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The properties of the inclusive distribution for a resonance-mediated particle are investi-
gated. In particular, vector mesons are considered as examples of the resonances. The
longitudinal and transverse momentum distributions, and their dependences on energy and
polarization are discussed for the decay products. The actual reaction pp —n X is studied
within the framework of vector-meson dominance. The assumption of a scaling spectrum
for the resonances explains about 50—70% of the observed breaking of the scaling law in
this reaction. In the resonance-dominance scheme the resonance multiplicity is much
smaller than the final-particle multiplicity. This relates to the slow onset of the scaling
limit in exotic inclusive reactions. Further, the relativistic longitudinal phase volume
is calculated numerically. The phase-space constraints almost determine the favored
distribution.

I. INTRODUCTION

Recently resonance production in multiparticle
emission processes has been widely studied ex-
perimentally. ' Because of the complexity in an-
alyzing many-particle states, ' our knowledge is
confined mainly to 6- or fewer-particle final
states in the incident energy region below 20 GeV.
Nevertheless, we can see that the resonance
production is very important quantitatively as
well as qualitatively.

On the other hand, several kinds of theoretical
models on multiple production suggest that res-
onances are dominantly produced at high energy.
In the multiperipheral model involving m and K
exchanges, ' vector mesons, say p and K*, dom-
inate final states. This feature would be found
in Feynman's bremsstrahlung model. In the
diffractive-excitation model heavy resonances,
or fireballs, are also emitted. ' One of the authors
(T. S.) designed an intuitive model in the context
of low-mass-resonance production. ' In all the
above models, save the diffraction-excitation
model, resonances are produced not only in the
fragmentation region but also in the central region.

Therefore, it is important to investigate the
effects of resonance production in addition to
those of diffractive dissociation. The main pur-
pose of this paper is to investigate the kinematical
effects of vector mesons on pseudoscalar-meson
inclusive distributions. To see the effects per-
tinently, we assume the resonance distribution
to be as simple as possible. We do not aim to
fit experimental data best. Our study also con-

cerns the thermodynamical model' as well as
the diffractive-excitation model. In these models
an a Priori form for the w and K distributions
from a fireball is assumed. These may be, to
some extent, checked by an exact study of res-
onance decays.

Another motivation for this work derives from
the results on inclusive reactions, some of which
are summarized below'.

(i) In many cases, distributions increase in the
central region (the scaling variable x= 0) with
energy. For example, in the reaction PP-7i X,
the distribution at the CERN ISR energy region
is 1.7-2.0 times larger than that at 20-30 GeV.

(ii) Spectrain the ,fragmentation region (~x~ is
not small) remain unchanged or seem to decrease
a little as energy increases. If it is the latter,
the hypothesis of limiting fragmentation' should
be examined again.

(iii) In the central region-the slope of pion
transverse momentum distribution (q,' distri-
butions) for q, '& 0.5 (GeV/c)' increases with
energy.

(iv) The particle production ratios K/s and
P/w increase remarkably. In the central region
in the CERN ISR experiments the ratio K /v
and the ratio P/w are 2-3 and 3-5 times larger
than the corresponding values at 20-30 GeV. '

(v) The distribution functions are not factor-
izable into functions of the individual variables
x and q„but show strong correlation.

Many authors have investigated these prob-
lems. " " We expect these complicated behaviors
to be attributable, to some extent, to resonance
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effects. Webber" showed, on the basis of the
w -exchange multiperipheral model with the p
produced dominantly, that the q, ' distribution
for a final pion is steeper than for p and exhibits
the so-called two-slope structure. Cahn" ex-
amined the consequences of Feynman scaling
for photon spectra arising from m decay at x =0.
The dip found by him at q, = 0 has the same ki-
nematical basis as that in w spectra resulting
from p decay, which is discussed later in this
article. Brink et al. "have made an interesting
study of longitudinal distributions in the high-
energy limit. Phua and the present authors"
have studied the reaction yP- n X employing
the vector-meson-dominance model (VMDM)

for the real photon.
The plan of this paper is as follows. In Sec. II

we split inclusive distribution into resonance
terms and nonresonant ones. Section IQ concerns
analytical study of spectra resulting from vector-
meson decay. In Sec. IV numerical investigations
are presented for the case of p, co, and K*. The
actual reaction PP- m X is analyzed within the
framework of vector-meson dominance. In Sec. V

we consider the resonance effect on strange-
particle or antiproton production in PP collisions,
especially the energy dependence. In Sec. VI
the resonance distributions are discussed from
the kinematical viewpoint of relativistic longi-
tudinal phase volume.

II. FUNDAMENTAL FORMULAS

We consider the following intermediate state
in ab collisions:

respectively.
A resonance C is supposed to decay in the

manner

C s 4 +68dg+' ' ', (2 8)

where n; is the number of d; (i = a, P, . . . ). The

decay distribution is given by

Dc(k; (l.,(l, )
&no &80

(2.4)

(2)Dc (k; %(&(, (1 (() = n~(n8 —5~ e)

x Dc k;q, q8, . . .EXP 0

q

(2.5b)

It is easy to generalize the above formulas to the
case of decay through many channels.

