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The effective potential is computed to order 5 in an Abelian gauge theory —scalar electrodynamics.
The calculation is performed first in the ghost-requiring R

&
gauges. The corresponding expression is

also derived from the unitary Lagrangian. We discuss the gauge dependence of the effective potential
and its minima in connection with spontaneous symmetry breakdown; and we interpret the unitary
computation to( be the physically relevant one.

I. INTRODUCTION

Minima in the field-theoretic effective potential
V indicate symmetry properties of solutions for
the theory. ' Unfortunately, an exact calculation of
V is rarely possible; often the best answer to be
had is the first few terms in a loop expansion. ' '
In general, one goes beyond the lowest tree ap-
proximation, so that effects due to accidental sym-
metries, ' finite temperature, ' or radiative cor-
rections s can be examined. However, any approxi-
mate calculation may be unreliable; it may exhibit
unphysical minima. (For example, we show in
the Appendix that in ordinary quantum mechanics
one frequently commits errors when the exact V
is approximated by a finite series since the series
does not converge in the region of the true mini-
mum. )

In gauge theories the effective potential is gauge-
dependent. '~ ~ This presents difficulty in assess-
ing the validity of any approximation to the com-
plete V, since the gauge dependence may create
false minima. Also, a direct physical interpre-
tation cannot be given to a gauge-dependent quan-
tity. Furthermore, it has been alleged that in
some gauges (the R

&
gauges ') V cannot be defined. '

In this paper we compute the effective potential
to order I for an Abelian gauge theory —scalar
electrodynamics. We show how even in the p

&

gauges a potential can be defined. The calculation
in this gauge is of additional interest as it involves
a treatment of ghost loops. The problems with
gauge dependence are vividly portrayed in our
calculation. In the p

&
gauge, V is already gauge-

dependent in the tree approximation and possesses
stationary points which do not correspond to physi-
cal solutions of the theory.

We suggest that the difficulty of the gauge depen-
dence may be resolved by considering the unitary
Lagrangian Z~ (frequently called the Lagrangian
in the unitary gauge). This unitary Lagrangian can
be obtained as the lixnit of the corresponding ob-
ject in the &

&
gauge. However, we shall argue

that S~ may be viewed not merely as a Lagrangian
in a special gauge, but also as the Lagrangian for
the theory when all gauge degrees of freedom have
been removed. ' The unitary Lagrangian reflects
the physical spectrum for its fields, and the ef-
fective potential V~ associated with it merits the
physical interpretation given by Symanzik. '

The danger with computations based on the uni-
tary Lagrangian is that they may not be renor- .
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malizable. V~, being the generator of single-
particle irreducible Green's functions at zero mo-
mentum, does not appear to be directly related to
physical 8-matrix elements. Consequently, s
p~jogj one does not know whether V~ is renor-
malizable. Happily, we find that a finite answer
emerges to the one-loop approximation.

In See. II we derive the renormalized effective
potential to order 5 in the g

&
gauge and discuss

its properties. Section III is devoted to a direct
evaluation of V~ from S~." We also study the
unitary limit of the effective potential in the g &

gauge. The expression which emerges in the limit
coincides with V„, provided the limit is taken at
fixed cutoff; otherwise an ambiguous additional
term is present. Concluding remarks comprise
Sec. IV, while in an appendix we discuss the prob-
lems that are encountered in ordinary quantum
mechanics when series approximations to Vare
attempted.

