correction is proportional to the
zeroth-order amplitude, and the upper limit ob-
tained on the charge asymmetry is \

t, —t,'ct, (1nA+q), —3Q
(43)

where

A= m+ M[(1+2m/M)"'+1]
m+ p[(1 + 2m/p)'"+1] (44)

The mass M crudely represents the energy at
which scaling sets in, p, is the mass of the lightest
hadron (the pion), and m is the mass of the decay-
ing hadron. Choosing M to be a few Ge7, one ob-

of course, dominated by the lowest-~ss states,
the initial and final hadron states. This contribu-
tion is charge-symmetric. Thus, the charge asym-
metry is seen to derive from the intermediate re-
gion, where multiparticle states contribute, and is
infrared- and ultraviolet-convergent. Following
the arguments of Ref. 16 the hadron tensors in
this region are given by
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tains

—,
' (ink +—,

'
) = 2 . (45)

f =7&2 slnp,

g(» =q (-,')'" cosP v (1 —)))&2 sinP, (52)

The amplitude for bremsstrahlung of a single
photon accompanying the decay of the Z is

and f"', g") describe Z' P decay, and )) = 0.8 is
related to the pion-nucleon coupling F/D ratio:

I-q E
D

x yy (1 —y5)()(&)

where q is the photon momentum. Separating from
T"" the Z-pole term

The mixing angle is formally given by

2&A
~
ff..~Z)

PPlg ~ PPgh
(54)

TPx — tx (pP/p ~ q) +TPx (4V)

the bremsstrahlung amplitude may be written as
the conventional pole approximation with a correc-
tion term:

The Coleman-Glashow expression" for the electro-
magnetic mass splitting of the baryons may be
used to estimate P if the matrix element is identi-
fied as the (8, 8) element of the mass matrix. This
gives the estimate

P = -0.021 a 0.006, (55)

x y~(1 -y, )()(P) . (48)

The conventional piece is clearly charge-sym-
metric. The remaining term interferes with the
pole terms in the rate, "but because of the extra
phase-space factors in the bremsstrahlung rat+
this interference term is of the order (energy re-
lease/m). Thus it may be neglected in lowest or-
der, and in this order the bremsstrahlung rate is
charge-symmetric.

where the errors reflect the accuracy of the as-
sumption of octet breaking for these masses.
Dalitz and von Hippel" have examined some of the
consequences of such a large mixing angle. They
showed that the AAm coupling due to ZA and mq

mixing gives approximately the correct difference
in binding energy for the hyperon in the hyper-
nuclei AH' and AHe'. Since most of this coupling
is due to hyperon mixing [cf. E(l. (10) of Ref. 31]
we conclude that the mixing angle is indeed close
to the Coleman-Glashow value.

IV. EFFECTS OF Z-A MIXING

In the presence of electromagnetism, the physi-
cal neutral hyperons are no longer eigenstates of
the total isospin. "" The physical states diagonal-
ize the Hamiltonian, whereas the states occurring
in the various theories of the strong interactions
diagonalize isospin. The two pairs of states are
related by a transformation which is both unitary
and real, since the electromagnetic Hamiltonian
is Hermitian. The mixing angle, P, is defined as
follows:

Aphys =A eosp +Z slHp y

(4&)
Zphys =Z cosP -A slQP .

The current matrix element responsible for Z
P decay may be written

t( '=(A„„,)g. (Z--)

=t, cosP+(Z') J'f )Z ) sinP . (50)

t,' ) =u(a)[f(-)y, +g( )y,y, ]u(Z),
where

(51)

Unfortunately the second matrix element is not ac-
cessible experimentally owing to the short Zo life-
time. In the Cabibbo theory one obtains

V. CALCULATION OF THE DECAY RATE

The expression for the uncorrected decay rate,
to lowest order in the lepton momenta, may be
obtained from E(is. (9), (10), and (11), retaining
only the form factors g,'~, all others being set to
zero. In the rest frame of the decaying hyperon,
the electron spectrum is

d~(k)
ds

=
2m' g'
G

~
(»~ap@(E(» @)2

m (58)

where E and p are the electron's energy and mo-
mentum, and E'~' is its maximum energy. In the
Cabibbo theory,

g,'" = g -=2'"gg„eose~, (5't)

and the spectra are charge-symmetric. The un-
corrected rates are

ft(s) G2F(» —G2) g(»)2 (n )pg
(4)