Our next step is to give expressions of the
spectrum fd((l) for a final particle d by combining
the decay distribution (2.4) and Fd, Fc. One of
the elements (d„d2, . . . ) may coincide with d~

or ds, . . . . Accordingly, f, can be decomposed
into two terms, one for resonance-mediated d

and the other for the nonresonant d:

f(o +f (2) (2.6)

which is normalized to be unity after integration
over q, q 8, . . . . For convenience of discussions
below, we define the partially integrated dis-
tributions

3 3
()) ding dQy

Dc (k;(l ) =n Dc(; (1, (1 d,
. . . ) ~ ~ ~

&80 &yo

(2.5a)

a+b- C, +C, + ~ ~ ~ +d, +d, + ~ ~ ~, (2 1) where

where C, (i = 1, 2, . . . ) are resonances and d;
(i =1,2, . . . ) are particles emitted not through

the decay of any resonances. Let us denote by

Fc(k) and F ((l) dLorentz-invariant single-particle
distributions divided by the total cross section 0

for C (= C„C„.. .) and d (= d„d„.. . ), respec
tively. That is to say, the production cross sec-
tions are related to them by

doc Fc(k)
dk ko

(2. 'fa)

(2.7b)

Here C(d) means the summation over all reso-
nances that decay into d. The double-particle
distribution fdd. consists of five terms as follows:

fdd f dd' fd(d ) ( dd )f (d)d' fdd fdd
(1) (2) (2) (3) (4)

«d F.((1)
(2.2)

where

(2.8)

where k and q are momenta of C and d, respec-
tively. Further, we introduce the double-particle
distribution Fcc (k, k') and Fdd (q, (l'), which are
defined in a similar way to (2.2). Throughout
this section C and d (and the primed letters) de-
note a resonance and a nonresonant particle,

(2.9a)

(2.9b)
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3
f('",);( qq),Z'JF ;(.kq ,)D''"(k;q)

c(d) 0

f/~~(qq')=g, P JF (k, k')D (k;'q)
c(d ) c'(d')

(2.9c)

dd
~~ 3

I

I
~ ~~ d d

(,) d'q d3q'
g«. —,= Z n, nd. Gcc(k k )

c(d)c'(d')

d3k d'k'

ko ko

(2.14c)

'D(1)(k' -,
)

d'k d'k'
x c' k, q k, k,'

(2.9d)
I

3
f~! (q, q')= g J F( ) k'D(k;q)q ,

'

C(dhd ) 0

(2.9e)

Strictly speaking, (2.8} and (2.9) are valid only
when neglecting the interference terms between
the resonant and nonresonant amplitudes. Even
this simplification, however, yields valuable
insight into resonance effects. It should be noted
that even if the final states are dominated by
resonances, fd, . as well as fad contributes to(3) (4)

f« . This means that the assumption of resonance
dominance cannot be examined by comparing the
single particle f", (assumed to be fd) with the
two-particle spectrum in the invariant-mass
plot.

The bulk of the remainder of this section is
devoted to expressing the two-particle correlation

III. VECTOR-MESON DECAY

I+A '8
( )

1+A cos 8
2v(q1+-'hA) (3 1)

where M is the mass of I,

q = [1—(2)1/M)'] '", (3 2)

Following the general discussions in Sec. II,
we develop concrete formulas for the spectrum
for a vector meson V, which decays into two
spinless particles m and m'. From the empirical
point Of view, ' the vector mesons seem to be the
most important. For simplicity, suppose that
m and m' have an equal mass p, , but are dis-
tinguishable from each other. Averaging the
m (or m') distribution over the azimuthal angle
defined in the helicity frame of V, we have the
decay distribution (2.5) in the rest frame of V
(see Appendix A):

where

fdd aa'fd fd(4) (1) (2)

(1) f(1) f(1)f(1)
gdd' dd d d

gd(d ) =fd('d. ) -f, fd. (d d ),(2) (2) (i) (2) I

(3) (3) (2) (2)

gaa =faa fafa-
in terms offd", , fd", and

G)) =F0 -F)F~,

(i,j ) = (C, C'), (C, d), and (d, d') .

We decompose g«. into the six terms
(1) (2) r q i (2) (3)

gdd gdd' gd(d ) k dd')g(d)d gdd

(2.10)

(2.11)

(2.12)

(2.13a)

(2. 13b)

(2.13c}

and 8 is the angle between the momentum q* of m
and k* of V. The latter is supposed to be in-
finitesimal. The parameter A is related to the
decay. density matrix of V:

A = 2doo —d„-d
d„+d, (3 3)

(,) - - 1 4A(k qk, j[k( —]k(qD)
2wq(1+-'A) g M'

The value -1 and of A correspond to the purely
transverse and longitudinal helicity, respectively.