-ee,p Q,/~A" +-'e2$2A2 (2.1)

where Q'=P, '+Q, ', Q'=(Q')', and g, (a=1, 2) is a
real field. Specification of the g& gauge conven-
tionally involves adding to (2.1) a gauge-determin-
ing term which depends on Q'„ the vacuum expec-
tation value of P„ in the case that the symmetry
is spontaneously broken. ' However, the effective-

II. The 8]-GAUGE CALCULATION

A. The effective potential

We compute the renormalized one-loop approxi-
mation to the effective potential for scalar electro-
dynamics in the g &

gauge. The unrenormalized
Lagrangian is

g= ~8 p 8&$ -~E W"-2m~pm ——$4j. v & 2 2 ~ 4
0 4 pv

potential approach requires calculations to be per-
formed before a commitment is made to symmetry
breakdown; and symmetry breaking emerges as a
displaced minimum of V. Consequently we must
not, at this stage, assume symmetry breaking in
the definition of the gauge. Thus we are led to a
gauge function

——(8 «A+v» Q)
I 2

2c (2.2)

Here v, is an m.bit~my external 2-vector, not
related to any properties of Q, . [Previous defini-
tions of the ft

&
gauge' correspond to a = 1/$.

v, = (1/$)ee, „/~0.] The gauge (2.2) requires a ghost-
compensating term: One adds to (2.1)

8&q*8"q eq*—yv x y, (2 2)

where g and g~ are spinless fermions, and
V Q = v~sl~f~ .

It is the above procedure, of divorcing v, from
P,', that permits one to define an effective poten-
tial, and to circumvent the difficulty, observed
by Weinberg, ' that V does not exist if v, ~e„Q,'.
We shall continue to call our modified gauge the
Q g gauge.

The complete unrenormalized Lagrangian is
given by the sum of (2.1), (2.2), and (2.3). Re-
normalization can be performed before a commit-
ment to symmetry breaking is made. The renor-
malization of the symmetric Lagrangian has been
given by Lee, with the following result. " One re-
normalizes the theory as if v, were zero. Then
one adds the complete gauge-determining and
gauge-compensating expressions in terms of re-
normalized fields without any further renormaliza-
tion. Finally, P, is shifted by a renormalization
counterterm se, . Thus the renormalized Lagran-
gian is

Z =Z [&8 P 8"P ee 8 P -(P +w )A~+-,'e'A'(Q, +su )'] g,,'E „W"--——(8 A+v ~ P+v I )'

=~(m'+8m')(p, + Iv, )' ——
(A, +5k)[(p, + w, )']'+8„y+8~y eq*yvx (p +-w). (2.4)

(Here all fields and parameters are renormalized. )
As we are computing only to order 0, it is suf-
ficient to keep the counterterms only to that ac-
curacy. Setting g, =1+z„g2 = I + z„and recall-
ing that z2, z~, 5m, 5A,, and se, are each of order

5, we may replace (2.4) by the simpler expres-
sion

(2.5a)

where

Zo==~E„~E"'+~8„$,8"p, -ee,~s+,Q, A" +~e A p ——(8 A+v p)2+8 $*8&p eg*g pv-x- -p~~m-m—Q,

(2.5b)
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2, = -lz, F„„Fi'"+z,(ze p,e"$, -ee„B„Q,Q~Ai'+ —,'e'A'p') e-e„e„p,wiA~+e'A'p w

=(5 A+v Q)w v- —,5m ktk -m Q w ——,p -+A/ up e-g'kgvxw.
1 1 2 2 2 5A,

(2.5c)

V(Q) to zero order and the 0 (ii) counterterm
follow immediately from (2.5). These are

V, (Q) =-,'(m'+5m')$'+ —(Z+5Z)P+ —(v j)'
+4 ' w g '+ i- XP'}+—

(kgk
~ v) g ~ v) . (2.6)

The nontrivial O(k) contribution is evaluated by
the functional method. We shift p, (z) in (2.5b) by
kII„and retain terms quadratic in the quantum
fields. ' [Only quadratic terms are needed for an
Ooi) result. ] The above procedure defines an ac-
tion given by

i(k; k. d" k', , k) = J""d'V[lkP)vie '. (k; e -V)k, (V) ~ lde(e)in e (k: e '-.V)d "(V)

+ A~(x) M,.(j; x y)y.-(y)+y~(x) iS '($; -z -y)q(~)]. (2 7)

