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All the diagrams which contribute to the eighthwrder muon anomaly are classified and their
contributions are estimated. The Kinoshita method is used whenever possible. The total correction is
estimated to be 230(a/m)' = 6.7 )( 10 '.

I. INTRODUCTION

This is the current situation in the comparison
between theory and experiment of the anomalous
magnetic moment of the muon. ' The theoretical
value for the anomaly a=-,'(g-2} is given by'

a,„=0.5 —+ 0.76578—

Q+(21.4+ 1.1) — +a„

= (116588y 2}x 10~,
where a+ is the hadronic contribution, which is
estimated' to be (73 +9)x10 '. There is also a
weak-interaction contribution which contributes'
+3x10 ' to a,„. The current experimental value
is

a,„=(116616+31)x 10 '.
The next generation of experiments at CERN may
have a precision as good as six 10 ' (10 ppm), and
the question of whether or not the eighth-order
contribution might soon be significant arises.
With this in mind, Lautrup' recently estimated the
contributions for certain classes of eighth-order
diagrams. It seems desirable to have alternative
estimates of these contributions, as well as esti-
mates of the other eighth-order contributions. We
will use, whenever possible, the Kinoshita method'
to evaluate the coefficients of the terms ln"(m „/
m, } which typically occur in the contributions to
ah ~

II. CLASSIFICATION OF THE DIAGRAMS

We have classified all the nonzero topologically
distinct proper diagrams which contribute to the
eighth-order muon anomaly. We find, in agree-
ment with Lautrup, ' that there are 891 mass-in-
dependent graphs (these of course also give a~')),
of which 373 contain muon loops and 518 do not
contain any loops. There are 469 mass-depen-

dent graphs' containing electron loops, making a
total of 1360 Feynman diagrams contributing to
the muon anomalous magnetic moment in eighth
order. As a check to be certain that no mass-
dependent graphs have been omitted, in each of
the 373 mass-independent graphs with muon loops,
we have substituted electron loops for muon loops
in all possible ways. This generates the 469
mass-dependent graphs,

It is expected that, as in lower orders, there
will be large cancellations among the contributions
of the 891 mass-independent graphs. We estimate
the value to be' -(o.'/s)', which is negligible.

We now separate the 469 mass-dependent graphs
into 11 classes. This classification scheme is
slightly different from that of Lautrup.

Class A. This class is obtained by inserting a
single electron loop in all possible ways in the
sixth-order diagrams without electron loops. Di-
agram (A) of Fig. 1 is a representative graph of
this class. There are 216 diagrams in this class.

Class B. This class includes the diagrams ob-
tained by inserting two electron loops in all pos-
sible ways in the fourth-order diagrams without
electron loops. Diagram (B) of Fig. 1 is repre
sentative of the graphs of this class. There are
21 diagrams in this class.

Class C. This class includes the single diagram
(C}of Fig. 1 with three electron loops.

Class D. This class is obtained by making a
(proper) fourth-order vacuum-polarization inser-
tion in all possible ways in the fourth-order dia-
grams without electron loops. Graph (D) of Fig. 1
is representative of the graphs of this class.
There are 42 such diagrams.

Class E. This class includes the 6 diagrams
which contain both an electron loop and a (proper)
fourth-order vacuum-polarization insertion in a
single photon line [graph (E) of Fig. 1].

Class F. This class contains the 18 diagrams
obtained by making a (proper} sixth-order vacu-
um-polarization insertion in the second-order
graph. It includes both graphs of type (F) and (F')
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of Fig. 1.
Class G. This class contains the 18 diagrams

obtained by inserting a single electron loop in
all possible ways in the photon-photon scattering
(with electron loop) sixth-order graphs. Diagram
(G}of Fig. 1 is representative of this class.

Class H. This class contains the 18 diagrams
represented by graph (H} of Fig. 1. These are
photon-photon scattering graphs in which all 4
vertices on the single electron loop involve a
virtual photon.

Class I. This class contains the 18 diagrams
represented by graph (1) of Fig. 1, which are
obtained by inserting a single muon loop in all
possible ways in the photon-photon scattering
(with electron loop) sixth-order graphs.

Class J. This class includes 3 diagrams which
contain a muon loop inside an electron loop [graph
(J}of Fig. 1].

Class K. This class is obtained by attaching a
single virtual photon in all possible ways to the
photon-photon scattering (with electron loops}
sixth-order graphs. It includes both graphs of
type (K) and type (K') of Fig. 1. There are 108
diagrams in this class.