The V rest frame is reached by a pure boost
and a. rotation from the center-of-mass (c.m. )
frame. A short calculation gives the following
expression for D„" in terms of the momentum
q of m and k of V in the c.m. frame:

dg --, d'k
g(a)a —=

a nd Gca (k, q')
kqo C(d) 0

(2.14b)

The following expressions arise directly from
the definitions of g and G, and from (2.5):

J d3 ' d'k'g'(, ), = Q n Gdc. (q, k'), , (2.14a)
C'(d')

x 5((k,q, -k q)'--,'M') . (3.4)

Combining (3.4) and (2.7), we have the distribution
f '

(q) for m. The parameter A in (3.4), which
may depend on k, is put equal to a constant for
simplicity. Then we can integrate f ' over the
angle of k :
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f"'( )= ' ' "E (k(( k.) 1+ " ' " [(4q )' —(k qo-k((q((--'M')'] '"
7T'g + 3

where k, (
and k, (or q„and q, ) are restricted to the region

(k,q,)' —(k,q, -k ((q((
——,'M')' & 0.

Sometimes we are interested in the total distribution f "(q(() integrated over (I~:

(3.5)

(3.6)

with

k~ d k~ d k ((E» (k ((, k~) (I((+4 AI„/»I'),
(7 1+3A

(3.7)

Io = (k ((q(( + 2 M ')/(k ((' + M')'
2 1 2 2

kII k~ 2 2 -1/2Ig—- 2 ~ (k((q((+ 2M ) k 2 M2 + 2 k 2 J(k((,q(() (k(( +M )
kII +k~ II ™k II J.

(3.8a)

(3.8b)

where

J(k ((, q( ) = z K - ~ K + ~ K —2 KL + ~L,5 3 2 1 3 1 (3.9a)

k, = (M'/2g ) [q„+q(q„'+ g')'~']

k, &Ps/2, k & -4s/2. (3.13)

K= (k((q((+ 2M )/(k(( +M ),

L = (q ((
+ u )l(k ((

+ M )

(3.9b)

(3.9c) (3.14)

When q„=0 we have I k, I
= M'l(2g). At sufficiently

high energy, say v s» phd'/p, we see that

f "'(0) (x: 1 —c,/v s, c, & 0.

It is immediately clea.r from (3.8} that, in the
case of A = 0, f "' is determined by the total dis-
tribution F»(k((), that is, f ' does not depend
on the detail of the k, distribution.

From the above expressions for f„', we see
the following properties:

(i} Compared to E», f~" is concentrated more
in the central region. This feature is due to
sharing of the momentum of V between m and m'.
For example, when M—2p,

f"'(&7)~ F»(2(I) . (3.10)

(ii) Even if F» scales, f"~ deriving from a
not flat F~ in x~ does not scale until very high
energies. Here we use the scaling variable
x» =2k((/0s, where vs is the total c.m. energy.
To see this clearly, we consider (3.7) for A =0
by taking up the following F~ as an example:

E»(kll) (I —IX»I)', P&0. (3.11)

1—
( )

+ 2 IkII I kIIqII+ 2M'f m (q(() ~s (k 2+ M2)-3/2 dk((

where

(3.12)

This form is motivated by the limiting fragmen-
tation hypothesis" and also agrees in the Regge-
pole model. Then

With the same F~, the m distribution in the frag-
mentation region approaches its asymptotic value
as

f ~ 1+c,/s, c,&0. (3.15)

The steeper F»(k((} is, the larger the energy
dependence of f ' is.

(iii) It follows from (3.5) that there must be
a correlation between qII and q distributions,
even if the k, and k II distributions can be factor-
ized. To obtain a better understanding of this
feature, we rewrite (3.5) for A =0 as

f'."(i)=[sr(q«'+ ~')"'1 '

X dk II dg

where

&&E(k (K -k ' —M )"')
(3.16)

K = (q (k ((q(( + A&M )

+q, p[(k, -k(, ) (k(( -k )]'"cosI)(q(('+ p')-'

(3.17}

When Iq((I»q, and p, K'-k' is proportional to
q, '. Therefore, the q, distribution is regular.
If M»2p and F»(k) is a decreasing function of

I k „ I and
I k, I, f~" has a dip at (I-0. This feature

can be easily seen by examining the q, dependence
of K' —k II

' —M' for small qII . When q = 0, F~ at
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~k(=M[(M/2p)' —1] contributes to f . This very
large value of ~k( leads to very small E„. IfI- 2p, such a dip does not appear.

%e shall postpone the discussion of the two-

particle distributions and correlations to Ref. 21.

IV. NUMERICAL INVESTIGATIONS AND VECTOR-
MESON-DOMINANCE MODEL

From the formulas presented in Sec. III it is
rather complicated to see analytically the amount

of resonance effects on the distributions of res-
onance-mediated particles. It is worthwhile to
investigate them numerically by assuming ade-
quate spectra for the resonances. First me shall
compute the distribution for m produced through
the decay of p and +. Next me shall interpret
the actual reaction PP-m X in the framework
of vector -meson dominance.