En momentum space the propagators are
iD ',i(p; k)=(ki-mi-+eked)5, »- ghee, Q~

1——V Ve oat

ik '„„(k;k)=(-k'ee'$')d„„+ (1 ——
) k„k„,

M (P;k) =ice„P,k„-—k„v, ,ab b u a uoy

iS '(p; k) =k'-evxp.
According to the general procedure previously de-
scribed, ' the O(K) part of V is determined by the
functional integral

~ ~~ ~~ ~

dl}i ekd tidAp eo/")I

=DetiS kDet (jdkk }Det (iD y iN). (2.9)
The Auintegrationwas performed first and N is
defined by

N„(Q; k) =M",(P; k)dkk„„(P; k)M,"($; -k) . (2.10)

The O(R) effective potential which follows from
(2.9) is

d4k
V, (P)=N, In[iS-'(j; k)]

d4k, Indet[ig '„„(dtk; k)]

d4k, ln det[iD '„(P; k) +iN„(P; k)] .

(2.11)

We substitute (2.8) and (2.10) in (2.11) and rotate
the integration contour to find

V, (k)=, f dk k [ ken'(k''-eevxk)*kin(k ee'k')
0

+In(k'+a@ +a,k'+a, )],

(2.12)

where the coefficients a„a, , and a0 are given
by

ai = ihdtki+2m'+2evx kti,

a =$4(~Z'+ i-oe'X)

+P(aeimi+ —,'hami+ v'ei+Aevx kII)

+m'+2m'evxP -e'(v ktk)',

a, = kIk'(~ki A.'ne') +kIk'(-', oe'm'a+ ~Be'v'x)

+p'[ae'm'+v'e'm'+ —,'A(pxv)'e'] .

It is now possible to evaluate (2.12) by introducing
a cutoff at k' =A' and dropping terms which vanish
for large A'.

Vk(4) = i [(s"0 +3e 0 )ii

+ [p (-zi e4 -gp~+ &oe'g) + p(aeim' ——', A m') ——', Ae (vx p)p' —2m'e vx p] lnA'

-e'(vx Q)' Ine vx Q + —,'e'(vx
kII

}'+z e'Q' lne'p —k e'ktk'

+4(r, 'lnr, +r~ Inri +ri'Inr~') —d(r, +ri +r, )}. (2.13)
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Here the p, are roots of the cubic polynomial in
k' appearing in (2.12); we shall not compute them
because of the tedium involved.

Renormalization is achieved by combining the
counterterms in (2.6) with the cutoff-dependent
parts of (2.13). With the identification

—,'Bm' =,[(3e'+ —',X)A'+ (oe'm 'i- —,
' m'X)(in A') ],

(--,' e' —~A.'+ ~me'A. ) lnA'
41 (2.14)

RUE ecayvy 2 lnA
7r'

the one-loop approximation to the effective poten-
tial is completely renormalized and defined up to
an arbitrary finite polynomial.

In the limit m =0, v, =0, the calculation is in
agreement with the result for a massless theory
in Lorentz gauges. Another interesting limit is
A =0 and m =0 (recall that A is conventionally of
order e'). In that case (2.13) simplifies enormous-
ly. We find apart from polynomials in Q',

present even when m'&0, where there is no known
mechanism for symmetry breaking. Furthermore,
(2.18) would imply a gauge-dependent mass for the
vector meson. Note also P, in (2.18) points in a
direction perpendicular to the usual symmetry-
breaking one, (2.17). Presumably the unphysical
solution is absent in the complete effective poten-
tial, and an explicit expression for V is needed
for further analysis.

Computations of effective potentials for field
theories at finite temperature ' make use of sta-
tistical methods which are readily applicable only
to physical quantities. The gauge dependence of V
frustrates such calculations.

