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Generalized recoil theorem for soft quantum emission including photon-pair
correlations to infinite order in the coupling constant
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A generalized recoil theorem to arbitrary order in the coupling constant including photon-
pair correlations is derived. The corresponding factorizable (because of pair effects not
completely exponentiable) radiative transition rate is valid for an arbitrary process with
arbitrarily many particles of arbitrary charge and mass. The theorem is first derived for
spinless source particles and then generalized to particles with spin.

I. INTRODUCTION

First-order recoil effects to arbitrary order in
the coupling constant including photon-pair corre-
lations are evaluated. Recoil here means correc-
tions to the soft (eikonal} approximation, which is
known to lead to a perfectly exponentiable result.
Due to the pair effects this exponentiation is not
obtainable for the recoil process, although it is
still factorizable and has a very convenient form.
The technique is here developed within the frame-
work of scalar electrodynamics and quantum elec-
trodynamics (QED), but the application to other
types of interactions is straightforward. This is
because nowhere in the derivation have we made
use of the smallness of the electromagnetic (em)
coupling constant. The theorem is generalized to
a process with arbitrarily many particles of arbi-
trary mass, charge, and spin. Before going into
the detailed calculation, let us first review some
earlier work on this topic.

The Low theorem was established for processes
in which one soft photon is emitted. ' It was further
developed by Burnett and Kroll' and Bell and Van
Royen. ' By the use of charge conservation, and an
assumption that the internal radiation amplitudes
are nonsingular, the theorem gives the form of the
recoil term g, in the series expansion of the radia-
tive differential cross section:

~ 0 &e P&4 Papj„(k)=
( )~, e( —k, ) (1.2)

and a recoil term of order k'. Here & is the energy
cutoff introduced to distinguish between hard and
soft photons. It is introduced purely for calcula-
tional reasons, because the hard spectrum cannot

do' ~o + 0'g +0'2k0+ ' ' ',
0 0

where k0 is the photon energy. The term g, comes
from the interference between a term of order k ',
i.e., the usual soft-photon current4

be calculated to infinite order. The actual value
to be used for & is determined by the desired ac-
curacy of the calculation. p, and k are the four-
momenta of the accelerated charged particle and
the emitted soft photon, respectively. Primed
variables refer to outgoing massive particles. If
T is the matrix element for an arbitrary nonradia-
tive process, then from Feynman rules with a soft
approximation, the radiative matrix element with
one emitted soft photon is found to be

e"j '„(k)T,
where e" is the photon polarization vector. It
should be mentioned that the cutoff e in (1.2) could
equally well be introduced in the spatial photon
momentum. The same contribution is obtained
also from the virtual soft photon when the photon
energy integration is performed, only that this
contribution has the opposite sign compared with
the cross section from the real photons. ' Virtual
plus real soft corrections then in fact give no con-
tribution if it were not for the fact that k0 „ for
the hard photons, which depends on the energy E
of the outgoing charged particle, sometimes be-
comes less than c. One finds that when E tends to
its maximum value, k, goes to zero (see, e.g.,
Ref. 6)

lim k, (E}=0 .
E &max

(1.4)

Integrating (1.1) one then finds

min; k,o(}r}=o}c '
I

e recoil (1.5)

which appearently diverges. in the limit (1.4). This
is the only infrared divergence which survives
when virtual and real corrections are added and it
is entirely caused by the kinematical condition
(1.4). (We investigated this in Ref. 6, which was
later corrected by Ross. ') This is the point where
the perturbation expansion breaks down and we
must sum up diagrams to all orders in the coupling
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where Uis the Weyl operator

U(j ) —etio) , (io-~)
0 (1.7)

and a~ and a are the creation and annihilation op-
erators for the photon field. Summing over all
such diagrams to infinite order, where the gth or-
der is essentially proportional, to e"k ", the soft
radiative matrix element is then given by the fac-
torized expression

M= le jv) T. (1.8}

It is only in this soft corner of momentum space
that we have got an exact radiative S matrix, in
exact correspondence cvith the soft interacting
Hamiltonian. The latter is obtained by a soft cut-
off & for the spatial photon momenta in

Xl = e: fy"g: Ap =j "Ap . (1 9)

In passing we notice that the result (1.8) also ob-
tains when the operator current in (1.9) is replaced
by the classical particle trajectory, ~ the c-number
current

jp(x) = e Jt
u„'6'(x x'(T)—)dr,

dxp
d

(1.10)

The soft limit is therefore essentially a classical
limit where the concept of a particle for the em
field, i.e., the photon, is hardly a meaningful con-
cept. To understand how quantum effects enter we

start from this exponentiable limit and derive the
recoil to infinite order in the coupling constant
(nth order is proportional to e" k ""); a combina
tion of infinite summation methods for soft quanta

constant. The corresponding multiphoton states
are most comfortably handled by the use of coher-
ent states'