We present formulas for calculating the dis-
tributions for w resulting from the decay of p,
ar, and E", and for Z resulting from E* and Q,
in Appendix 8 by modifying (3.4) etc. The masses
of p, m, E*,m, and% are set to be 0.76, 0.784,
0.890, 0.140, and 0.495 (in GeV units), respec-
tively. The widths are 0.135 for p and 0 for
others.

not decrease in their models.
The shape of the x distribution depends con-

siderably on A. However, only the behavior at
x-0 is interesting and the steepness of the dis-
tributing depending on A is useless in determining

A, since A and P are correlated. It seems that,
in the resonance-dominance scheme, A = -'1 is
rather unfavorable.

Figure 2 displays the transverse distribution
for m resulting from p decay. One of the prom-
inent features is a deep dip at q =0. Experi-
mental check of it mould be one of the crucial
tests in the choice among various resonance-
dominance models. It is interesting to note that

an e -removed m distribution at CERN ISR
energy' shows the dip structure, although only

one point of the data falls off the regular spec-
trum. It should be mentioned that Webber's
results" did not provide us such a dip in the

two-slope structure,
Note that the appearance of the dip depends

A. p~2n', m~3m

Vfe assume scaling and factorized distributions
for vector mesons:

(4.1)

The function E~~ is assumed to be of the form
(3.11), and E~ is chosen to be

E,(k,) = exp(- ck,'), (4.2)

where P=2.2 and c=5.0 (GeV/c) '. The Gaussian
form (4.2) is assumed so as to see clearly the

two-slope structure in the transverse-momentum
distribution plotted versus q~' for m.

Figure 1 shows the longitudinal momentum

distribution for m resulting from p decay. As
the energy of the incident proton in the labora-
tory system increases from 12.0 GeV first to 28.5
and then to 1500 GeV, the distribution decreases
by 9%% and 18%, respectively, at x=0.5, while

at @=0 it increases by 15/g and 50%, respectively.
Note the considerable change of the spectrum
as the energy increases, as mell as its slow

pace to the asymptotic region, in particular,
in the central region. From the viewpoint of
fireball production, Jacob et gl. ' and Ranft"
also showed the increase in the central region.
It was assumed that heavier fireballs were pro-
duced with increasing energy. Homever, the
distribution in the fragmentation region does

O
i a I . L a l

0 0.& 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X

FIG. 1. The energy and A dependences of invariant
longitudinal distributions of ~ produced through p. The

p distribution is assumed to scale, vrhich is also shown

for comparison. A is related to the polarization of p
[see Eq. (3.3)].
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AB ~X ~X

E dependence
(A=0.0)

AB-PX-~ X'

A dependence
(E=28.5 GeV)

AB ~X &X
'~

I
1
I

~we

~ \
t

(Q ~

I

'- 12.0 GeV

: 28.5 GeV

: A=0.0
——-: A=-1.0

l

Cl
L
f4

b

0 a1 0.2 0.3 a4 o.5 a6 o.7

(GeVlc)

0 o.1 o.2 o.3 a4 0.5 0.6 cL7

(GeVIc)

FIG. 2. The energy x and A dependences of invariant
transverse-momentum distributions of x produced through

p. The p distribution is assumed to be factorized with
respect to variables k~~ and k~.

on both the mass ratio 2g/M and the decay mode.
For comparison, we show the q, ' distribution
for m''s coming from ~ decay in Fig. 3. There
appears a sharp peak instead of a dip. Thus,
there is a possibility that the dip found in the

p decay is filled up by other resonances. Fur-
ther, it should be noted that the dip becomes
shallower as the energy increases.

It can be seen in Fig. 2 that, aside from the
dip, the slope is steeper for smaller

~
x

~
inspite

of the factorization (4.1). Besides, near x =0,
the q, ' distribution shows shrinkage with in-
creasing energy. These features are also sug-
gested by experiment.

The slope at x = 0 is less dependent on c in (4.2)
as compared to that at intermediate x: It is
about 6.8 (GeV/c) ' for c = 5.0 (GeV/c) ', while
5.0 (GeV/c) ' for c = 2.5 (GeV/c) ' in the region
q, ' = 0.2-0.2 (GeV/c)'.

The q, ' spectrum indicates a rather strong A

0 O.l Q.2 0.3 0.4 Q5 Q6 Q7

q. (GeV/c),
2 2'i

FIG. 3. The invariant transverse-momentum distribu-
tion of 7( produced through ~. The ~ distribution is
assumed to be the same as p distribution.

dependence at x =0. As far as we are concerned
with single-particle distributions, the experimen-
tal determination of A would be possible only
through the observation of this behavior. It is
plausible to say that the non-negative A is favored
by the present experiments.

B. pp~m X

Now we explore the actual reaction-PP- m X
taking account of K* and ~ as well as p. There
are two reasons to include K~ and ~: The first
is to see what amount of the dip at q~-0 is filled
up. Secondly, the K/w ratio R(K/w) depends
strongly on energy and becomes pretty large
at CERN ISR energy. For simplicity, we ignore
the Q meson.