There is a need to eliminate the confusion of
multiple, gauge-dependent zeros in (2.16}. Also
it is desirable to define an effective potential
whose physical content is transparent. Conse-
quently, we are led to a consideration of the uni-
tary Lagrangian which appears to satisfy all re-
quirements.

III. THE UNITARY CALCULATION

V, (Q) =,e'/~lug'. (2.15)
A. Definition of the unitary theory

B. Gauge dependence and symmetry breaking

The effective potential in the g
&

gauge is gauge-
dependent in zeroth order [see (2.6)]. There are
now several solutions of BV(Q)/B$, =0 in the tree
approximation. From (2.6) it follows that

= m'P, +-$,$'+—v, (v P) . (2.16}

(We have deleted the counterterms, as they are
irrelevant. ) In addition to the symmetric minimum
at (t), =0, the above expression possesses the usual
symmetry-breaking minimum for negative m':

=E V(—
)

(2.17)

It is remarkable that, all gauge dependence has dis-
appeared to this order (For g.auges which do not
require ghost-compensating the same phenomenon
has already been observed. ')

Conventionally the unitary Lagrangian is ob-
tained as a limit of-the g &

Lagrangian. It thus ap-
pears that this limit corresponds to a specific
albeit singular choice of gauge —hence the nomen-
clature "unitary gauge. " We propose that the uni-
tary Lagrangian is not merely a choice of gauge;
rather it is the unique description of the physical
dynamics of the system from which the gauge de-
grees of freedom have been removed by a func-
tional integration. ' Therefore the effective poten-
tial for the physical system is properly computed
from the unitary Lagrangian, Z~.

To substantiate our point of view, we show that
for any choice of gauge we can arrive at Zv by a
change of variables and an elimination of the gauge
degrees of freedom. This procedure may be ef-
fected for the symmetric theory as well as for a
spontaneously broken theory. We begin by repre-
senting the vacuum expectation value of a physical
(gauge-invariant} quantity by a Feynman-path in-
tegral.

ve
a (v2)l /2 (S) = J d g.dA" Fe"'"" (3.1)

P, = v", [-(6/A)(m '+ v'/o. )]'". (2.18)

Clearly this solution is unphysical. It may be

This corresponds, in the familiar fashion, to a
vector-meson mass g„' = -6e'm'/X .

However, for (v'/a) + m'& 0, we also find that
BVo($)/Bp, vanishes for

Here E is the gauge-invariant quantity of interest
and I is the complete action, i.e., the classical
gauge-invariant action I, plus the gauge-determin-
ing and -compensating part I . I~ is a functional of
the fields P, and A]'; its form defines the gauge.
I is arbitrary except that I„ the gauge transform
of I~, is normalized by



2908 L. DOLAN AND R. JACKIW

d8 exp —Ie =1 .

Let us now change variables in (3.1):

Q, =pcos8,

Q, = psin8,

(3.2)

(s.s)

tained, for any choice of gauge, from (3.4b); it is

Z~ =-&F F""+28 pe"p -—m2p ——p
1 p 1 22 ~ 4

U tIV P 2

. 'B'P'+ g*p(l) .

B. Computation from the unitary Lagrangian

This is not a gauge transformation, but a change

of variables in the functional integral. [In a gauge

where (t), and A' are canonical coordinates, (3.3)
defines h change of canonical coordinates to p, 8,
and B'. Hence it is a canonical transformation. "]
However, since the form of Eq. (3.3} is similar to
that of a gauge transform, we know that the trans-
formed F andI, are independent of 8, while I~ be-
comes Ie. Since (3.3) is not a gauge transforma-
tion, the Jacobian is not unity, but rather

The renormalized effective potential is found as
usual by shifting p- p + p, to 0(K) keeping only
quadratic terms, and performing the appropriate
functional integral ":

m2+Sn2 ~+OX " d4&
Ve(P) =

2
P'+

4&
p +iK,2,~1np

(2s
41 ndet[(-k 2+'ep')g„„+k„k]

4
k' — ' —))') +0 (Ir ') .

d4), dA)'=Detpd pd8dB".