III. CONTRIBUTIONS OF CLASSES A THROUGH F

K

FIG. 1. Representative diagrams contributing to
g(8) ~(8)
Qp —Qe

4

AM"„(m„m „)= — 2.2 ln +O(1)
g me

K

We now use the Kinoshita method of partially
renormalized amplitudes to estimate the contribu-
tions of classes A through F. We will obtain ex-
actly the coefficients of all the ln"(m „/m, ) terms
which occur in each case (for class C we will
obtain the mass-independent term as well}, giving
us what should be a very accurate value for the
first six classes. In Sec. IV we will estimate the
contributions of the last five classes, but the
values obtained are considerably less reliable.

Class A. The basic equation for the partially
renormalized amplitude here is

AM",.'(m„m „,A) = 3Z~'~(m„A)a~~~+AM,"(m„m „),

4

=11 7
1r

cf. Lautrup's estimate: 14(o./v)'.
Class B. The relevant equation here is

AMs~, (m„m „,A) =3[Z~('~(m„A)]'a~'~

+AMs(m, , m„), (4)

where a„', is the contribution to a„' due to second-
order vacuum polarization inserted into the fourth-
order vertex graphs. Using'

2

a '(m m }= — —a "ln "+0.032—
3 ' m

'
n

with

zt'~(m„A)= —
(
—

)
(-', ) (A/m, ) —f].

In the usual way, ' the fact that

lim b, M", (m„m» A)
me~0

(2)

we obtain

AM„'(m„m „)

3 a, ' ln' " +0.064 — ln

exists enables us to obtain for the contribution of
class A

AM"(m m ) =2a '~ —lnr e~ p, e
& m e

This becomes, using" a~'~ = 1.1(o/v)',

and with

2

a ' = [~++w' ——,
' v'ln2+-,'g(3)]-e 144 12 r

= -0.328
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we obtain

AM„(m„m q)

4

0.44 ln' " —0.064 ln + O(1)
me me

2 a ' 22m]1 25 m I 317
+ +-

me 6 me 72 6

(8)

= -12.1— (6) (9)

cf. Lautrup's estimate: -9(a/w)'.
Class C. We begin with the equation

AM~, (m„m „,A) = [Z('i(m„A)]'a('~

+3[Z~'i(m„A)]'a~„',~(m„m „)

+ b,Mc(m„m„),

where a'„", is the single mass-dependent contribu-
tion to a~„'i, and a(62} is the two-electron loop (dou-
ble-bubble) contribution to a„' . Here'

After some algebraic manipulations the contribu-
tion is found to be

4,m v 25,mAMc(m„m ) = — —ln' ——ln'
w 27 m, 27 m,

+ + ln +O(1) .217 317 m p

Sle

(10)

In this case the contribution can be calculated di-
rectly without a great deal of labor. As a check
then we evaluate'

a 4 ' ' dvu'v (1. —&v')' ~™'-~ """-"' (1-").4(1 )(m /m )

obtaining for the "exact" contribution of class C

a 4 4,m (4 25,m& 2s' 317 m (2 2i;(3) 25w' 8609
(12)

It is seen that the logarithmic coefficients agree
with those obtained in Eq. (10), and that the O(1)
term is obtained as well. This yields

Z,"~(m„A) = -(u/w)'[-, ' ln(A/m, ) + g(3) —P,] .
(15)

4

4M, (m„m„}=(™(22.5 —233 ~ 143 —3.3}

(13)

b, Mv (m„m „,A) = 2Z3("(m„A)a,"}
+ n, Mv(m„m „),

with Z," given by"
(14)

c.f. Lautrup' s estimate: 14 (n/s)'. The contribu-
tion of each logarithmic term and the O(1) term is
shown separately. Note that, just as occurs in low-
er orders, there is tremendous cancellation among
large terms. Interestingly, the ln' term here is
larger than the ln' term.

The ln' coefficient is consistent with Terazawa's
infinite summation of graphs of this type, ' but as
can be seen from Eq. (13) and as Terazawa clearly
points out, the so-called leading logarithmic
terms cannot be taken to be approximately a&h

under the physically realized situation with
(2a/3w) ln(m „/m, ) =~»0.

Class D. The relevant starting point here is

AMv(m m ) =ai4} — ln
Q mp
w m e

4

-0.328 ln " +O(1)
me

= -1.8 (16)

cf. Lautrup's estimate: -2.4(a/w)'.
Class E'. The equation for this class is

+ 2Z('}(m„A}Z3('~(m„A}a~'~

+ b, M„(mM}m &) 2

where a(&83} is the fourth-order (proper) vacuum-
polarization contribution to a'„' given by

a„, =(a/m)'[~ ln(m„/m, )+ 2t(3) —~»]. (18)

This leads to the contribution

Actually we need only the ln term here. The con-
tribution obtained is
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= 7.1 (19)

Class E. The equation we use here is

AM, (m„m „,A) =Z('~(m„A)a ~'~

+Z" (m„A)Z,"'(m„A)a '

with Z,"given by"