Up to now we have adopted functions which scale
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completely. However, the remarkable energy
dependences of PP(K ) and PP(P) etc a. re not

compatible with a scaling function for K*. We
will discuss this unfortunate situation in Sec. V.
Our proceduxe for calculation is the following:

(i} We multiply an energy-dependent factor
by the scaling distribution (3.11); that is, for
a resonance V the distribution reads

yv(s)Ev(x) with P =2.2. (4.3)

(ii) We impose on yv the condition that the
total contribution of p, &, and E* should scale.
Under the assumption that each component of an
isomultiplet is produced with an equal weight,
the condition is expressed as

2
3yz + y~+ 3'+ = constant1

irrespective of s. However, the ratio B(E/v) is
energy-dependent and is given by experiments:

point is at x-0.08, while the experimental one
is at x-0.17 though yet unconfirmed. We com-
pared the theoretical curves with the spectra for
pp- m'X, ' which is known to be less energy de-
pendent than that for PP- m X, and found much

better agreement between the model and the ex-
periments, although at q, =0.4 GeV/c, the ex-
perimental crossover point is still larger than
the calculated one.

In conclusion, it is plausible to say that the
effect of resonance, whose distribution already
scales or quasi-scales, explains the considerable
part of observed breaking of the scaling law in

PP w'X in the energy region 30-1500 GeV.
The scaling hypothesis should, therefore, be

reviewed by taking the resonance effects into
consider ation.

V. EXOTIC INCLUSIVE SPECTRA

1

ft(Jf /v }=--
a'YP + y&+ 3yII,.+

Finally, we regard y /yz as a parameter.
(iii) Since E,(k, ) given by (4.2) cannot re-

produce the experimental q~' distribution for
q, '& 0.5 (GeV/c)', we shall modify E,(k,) for
the p meson as

Ei(k, ) =0.4exp(-5. 0k, ')+0.6exp(-2. 5k,').

(4.5)

o.& 0.2 o.3 o.& 05 0.6
I I I I I I

i 01

In t'his section we shall discuss the energy
dependence of the spectrum for a strange par-
ticle or an antibaryon in PP collisions. Their

The m distribution obtained in the framework
(i)-(iii) is quite similar to that resulting from
the completely scaling resonance spectra. Thus
we may call (4.3) quasi-scaling spectrum.

In Fig. 4 we illustrate a comparison of the
VMDM with the experiment at 28.5 QeV, with

y /yz set equal to 0.1. The energy-independent
normalization is obtained by fitting the obsex ved
w distribution at q, = 0.2 GeV/c and 28.5 GeV
(Fig. 5). The theoretical q, distribution at
qi'= 0.2-0.3 (GeV/c}' has a smaller slope than

the experimental one. The behavior at q, '- 0
is much impxoved, but still far from the ex-
perimental data.

In Fig. 5 the calculated energy dependence of
the calculated x distribution for 0&x~ 0.3 is
compared with the observed one. The value of
R(K /w ) at 12.0, 28.5, and 1500 GeV are put
equal to be 0.023, 0.038, and 0.085, respective-
ly. " For qi =0,2 GeV/c, our result is rather
consistent with the e -removed data, although
other ISR data are systematically largex' than
the theoretical curve. The curves calculated
at qua= 0.4 GeV/c are above the observed ones.
Next we turn oux attention to a crossover between
two curves at 28.5 GeV and ISR energy. It is
shown in Fig. 5 that the theoretical crossover

—100

~ ]0
l~

Ct
E

o )0o

0 02
I I I I I I I I I I I

Q& Q.6 p.s 1.0 l.2 l.4

qi (Gevl'c)

FIG. 4. Comparison of VMDM with the observed spec-
trum ofpp —~ X at 28.5 GeV. The theoreticaL curves
are not the best fit. The parameters are set as y~/y&
=0.& andR(& /7r ) =0.038. The data are taken from
H,ef. 8(c).
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( n ) = c inE + d, (5.1)

distributions change considerably even at the
incident laboratory energy E„b = 1000 GeV. On

the other hand, an estimate" in the multiperiph-
eral model with m and K directly produced in-
dicates that these distributions should scale al-
ready at E» =40-50 GeV. We shall point out a
possibility that this discrepancy can be removed
by the resonance effect, if the final produced
particles come dominantly from resonances.

In the multiperipheral model, the quantum
number of the final particles are affected by
those of the initial particles through a single
chain of exchanged particles. We denote by e
the representative number of particles counted
from each end of the chain, which are under the
influence of the incident particles. The average
multiplicity may be expressed by

pp-n X

10
el
Ig

A
E

cP
10

' sa a e e'obe ~

Exp.