Thus (3.1) becomes

()') = JDe(Pdpd8dB~)'exp —((,+(8)

(3.4a)
(3.6a)

The first two integrals above, the ghost and photon

contributions, combine and thereby eliminate a
poss'ible quartic divergence. The result of an ele-
mentary calculation is

dg~dgd pdB" F exp —(I, +(j)*pg) . (3.4b)

We have used the normalization condition (3.2) and

have represented the functional determinant Detp

by a ghost field action fd4xg*(x)p(x)g(x) (Mor.e

precisely we consider matrix elements (F) in the
charge-zero sector of the theory. Then F in (3.1)
is explicitly gauge-invariant and the steps from

(3.1) to (3.4) are manifestly valid. In sectors with

nonzero charge, physical quantities, to be sure,
are gauge-independent. However, they are corn-

puted from matrix elements of charge-bearing op-
erators which are not gauge-invariant. We do not

wish to enter here upon the question of whether or
not it is possible to represent all physical quan-

tities with gauge-invariant operators. A related
point is that whereas (3.3) can be a canonical
transformation, the removal of the 8 degrees of

freedom by the functional integration (3.2) is not

equivalent to a canonical transformation. The
charge density operator involves IIe, the momen-

tum conjugate to 8, as is seen from the commuta-
tion relation

i[11 (x),p(y)e" "'].. . =i[II (x),4), (y) yi(t), (y)],

=~ip(x)e "e"t)'(x -y)
= a i[/, (x)sip, (x)]5'(x-y).

The removal of the 8 degrees of freedom thus im-
plies the removal of the charge operator. )

The unitary unrenormalized Lagrangian is ob-

2

+64, 3e p ln —,
64m2 m'

+m+ —p ln1+—A. p
2 m2

(s.6b)

The mass counterterm has been determined in

(3.6b) by the requirement O'V„(P)/SP'~&, = m';
X is a finite quantity which cannot be determined
because of infrared divergences. The computation

is especially simple since the procedure of chang-

ing variables, (3.3), eliminates a trilinear inter-
action between the vector-meson and the scalar
particles. We note the important result Vgp} to

0(K} is renormalizable.
The coefficients of the logarithmic expressions

in (3.6b) reflect the number of degrees of freedom
available to the respective particles multiplied by
the square of the induced mass: 3 times e4p4 for
the vector-meson and 1 times (m'+2Ap')' for the

scalar particle. Observe that in the m' =0 limit the
X2-dependent logarithm enters with a different co-
efficient from the corresponding Lorentz-gauge
expression. ' The reason for this is that in the

Lorentz gauge there are two bosons with effective
masses & A.Q' and, A.jb', while in the unitary La-
grangian there is only one boson, with mass 2Ap'.

It is gratifying that to 0 (II} the unitary effective
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potential has properties which simply correspond
to the physical states.

C. Computation from the 8& Lagrangian

Although we have arrived at a renormalizable
answer for VU directly from Z~, this was achieved
in a rather singular fashion: A quartic divergence
was eliminated by a cancellation of the ghost con-
tribution against a portion of the photon contribu-
tion in (3.6a). It is desirable, therefore, to eval-
uate V~ with the help of regulators.