Z('~(m„A)

+ AM', (m„m „), (2o)

(y
' 1 2 A 2 141 A—ln + —g(3) — ln —+ C6 me -3 144 mz

(21)

The contribution of this class is obtained in the
usual way and is found to be

AMr(m„m „)

)aM„(m„m „)
4

n

2

8

~

~

~ «

~ 8

u '1,m„5 2 m„—ln' " — ———l(6) ln ~ O(ll}3 m, 4 3 m,

4'„", (nc„m„)=(—) (6.4ln —15.1) . (25)

Using the fact that lim, b, Mp, (m, m', m„, A)
(with m fixed) exists, we obtain

AM,'(m, m', m„)

4

2ln," +a 6.4ln " —15.7 +0(1)
7r m' m

(26)

with a left undetermined. Now putting m =m ' = m„
the ln' coefficient is determined "exactly, " but,
unfortunately, the ln coefficient is undetermined.

445M, (m„m„m „)= AM, (m„m&)

At the end of the analysis one puts m =m'=m, .
Hence, we write

b,M, (m, m ', m „,A) = 3Z2~'~(m ', A)a(„',~ (m, m „)
+ AM„'(m, m ', m „). (24)

Here a„'4 represents the photon-photon scattering
(with electron loop) contribution to a(„'l, for which
we use"

—ln* — —— ln +O(1)}
a ' 1,m„67 &(3) m)4
m 12 m, 96 3 m,

=0 78 — . 22)

12.8 ln' " +0 ln

n 4

= 364
7r

(27)

AM"„=12.9(o./w)'. (23)

IV. CONTRIBUTIONS OF CLASSES G THROUGH K

In this section we will estimate the contributions
of classes 0 through K, but, unl ke the estimates
in Sec. III, we will be unable to exactly obtain the
coefficients of all the ln"(m„/m, ) terms which
occur. (For class G, however, we will obtain
the leading ln' coefficient exactly. )

Class G. Here we will use a generalization of
the Kinoshita method which involves partially
renormalized amplitudes which are functions of
two masses m, m ' «m „. This method can be used
for any class which has at least two electron
loops, and is discussed (and further generalized)
in more detail, with examples, in the Appendix.

No direct comparison can be made with Lautrup
for classes E and F. He has estimated the sum of
the contributions of diagrams of type (E) and type
(F') of Fig. 1 to be 16(u/v) . He has no estimate,
however, for the contribution of diagrams of type
(F).

Adding Eqs. (3), (6), (13), (16), (19), and (22)
we obtain the total contribution of the 304 dia-
grams in classes A through F,

this should be considered as an upper bound to the
contribution since the ln term most probably will
be negative. As our estimate for this class, we
will put a = 0 and obtain

4

4M, (m„m )= (
— 12.6ln' " —61.4ln

m~ 8

= 197— (28)

cf. Lautrup's estimate which corresponds to
a = -~: 166(o./w)'.

Class H. In order to estimate the contribution
of this class, we make use of the high-energy
limit of the forward photon-photon scattering
cross section".

(3o)

d(T((d, O) w
} )}2

dQ 16(o' (31)

with

where ro= n/m and (4)»m, is the energy of each
photon in the center-of-momentum system. Equa-
tion (30) can be rewritten in terms of the forward
amplitude s(&u) as
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N 2'w((u} -+4 — ln' —.
me

(32)

In our case, the characteristic value of all the
photon momenta is q -m „»m, . For our estimate
of this class we take

Class K. The contribution of this class can be
considered to be a radiative correction to a „'4.
It is expected that there will be large cancellations
among the contribution of the 108 diagrams of this
class.

We estimate its value to be'
~M,"-a,",&w(q), (33)

where a,", ' represents the sum of the uncrossed
and crossed ladder-diagram contributions to a,',
and

EM„- -(n/w)a"
- -18(o./w)'.

V. DISCUSSION

(37)

2

a~,', ~ = (0.778 —0.467)—
7r

= 0.311

Hence, the contribution is estimated to be

EM", (m„m &1-+ (1.21 '
~) (

—
)

4
= ~35— (34)

[ Lautrup disagrees here. He believes there are
no ln terms in the contribution of class H (see
Ref. 15}.j The sign of the contribution is unde-
termined.

In the case of the a„', contribution, although
three of the photons have q-m„, the external
photon has q-0. Some terms in the partial calcu-
lations did contain ln'(m „/m, ), but this dependence
eventually canceled out. " It should be noted that
the nonforward y-y cross section is of the form

do' a 1

n, M'- -w" &(q)a "&
P4

- 1.8(a/w)'. (35)

Class J. Using the same reasoning as in class I
above, the contribution of this class is estimated
to be very small:

n M„0 1(n/w)a„', -.
-0.15(a/w)'. (36)

with f(e)-ln'e for small e. If, however, 6-0(1)
in class H, then there is no m, -0 singularity.