12.0 GeV

28.5 GeV

500 GeV

1100 GeV

1500 GeV

e removed

where E is the laboratory energy. Exotic inclu-
sive reactions would scale only after the number
of produced particles becomes larger than 2e.
Here we call the inclusive reaction A B-CX
exotic if (AC) and/or (BC) are exotic; otherwise,
it is nonexotic. We define the asymptotic energy
as that in which the particle production ratios
are independent of the energy. Let E, denote the
asymptotic energy in the absence of resonance
formation in the final state. Then

10 VMDM

I

0.10

I

II
' III )

&IIi i

' III

120 GeV

28-5 GeV

1500 GeV

I

0.20

0.8 GeV/c

I

0.30
c lnE, +d- 2e. (5.2)

On the other hand, in the resonance-dominance
scheme, the scaling region above E, is given by
the equation

c lnE2+d-2ye, (5.3)

VI. KINEMATICAL STUDY OF RESONANCE
DISTRIBUTIONS

So far we have discussed mainly the kinemat-
ical effects of mediating resonances, assuming

where y is the mean number of particles produced
from a single resonance. If E] 40 GeV and y-2,
we have E,- 1000 GeV. This simple calculation
demonstrates that resonances, if they are pro-
duced abundantly, can alter the energy dependence
of original distribution E(k) drastically. Perhaps,
this is one of the most important effects of res-
onance production.

Thus we make a conjecture with relation to the

scaling law: Resonance dominance, or clustering
in the final state, implies that the original (res-
onance) distributions for exotic inclusive reactions
would not scale below quite high energy, while
those for nonexotic reactions scale early.

FIG. 5. Comparison of VMDM with experiments in
~x~ S 0.3. Theoretical curves are not the best fit.
Normalization is made so that the theoretical curve fits
the experiment for q~ = 0.2 GeV/c at 28.5 GeV best.
y~/y& = 0.1 for all energies. R(K /n ) at 12.0, 28.5,
and 1500 GeV are set 0.023, 0.038, and 0.085, respec-
tively. The data are taken from Ref. 8(g).

particular forms of the resonance spectra. To
understand these spectra themselves, we shall
calculate them from the relativistic phase volume.
We start with introducing our terminology and

notation. Note that the notation in this section
is independent of that used so far. We call a
single-particle distribution with a fixed number
of final particles a partial-inclusive distribution.
We denote the two-dimensional momenta of the
whole system and a particle i in the final state
by P = (Po, P~; ) and P, = (P«, P, ~~ ), respectively.
Our definition of the two-dimensional scalar
product is ab = a,b, -a

~
b ~~. Further, m, P, and

6 designate mass, transverse momentum, and

longitudinal mass (6' =p, '+ nP), respectively.
We define the relativistic longitudinal phase

volume as follows:
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N N

fl (P)=g" p [dp;. dP( 5(P '-~;')6(P;.)]5'P -gP;
i= 1

For N=2 and 3, the integration can be performed:

A,(w, 0) =g'/([w' —(a, + a,)'] [w' —(s, -n, )']}'",
2g3F(2v, k)

(w+r. ,+r2, +rd.,) (w+a, -a, -a, ) (w+d, , -g, -s,) (w+ d„-a, -a, )

where W=(P')'" and

F(k, k)=f dk(1-k*k' *k)'",
0

with

[W' —(Z, +a, +d„)'] [W' —(S, —S, —d„)'] [W' —(d„—d, —&,)'] [W' —(&, —&, —&,)']
(W+ 6,+ 62+ (k)3) (W+(k), , —h2 —d3) (W+ 62 —h3 —6,) (W+ 63 —6, - h2)

(6.1)

(6.2)

(6 3)

(6 4)

(6 5)

R(z) = zK,(z)/K, (z), (6.6)

the new variables z, = pr3, (2 = 1,2, . . . , N, p is a
parameter), and the functions

For ¹ 4 the integration in (6.1) cannot be done
analytically. We adopt the central-limit theorem
in probability theory to obtain an approximate
formula for (6.1). The derivation is not shown
here because of its tediousness, but for the de-
tails the reader can consult Ref. 22. Before
writing down the formula, we define some func-
tions employed: K, (z) is the ith-order modified
Bessel function of the second kind. It is con-
venient to introduce the function

The parameter P is given as a solution to the
equation

1w= —QR(Pb, , ) .
P, ,

(6.10)

(6.11)

The second term inside the square brackets of
(6.8) is the following function:

f~ 2(f3 '-f2 2PW)-— 3(f2+ PW)

f, pw (pw)'

5f32 6f,(f, +PW) 9(f2+PW)'
24 f 3 f 2PW f P2W2

f,(P) = -P [R(z,)1'+g R(z, )+gz, 2,

f,(P) = —2 P[R(z, )]'+3g [R(z,)]'

+2 Q [(z —1)R(z,)] —Q z,',

f4(P) = —6 Q [R(z,)]'+ 12+ [R(z, )]'

(6.7a)

(6.7b)

To see the accuracy, we apply the formula
(6.8) to the case of N=2, 3 and compare the values
obtained from it with the exact ones in Table I.
The agreement is very good. It is expected from
this result that the error in the statistical ap-
proximation lies around 1-4% for N=4 and is

++[(8z,' —11)R(z;)']

+g [(6 —8z, ')R(z;)]++(3z —2z ).