A convenient regularization of the unitary theory
is provided by our R& gauge. (We take the point of
view that this procedure defines a regularization
of the unitary Lagrangian, rather than a choice of
gauge. ) Conventionally2 the unitary theory is ob-
tained by rescaling v in (2.2) and (2.3) to vn, and

by letting a-~. However, this is by no means the
only possible limiting procedure. One can rescale
v to vn'" '; the unitary Lagrangian is obtained as
n-~, provided c )0. Alternatively we may re-
scale v to vP and let P- ~, with n fixed. In estab-
lishing that these limits yield the unitary theory,

the following formulas are used:

lim (1 —i)a'(2x) ' exp —(y+ {2"''x) = {}(x),
OI~ 00 Q

e )0 (3.7)

lim (I -i)il(2vu) 2~2exp —(y+ Px)' = 5(x).
8-+ oo

We now show that when the above limiting pro-
cedures are applied to Vcalculatedin the R&

gauge, then Vv as given in (3.6b) always emerges,
provided the limit is taken at fixed cutoff, i.e., be-
fore the momentum integration is performed.
When the limit is taken after the divergent inte-
grals are evaluated, we find that Vtends to V~
+ Vx, where Vx is not well defined: It is infinite
and the form of the infinity depends on the various
possible limiting procedures.

To study the unitary limit, first note that v

should be set to zero, since field components
parallel to v decouple from the theory. Thus, we
may replace vx P by v&f&, and (2.12) becomes

V(d)=, f dk'k'{-2l (k'+ 3) 31 (k' e'3 )
0

+ ln(k '+ m'+ —2'A (1)')[(k'+ ev{t)}'+(k'+ ne'P')(m'+ —', l{$')j ) . (3.6)

Comparing this with (3.6}, we see that the above may be written as

where V, v(Q) is the unrenormalized O(I) contribution to Vv of (3.6b) and

(3.9)

V (3)= 2, f dk'k'{-21 (k'+ 3)+) [(k'+e 3)'+(k'+ e 3')( '
—,'lk )))

0

(3.10)

If we pass to the limit in (3.10) before the inte-
gral is evaluated, then Vx vanishes. This is seenby
noting that, regardless of the precise limiting pro-
cedure, e'v'P always dominates (k'+ ae'P')
x (m2+ZP/k}. Hence

Thus V- VU at fixed cutoff.
However, if first the integration is performed

with a cutoff and terms that vanish as the cutoff
goes to infinity are dropped, we find, apart from
a cutoff-dependent quartic polynomial in P, that

(k'+ {re2P}(m2+—', XP)
(k2 P)2

-ln1 =0 .

2

Vx(p}= (ev(({)p, —2(2e~pp'+ —,'p )In@+(2'e'n'{t) +ev(f)p—2ae +{2'+, —,'p )ln 1+

+ABln
A —B

A= eve+ —2'p, ', B= (ev{t)g' —ae'Pi{,'+ —,'p')'~', -m + —'A. P (3.11)
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This diverges as the unitary limit is taken; more-
over, the form of the divergence depends on the
nature of the limiting procedure. Nevertheless,
there always exist contributions which are not

polynomials in P, e.g. , the first term in (3.11).

D. Discussion

We have arrived at two expressions for the ef-
fective unitary potential: VU calculated directly
from S~, and V~+ V~ obtained by regulating. VU

is renormalizable; Vx is ill-defined. There are
two obstacles which prevent one from deciding in

the present context which of the two results is
more useful. First, our calculation is approxi-
mate; the effect of higher orders can make the

two approaches compatible. Second, the effective
potential is not directly related to a measurable

quantity, and only measurable objects need be
described by a finite and unambiguous formula in

the unitary theory.
It must be remembered that Z~ is not renormal-

izable, eventhough physical quantities are well de-
fined. This has the consequence that a physically
relevant calculation may require the inclusion of

higher perturbative orders which are emphasized

by the singular nature of the theory. On the other
hand, in a calculation from the R& Lagrangian,
higher orders can be safely ignored, since the the-
ory is renormalizable, but the unitary limit is in

general ill-defined. For a physical quantity, how-

ever, once it is extracted from the complete ef-
fective potential, the limit should exist. In this
connection it is reassuring that the parts of VX

which become infinite are all v- or n-dependent;
such a dependence cannot occur in a measurable
quantity.