Class I. Making a muon bubble insertion in all
possible ways in a class of diagrams yields a con-
tribution which is -w~„"(q) times the contribution
of the original class. m~„'~ is the second-order
vacuum polarization due to a single muon loop, and

q is some average value of q which depends on the
class. For the known contributions to a„, -wt' (q)
-0.1(n/w), corresponding to q-1.3m „. Hence,
we take as our estimate for this class

It is seen from Eqs. (23), (27), (34), (35), (36),
and (37) that the eighth-order muon anomalous
magnetic moment might be as large as 400(a /w)'.
Interestingly, this correction would be 11.6 x10 '
-0.83(a/w)'. The largest contributions come from
classes G, H, and K, in that order. Our best esti-
mate for the eighth-order muon moment, using
Eq. (28) instead of (27) as well as the positive sign
in Eq. (34}, is

a'" = 230(a /w)4

=6.7x10 9. (38)
Table I summarizes the contributions of each

class and the coefficients of ln"(m „/m, ) are given
in each case. After submitting this article for
publication a report by Lautrup and de Rafael"
was received in which a „' is considered from the
point of view of the Callan-Symanzik equation. A
detailed comparison with their results can be made
for each entry in Table I where an analytical ex-
pression for the coefficient of ln"(m /m, ) is given.
This includes class C, n =0, 1, 2, and 3; class D,
n =1; class E, n =1 and 2; and class F, n =1 and
2. The results, in each case, are in complete
agreement.

APPENDIX

We now examine in more detail the generalized
Kinoshita method referred to in Sec. IV. First
consider the double-bubble contribution to a „'

(one diagram only), with unequal bubble masses
m, m'«m„. We write

+a~„'2~(m, m', m„). (Al)
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TABLE I. Contributions of each class to d& in terms of (e/n) . The coefficients of
in" (~~/m, ) are given in each case. The underlined values indicate coefficients whose values
are merely estimates.

Class ln3 (mp /m, ) ln2 (m~ /m~) ln(m &/m~) Total

-0.44

2.2

+ 0.064

11.7
-12.1

D

4

27

3

1

72

25

27
7r2+2 317

27 162

+(~I+~2 —(22 In2+ ~t, (3}
2 5

3 l(3)-4

3 ~(3) 96
67

--~(3) ——~'-—2 25 8609
162 5832 7.2

—1.8
7.1

.78

G

H

K

12.8

+1.2

—31.4

0.64

0.025

—6.4

—1.6

0.018

+15.7

197

1.8
0.15

-18

(.') (A2)

Since the contribution must satisfy the symmetry
relation

Now using the fact that

lim AM~~~(m, m', m&, A) (with m fixed)
nt ~0

exists, one obtains

2 m& m„25 mqa'(m m'm )= — —ln ln ——ln
9 m m' 54 m'

tained the well-known result

(e)a „2(m, , me, m„)
(6)=a „,(m„m„)

—ln' ——ln + O(1)
n 2 mp 25 mp

9 m 27 m,

(A5)

As one more example of the power of this method
we consider the triple-bubble diagram of class C,
with unequal bubble masses m, m', m", «m „.
Hence we write

a „',(m, m', m„) =a „',(m', m, m„),

f is determined and we get

(A3)
n. M ' (m, m ', m ",m» A) = Z "(m ",A)a "(m, m ', m „')

+AM„(m, m ', m", m „}.
a, (m, m ', m ) = — —ln ln, ——ln

2 m& m& 25 m&

w 9 m m' 54 m

——ln, +O(1) . (A4)
25 mq
54 m

We will use Eq. (A4) with

O(1) 2 ( 317 + 1 +2)

(A6)

(A7)

Putting m = m ' =m, we find that we have easily ob-
This is required so that Eqs. (A5) and (9) agree.
This gives us

4-

4 m~ 317 my+ —
7 6

+ ln „+g(m, m', m„} (A8}

The function g is determined by symmetrizing as before, and so
4r 4

r m m' m"

+ ——+ ln +ln, +ln „+O(1}4 w' 317 mi mu my
m m' m" (A9}
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Now we put m = m ' =m" =m, and easily obtain, in
agreement with Eq. (10),

&M, (m„m„m„m„) =AMc(m„m„)

(A10)

In conclusion, this generalization of Kinoshita's
method provides a neat and effective technique for
evaluating, very easily, the contribution of a class
with at least two electron loops. Unfortunately,

for the case of the diagrams of class G, we have
no relation, like a symmetry relation, which we
can impose in Eq. (26). If we did, we could obtain
the ln coefficient for hM„.
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