)
5

60ms (58)

The electromagnetic corrections are calculated
by first evaluating the radiative corrections to the
decays of the charged Z hyperons to the A hyperon.
The effect of mixing is to multiply that amplitude
by cosP, and add to it the uncorrected amplitude
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for decay to the Z hyperon multiplied by sinP.
This gives the corrections to order e. The re-
sulting electron spectrum is

1+—(Ao+d) +—G (p, +p2), (59)dE dE m

where Eqs. (52} and (56) are to be used. A, and d
are the divergent contributions of the vertex cor-
rection and the counterterm. The finite parts p,
and p, are functions of E and E'". Defining a, b,
c, andmby

5 =+0.15 . (69)

Thus the conventional radiative corrections give a
small asymmetry:

Ib-mI ~ o.oo5. (7o)

However, the large mixing angle discussed in Sec.
IV gives a larger asymmetry:

m= -0.036+0.010. (71)

phase spaces available. A calculation of the radia-
tive corrections to bare hadrons gives

and

z(~)
P'"(a+5)= f p, dE,

r8 (a)

p, dE,
"me

Z'"c =

(60)

(61) 5 =+0.036+0.015. (72}

VI. DISCUSSION

Thus the electromagnetic charge asymmetry is
due mostly to mixing and enhances Z' decay over
Z decay:

m=-2&3 (1 -&))&7 'tanp,

the rates in the Cabibbo theory are given by

(~) dN

(62 } The sensitivity of 5 to the mixing angle opens up
the possibility that these decays may provide a
way to measure the angle. The experimental ratio
of the rates is '

(~H &)' "
=G'g 60, 1+—(A, +d +&&+bee) + m .

60m

R "&/R&-' = O.62 ~ O.22, (73}

and leads to a mixing angle consistent with zero,
l.e.,

(63)
tanP =0.0+0.1. (74)

Defining a renormalized Fermi constant by

Gs/G =1 +—(Ao+ d +a)

the rates are

R"'=R'" 1a m + —(b+c)0
7r

(64)

(65)

An increase in statistics by a factor of 30 would
narrow the error down to the present theoretical
estimates of P. However, measurement of the
rates defines P only within the Cabibbo theory, or
a framework which predicts the matrix element

= m+ —(b+c) .
7r

(67)

The discussion of Sec. III indicates that an ap-
proximate upper bound on c is

IcI~2.
The contribution b comes from integrating the
radiative correction over the slightly different

(68)

where +~0" is the rate calculated according to the
Cabibbo theory in the absence of electromagnetic
corrections. This choice of G~ and the associated
identification of p'0" are motivated by simplicity
and are not unique. The experimental definition
of G~ is

"R(a&m + )(&'+R&-&(am&-&)-'=G '(30&(')-' (66)

and we define a charge symmetry parameter, 5,
by

5 =g (R /R(& -R /Ro ')

and

f( &/g (-& — 0 04

(75)

These may be compared with the result of Fran-
zini et al., '4 who obtained

f/g = -0.37 a 0.2 .

A ratio this large implies either a nonelectromag-
netic violation of CVC, or that the Cabibbo theory
predicts a value of g too large by an order of mag-
nitude.

The sensitivity of the relative rates to mixing
makes the detection of second-class currents
harder to achieve, since the effects of mix-
ing cannot be calculated uniquely. In order to de-

since it is not accessible experimentally due to
the short lifetime of the Z hyperon.

Because of mixing, the ratios of the form factors
are

f'+'/g'+' =+0 05
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tect a nonelectromagnetic asymmetry, . one must
show that one mixing angle will not describe the
asymmetry of every form factor [cf. Eq. (12)].
This requires a measurement of at least two form
factors for each decay, which, according to the
CVC hypothesis [where f, is O(a)], requires mea-

surement of correlations among the decay prod-
ucts to an accuracy better than O(o.). If a second-
class effect is present here, hopefully it will be
too large to be attributed to a mixing effect, which
would remove the necessity for such a precise
measurement of the form factors.