Thus we conclude that in any practical calcula-
tion which is performed directly from V~ higher
orders must be assessed to ensure that they do

not affect the answer, while in a $-regulated cal-
culation, the physically relevant portion must be
extracted before regulators are sent to their
limits. For example, in the Coleman-Weinberg
model, ' where m' is set to zero and A. is neglected
compared to e', then to order e~ VX can be ignored
and a unique effective potential is obtained. In a
forthcoming paper devoted to finite temperature
effects, ' we shall show how a well-defined critical
temperature can be extracted from VU+ Vx, even
when m'c0 and A. is not ignored compared to e'.

IV. CONCLUSION

Spontaneous symmetry breaking in a gauge theo-
ry is presumably a gauge-invariant phenomenon,
which can be observed in any gauge. Nevertheless,
it is useful to develop a gauge-invariant procedure

for establishing the existence of nonsymmetric
solutions. We believe that we have given such a
procedure by insisting that calculations of the ef-
fective potential be performed from the unitary
Lagrangian. Additional advantages which emer ge
are (1) a clear physical interpretation can be
given, and (2) the computation is simpler than in

any of the conventional gauges. This latter point
will be especially salient when the two-loop cal-
culation is performed. " The need for this further
approximation derives from our ignorance about

the properties of the effective potential for the
unitary Lagrangian in higher orders.
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APPENDIX: THE EFFECTIVE POTENTIAL
IN QUANTUM MECHANICS

Ordinary quantum mechanics, i.e., potential
theory, may be viewed as a field theory in one
dimension —time. The "field" is just the position
operator q(t). (We consider quantum mechanics
in only one spatial dimension; hence there is only
one "field. ") The formalism for the effective po-
tential may be developed in complete analogy with

the field-theoretic discussion. Everything is con-
vergent and simple. All momentum integrals now

involve a one-dimensional energy integration.
Let us consider a Lagrangian

L = -,'mq '(t) —U(q(t)), (A1)

with U(q) = U(-q), and assume that a normalizable
state ~0) of lowest energy exists Parity . is a sym-
metry of the theory, and we may inquire whether
this symmetry can be spontaneously violated, so
that

(0~q(0) ~0) e 0 . (A2)

V(q) = U(q)+O(n) . (A3)

When U'(q) = 0 for q wO, it might be concluded

The answer is well known: No normalizable energy
eigenstate is degenerate, hence spontaneous sym-
metry breaking does not occur. (Even non-nor-
malizable states are not degenerate, provided the
wave function vanishes when its position argument
is +~ or -~.)

It is now clear that if U has minima away from
the origin, the tree approximation to the effective
potential gives erroneous results about symmetry
breaking. " We have, to zero order in h
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U 11
(q) 1/2

= U(q)+ — —ie + O()I') .
2 m

(A4)

Let us suppose that U(+~) =~ so that all energy
states are discrete and normalizable, and no un-
stable states exist in the theory. Further, let us
assume that the origin is a maximum: U"(0) &0.
The anharmonic oscillator with imaginary fre-
quency is an explicit example,

U(q) =--'m(u'q'+ —q' .
4 t

~

From the general theory it follows that V"(0) is
the inverse propagator (times i) at z-ero energy.
We now show that V"(0)&0; hence V "(0) cannot be
approximated by U "(0}. In the present context the

propagator is defined by

wrongly that spontaneous parity violation occurs.
Regardless of any minima of U(q), one knows a
Priori that the correct solution is the symmetric
one. [Since Uis symmetric, U'(0} always van-
ishes, provided it exists. ] Even if the origin is a
maximum of U, rather than a minimum, one must
choose the symmetric theory.

Difficulties are compounded when the potential
is computed to order 5:

ik dE
V(g) = U(q} —— —ln[mE' —U"(q)+ie J+O(ft')

2 2r

(A4). Upon differentiating (A4) and remembering
that U"(0)=0, due to the symmetry of U, one finds

[tD(0)]-'= v "(o)

gU lie (P)—U (0)+
4[ „(p) ]$/z+0(5 ) ~

(AS)

We have assumed the origin to be a maximum,
U "(0)c O.

l
Equation (AS) is negative in lowest or-

der and~purely imaginary in order f, in com-
plete disagreement with the general result (A7).