(6.7c)

TABLE I. Relativistic longitudinal phase volumes of
N-body systems for N = 2 and 3. The values in the left-
hand columns are by the exact formula and those in the
right-hand columns are by the approximate one. The
c.m. total energy is W =v~2 . In the table a(-b) means
ax 10 ~.

Now we can give the approximate formula for
(6.1):

W (GeV) N=2
Exact Approx.

N=3
Exact Approx.

03((P) =QI2 (W; P) [1+G()((P)+O(N )],
where

gK (P6;)
g(p)

()( ( k P) 2 [f (P)W/P3] I/2 P(P )

(6.8)

(6 9)

2.856
4.827
8.157

13.79
23.30
39.37
66.54

2.305(-2)
7.225(-3)
2.446(—3)
8.469(—4)
2.954(—4)
1.033(-4)
3.614(—5)

2.306(—2)
6.676 (-3)
1.986(-3)
5.625(—4)
1.419(-4)
2.696(-5)
2.251(—7)

3.605(—2)
1.614(-2)
7.017(-3)
2.962 (-3)
1.218(—3)
4.909(-4)
1.944 (—4)

3.645(—2)
1.604 (—2)
6.760(—3)
2.727(-3)
1.055(—3)
3.922(—4)
1.400(—4)
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still small for N& 5.
Figure 6 shows the phase volume with the same

parameters as in Table I. We employ the exact
formula for N=2 and 3 and the approximate one
for N&4.

Now we are in a position to consider the ki-
nematical constraints from the phase volume
on the inclusive distribution for a resonance.
Suppose that the quantity y is a function of P&

(i = 1, . . . , N); i.e. , y =h(P„P, . . . , P„). Then
we can give the distribution for y

(6.12)

where the normalized distribution function p„
of N particles is

~P; -~~ ~ P~o

(6.13)

ume:

dp ii 2poQ„(P)

with

P"= (P -P)' = P'+ d, ' —2P. P .

(6.14)

(6.15)

The longitudinal phase volume behaves at high

energy a.s Q„(W, 0) and

A„(W, 0) (inW') '/W'. (6.16)

Therefore, the maximum point of the distribution
(6.14) spreads out in rapidity space as energy
increases. " This does not correspond to the
realistic case. In order to circumvent this dif-
ficulty, we shall take account of the leading-
particle effects. It is known empirically that,
in many cases, the so-called leading particles
carry away a large fraction of the available en-
ergy. In practice, therefore, (6.13) should be
modified as follows:

p. (P;P~, Ps,p„,P.)

F(pA, ps) P -pA —pB — p~C

By putting y=p„=p in (6.12), a simple manipu-
lation gives the following partial-inclusive dis-
tribution which results only from the phase vol-

n

x II [~(p -& )6(p.)]
)=A,B,x

(6. 17)

I I I I I I I
)

I I I I I l I I
I

I I I I & I I I I I I II

10

10

10
10 10

P .(GeV)',
10 10

FIG. 6. Relativistic longitudinal phase volume, which is exact for N = 2 and 3 and approximate for N &4. The param-
eters are g = 0.4 and A; = A = 0.75 GeV.
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Here A and 8 are leading particles and C is a
normalization factor. %e invoke the general
formula (6.12) to obtain the relation between
E(p», pe) and the two-particle distribution for
A andB:

«.(P», pa) &(P» Pa)
p

+ (P P P )' ( '1 )

combining (6.12), (6.17), and (6.16) w h th
o owing partial-inclusive distribution with lead-

ing particle effect:

«.(P», P )
dP ll 2Po dPAdPB

„ft. i(& P» P-a)-
dP»iidpsit (6 19)

In this paper the leading-particle distribution is
assumed to be as follows:

do. (P», pe)
/(Pii ') whe P»ii - 0

APPENDIX A

A decay angular distribution for a vector meson
can be expressed in terms of the density matrix.
%e designate momenta of an incident particle
and the produced vector meson V by p and k,
respectively. The z axis is chosen in the direc-

0tron of k. The y axis is normal to the production
plane: y ~x: p and k, respectively. The z axis is
chosen in the direction of k. The y ax' ' al
to the production plane: yfx: p&k. In the rest
frame of V, 8 and Q are defined. as the polar
and azumuthal angles of the momentum q of one
of the decay products:

cosg=j z/) j~,
cosQ=j (zx j)/~zxqi. (A1)

comments. They are very grateful to Dr. S. Chada
fox a careful reading of the manuscript.

and pB~~
~ 0

=0 otherwise, (6.20)
where PII™is the momentum of an incident par-
ticle in the c.m. frame.