APPENDIX

The amplitude for Z p decay to order a may be obtained in a straightforward way from Eq. (19):

T( '=—u(e) Z,k~'t~ —,dkD"'(k)[T„„„(k,q) —2T„),(k, q)y~(g'-tt-m) '] y (1 —y, )v(72) .

The corresponding expression for Z' decay is

T"' = i7(v)yv(1 —y) T,"('» —,dkD "
v)k[ iTt lvkd) „2Tii(k, d)(--d vd —m) 'yi]lv(d).

2
s 2 X 8m

3 (A2)

The hadron tensors are defined by

t' =(A ) g'(0) [Z-),

T)'~(k, q) =i dx(A~T*J'"(x)Z~~(0)~Z )e'~', (A4)

k'T, ~(k, q) = -t„, (A11)

k" T»(k, q) =-t„+M„(k,q) —q~TD&(ky q), (A12)

8 8
T„'DD(ak, q) = —

D T'„„(k,q) + M', (k, q)aq

T"" @ q) = ' dxdz(A(T*J"(x) J"(0)J~(z)(Z )

~ &
-&k~-&a»

and the primed tensors are obtained from these by
the replacement

&'(y)IZ )-J"(y)'IZ').

s a T))Dy (» q) 1
Bq

k"T'„&(k, q) =t'„,

k" T»(k, q) = t '„+MD((ky q) —q~TD), (k, q),

and two spinor identities:

u(e)y„(tt -k'+ m)y~(1 -y, )v(v)

(A13)

(A14)

(A15)

The M tensors are obtained from the T tensors by
the replacement

J'~(y) - —s,J~($) .

Ward identities may now be developed upon the
assumption of the following commutators:

5 (x.)[&(x),&'(0)] = -~ (x.)[&' (x), &'(0)]

= u (e)y'(1 —y, )v(v)H„~„(A16)

u (v)y„(1 —y, ) (-(t'+k + m) y„v(e)

= u(v)y'(I —y, )v(e)H'„z„(AI7)

where

=i 5'(x)Z~~(0) . (AS)
H g =2e g) +k g g

Upon contracting T»~@,p) with p, where p is an
arbitrary vector, one obtains and

(k) «.+k~ g).) ie) ~(Dk- (A18)

p "T»& (k, p) =M»Eky p) +T„„(k,q)

+T„„(k+q-p, q) . (A9)

(2 T»z (ky q) ~

q
(A10)

Differentiation with respect to p and setting p =q
gives

8 8
T„„(k,q) =

D T„&(k,q)+ DM»@, q)Bqo Pv

Hpko Hpxo ' (A19)

Use of these identities leads directly to the ampli-
tude T' ' given in Eqs. (31) ff. The amplitude T~"
has the same form as that in Eq. (31) but where t,
and 5t are replaced by primed quantities, and the
integrands are as follows":

E ' = k(g T" 'k -)+2»" (' T' k k
8

1 By 0 et/ a8 p

Further identities are
as

o (T S)1gBq
(A20)
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E"=(k' —2e k) '

&&T~&[-g~(q+2e) -2e kk '(k'g" e+i e" e~~k )],

(A21)

E,"= (g eM's) —2(k' —2e k) 'M'8

The evaluation of the commutator obtained on
taking the Bjorken limit Eq. (37) is based on vari-
ous field-theoretic models. The tensor t, is ob-
tained from t~ by including only the contribution
of terms in J~ which are bilinear in the funda-

J~ = Ip+ Yg.

Then, customarily,

[I"(x),J~ (0)] =+[Is (x), J"(0)],

[Y"(x),g~(0)] =-[Ye(x),J"(0)].

(A23)

(A24)

(A25)

mental fermion fields of the assumed theory of
hadrons. The isospin properties of the various
terms in Eq. (37) in these models may be obtained
by writing the electromagnetic current as the sum
of two terms of isospin I and 0, respectively:
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