It must be concluded that an expansion in powers
of 5 for the effective potential is entirely unreliable
in a wide class of quantum-mechanical examples.
One may begin to understand the reason for the
problems if the computation is carried out to or-
der I'. Using the techniques previously described,
as well as the explicit computation to order 0' in
a XP' field theory, ' it is easy to arrive at the
analogous answer in the present context. We find

a U" (q)v(q) = U(q)+—
2 m

-SE

k d
[UII( )] 7/9 [Ull( )]7/9

224 m dq'

+O(a') . (A9)
D(E) = dt e'e' "(pl Tq(t)q(0)lo&

At zero energy this is also given by

D(0) = 2 dt (pl q(t)q(0) l 0&

0

(A5a)

(A5b)

For the specific example of the anharmonic oscil-
lator, this becomes

mw q A. „4 jg
V(q)= — + —q + — -v + q2 4t 2 2m

D(0) =2+ dt exp —(E —E„)t l(olq(0) ln&l'
n ~0

. ](olq(0)ln&]'. (AS)

Since (Olq(0)lo& =0, the ground state does not con-
tribute to (AS). Also, the first excited state is
separated from(the ground state, hence there is
no singularity in the denominator and the ie may
be dropped. We conclude therefore that

iD(o)=2 g l&olq(0)IN&I'&0 .
n&0 n 0

(A7)

Hence -i times the inverse propagator at zero
energy must be real and positive. Consequently,
V "(0}& 0, and tne correct physical theory corre-
sponds to a minimum of V, though not necessarily
to a minimum of U."

Let us now compute [iD(0)] ' to order 5 from

where time translation invariance is used to arrive
at (A5b). Inserting a complete set of states in (A5b),
we further find

32m' [-v'+(1/2m)q']' 18 m

+O(R') . (Alp)

v(q) =&ylrflq&,

5&l(lalg& =o,

&elq(0)le& =q .

(All)

Clearly V(q) is real, according to (All). Examin-
ing (Alp), we see that reality is obtained only for
q'&2muP/a. Consequently, if the series (Alo) is
an accurate representation for V(q), this can only
be true for q'&2muP/P. . As q approaches (2muP/
A. )'/' from above, the third term in the series be-
comes infinite, and obviously the series cannot be

According to Symanzik, "V(q) has a direct
physical significance: V(q) is given by the station-
ary value of the Hamiltonian in a state lg& which is
normalized to unity and for which (glq(0)lg& is
fixed at q:
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a correct representation for V(q). Therefore
the loop expansion can only be valid for large q.
[Note that when U is O(q") for large q, the ratio
of successive terms in (A9) is 0(q "~'~ '). This
makes it plausible that the series correctly rep-
resents V(q) for large q. j The small-q behavior
is improperly represented by the series. Not only
does one obtain a complex value for V(q), but also
the series indicates that the origin is a maximum,
whereas general principles force it to be a mini-
mum. [When all bubble graphs' contributing to
V(q) are summed, one finds that the series (A10)
converges for (X/2m)q' —&u'& 4 (k' 'X' '/m). ]

The purpose of this discussion is to exhibit the
inapplicability of the loop expansion for the effec-
tive potential in a familiar context. No definite
lesson for quantum field theory in four dimensions
can be drawn from this exercise, other than a gen-
eral caveat. The field theory, because of its de-
pendence on continuous spatial parameters, as
well as time, is radically different from potential
theory. In particular one expects that a symmetry
can be violated spontaneously. Whether or not the
loop expansion for the effective potential is a re-
liable tool for the study of this phenomenon in field
theory is an open question.
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