In Fig. 7 are shown the invariant partial-inclu-
sive distribution P, do„(P)/dP~~ without the leading-
particle effect and P, do"„(P)/dP~~ with the effect,
where we set 6&=6=0.75 GeV and AA=rh, B=0.95
GeV. With the choice of 6& =6 =0.35 GeV and
6A = 6B = 0.95 GeV, we have also calculated the
kinematical distributions (6.19) for a nonresonant
particle directly emitted. It is found that they
are not very different from those for a reso-
nance at CERN ISB energy, provided that n is
not large. In this sense, the constraints from
the energy-momentum conservation are not sen-
sitive to the mass of a produced particle. In
contrast, as shown in the preceding sections,
the distribution function for a final particle is
quite sensitive to whyther resonances are dom-
xnantly produced or not, since it changes ap-
preciably through the decay processes.

It is of interest to compare the kinematical
spectra (6.14) and (6.19) with the favored [P = 0
in (3.11)] and disfavored (P &0) distributions,
respectively. There is fair agreement for the
favored one. However, P der" (P)/dP
sidex ably flatter than the disfavored spectrum.
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~r

r

~r

Xl

CL'0

CL

I a l

0 01 02 0.3 0r4 0.5 GS
X

a I a

FIG. 7. L~variant semi-inclg. sive distribution function
of resonance with the leading-particle effect (solid curves)
and without the leading-particle effect (dotted curves)

tribution see Eq. (6.20) in the text. The parameters are
g= 0.4, E& = 4= 0.75 GeV, and AA= AB= 0.95 GeV.
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The decay angular distribution of V in the rest
frame is given by

w(e, y) =g & e, y I & I » d~~ &
~'

I
&'I 9, y&, (A2)

where N is the decay amplitude, diaz is the den-
sity matrix, and ~ or X' denotes the helicity state
of V. The explicit form of (A2) is"

W(9, p) = (3/4v) [-,'(d»+d ),) sin'8+d» cos'9+ (I/W2) (- Red»+Red „)sin28 cosp

+ (I/v 2 ) (Imd»+ Imd «) sin29 sing —Red, , sin'8 cos2(I)) +Imd, , sin'9 sin2$)] . (A3)

Integrating (A3) with respect to (t), we have

f ))'(9, $)d)

2dQQ dj1 d ]

ll -1 -1

(A4)

(-) &, (- &(I * ~ v,*-v,*)

)

where f ' is given by the replacement of F» in
(3.4) with (B2). Similarly, we have

(B4)

The above equation (A4) leads to (3.2) and (3.3).

APPENDIX B 3. (d +3K

(B5)

We write down formulas for the m and the K
distributions in terms of the spectra for p, K*,
(L), and Q in the following four subsections, re-
spectively. For convenience, we denote the
distribution function in (3.4) by f (q;M, p, ). Let
masses of p, K*, ((), Q, w, and K be Mz) M»,
M, M&, g„and p„, respectively.

1. p~ 2n

In this case we have only to modify (3.4) and

(3.6) by including the effect of p width. Thus,
we obtain the m distribution

r/2v
f( )(q) (M M, r f(q™p )™M-Mp) + 4I

Although, in this case, the decay distribution
may depend on the dynamics, we take account
only of the phase-space constraints. That is,
the decay distribution for a resultant m is ex-
pressed in the ~ rest frame as

do"' (q; &u-3v) ~ 6'(q+q'+q" -P )
dq

0

d'q' d'q"
X

q/ q/I 7
(B6)

with P = (M, O). A comparison (B6) with experi-
ments shows that our ignorance of the dynamics is
not crucial. Including the normalization, the ex-
plicit form of do' reads

where I' is the width of p. It is easy to obtain
a similar formula for f.

2. E"~Em

M~ —2M~ qo+ p, ,' (cqo) '

where the constant c is taken as

(B7)

First we consider the m distribution. In the
K* rest frame the energy of m is a constant, which
is designated by q*. We can regard this pion
as a decay product of V with the mass 2q*, which
decays into 2m. The distribution function of this
virtual particle V must be

2 2M q + ~ 2
q

(B8)

der = — dMMg 1—

With M, = (M '-3g')/M„, (B7) can be rewritten a,s

(M»/M) F»((M„/M)k(), (M»/M)k~),

with

(B2)
6(qo' —~M')

27r7l
(B9)

M= 2q* = 2(M»'+ g „'—p»')/M».

Hence

(B3)
Comparing (B9) with (3.1) one can consider the
-3n decay as a two-body decay of a virtual par-
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ticle with the mass M, which is distributed with
the weight

(M' —4p, ~)'" [1—4pw/(M„' —M„M+ p„')I'"

in the region 2p. „&M Mo and decays into 2m.
Thus neglecting the width of co, we have the n dis-
tribution

No 4 2 1/2

f&. ,) (q)= — dM (M'-4p„') 1—,— ', f'(q;M, p, .)~„, .
C M ' —M M+@,„' (B10)

4. p~EE

The same formula as in the p- 2m decay can be
applied to this case with allowance for the ap- f(g-g) (q) =4+g(2q). (B11)

propriate masses. Since M& —-2p.~, we obtain an
approximate formula
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