(1.6}

II. RADIATIVE MATRIX ELEMENT FOR TWO
SPIN-ZERO PARTICLES

The scattering of two spin-zero particles (Fig.
1) when particle one carries the charge e and mo-

p
I

k.
j)

k,
Jp

k
~

and Low's recoil theorem for one soft quantum. ~

During-the performance of this generalization,
the full result of which is here going to be pre-
sented, we guessed part of it. In order to derive
the energy loss spectrum we simply inserted j'
-j +7""'"in(1.8) according to Low's result. s Ne-
glecting pair effects that simple recipe holds
when charged particles are spinless, whereas for
particles with spin magnetic terms appear in the
amplitude. In Ref. 8 it was assumed that all mag-
netic terms vanish in the spin-averaged transition
rate. However, this is only true for the anomalous
terms. The regular magnetic terms are Precisely
needed to obtain the same transition rate as in the

spinless case. For the sake of simplicity, let us
here assume that the virtual recoil effects are in-
cluded in the core matrix. Once having obtained
the technical clue, this can then be used for virtual
corrections. It can also be used for improvements
on the relativistic eikonal model. ' Clearly, in
strong interactions, where the coupling constant
is large, pair effects will become more important.
The situation will of course be much more compli-
cated because of isospin and unitary spin, but on

the other hand we cannot avoid an investigation of
recoil terms if we want to understand the differ-
ence between a field theory with infraparticles and

one with a mass gap.

&n

kj

P)

k
&r+ a

p +k + ~ +k. fors&r
I

J j
X

pt
—k. —-. —k. for s &r

r+I s

FIG. 1. The mutual scattering of two spin-zero
particles by an arbitrary scattering mechanism. Parti-
cle one carries the charge e and particle two is neutral.

FIG. 2. The same process as in Fig. 1 but now with

n emitted photons.



2896 LEIF MATSBON

mentum p„and particle two is neutral and has
momentum p„ is first considered. The masses of
the two particles are m, and m„respectively.
For an arbitrary scattering mechanism, if no
photons are emitted, the scattering matrix ele-
ment T depends on two variables, essentially the
square of their total energy, s, and the scatter-
ing angle t:

Pl ~2 ~1 P2 (2.1)

k.

I =(O'-P. }' . (2.2)

We then let n soft photons with momenta k„k„.. . ,
k„and polarizations e„e„.. . , e„be emitted in
this process. Let r photons be attached to the out-
going external charged particle leg and n —x pho-
tons to the corresponding ingoing leg (Figs. 2 and

3), with rising photon index towards the vertex.
For the radiative matrix element we then get

FIG. 3. A typical "seagull" diagram with n emitted
photons.

X

~ ~

2!p -k —"-k )P1P i(v +11 ~Pl 4y+1 &n-1 ~g(n)
~ ~ ~

-P ~ k. -2P ~ (k. + ~ ~ ~ +k )+(k + ~ ~ ~ +k )3
&r+1 1 Jf +1 ~r+1 &n

-r 1 I IP
( )(k-r ((1( . . . J(&-k) J'(S) P(k+1k P&( j(r )

P,''kk ''(Pk +k+k...)P,' (k,. + +k,. ( P,' (kk+ +kq ))
~ ~ ~ ~ ~ ~
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~

~ ~

~ ~ ~

~1Pq(„+1) ~1&j(n )

n -1 I

~

~ ~

~ ~ ~ ~

~»i(1) .. . "i(y )

P,' k,. p,' (ki + +k,. ))il

~11&(„~l) P1P&( 1) Eu.f(&) S( S+1)

x (p,'+k, , + +k, ;p,' ~(T ~p, —
k& „— —k, ;p, ) e,"'e,"' e„"" .r'

~»&(n)
P ~ (k& „+ +k,. )) I

(2.3)

We let D(P; q) denote the set of all Permutations II(jp ~ ~ j, ). Then clearly II(j, ~ j„)should run through
the set D(1; n) of all n! permutations among the s photons. The seagull terms, corresponding to Fig. 3,
shall be summed over all permutations 0' of the factor set D'.

D'(1; n) = D(1; n}//D(s; s+ 1) . (2.4)

As is well known from the soft approximation is simply to count terms essentially of order e"k ". After
some straightforward algebraical work, omitting polarization vectors, (2.3) then factorizes to

Mkt', ~ „=(' )" g (—1)"', ' lI ' p,'+ f k„p,' T p, — Q k„p,)r=o + 5=1 ~1 / E=r-1 Pl t S=l S=r+1

where as well the k dependence in the T matrix could be dropped. The factor ("„) comes from the number of
permutations in the factor set

D, =[D(l; n)/D(1; r)] /D(r +1;yg), (2.6}

where we have already summed over the r! permutations on the outgoing side and the (n —r)! permutations
on the ingoing side. Summing over r in (2.5) and neglecting recoil in the T matrix we obtain the formula
(3.6}.

The main purpose of this work is to evaluate the recoil effects in (2.3), which is the collection of all terms
M**~'~ of essential order e"k "". Thus from (2.3) we get
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M ~'~ = M*&
'& +M**~ ~

where M** » partially factorizes to

(2.7)

n n

Mh'.".'. .„=(te)" 'Q Qx~. ~ (p- )"" Q ]$ p, .'~' II .~" &p"p2lilp. pa&

l «s, t l «s, t

and the tensor is the pair-correlation current

with

1 t Pl ut t"s Pl usPlutk', k
+usut

(2 9)

(2.9)

(2.10)

Df' is the factor set D,/Ii„where the two s and t quanta are already permuted. The form of (2.9) follows
from a first-order expansion of (2.3}, and is proved by induction. The binomial theorem then gives

II I

s&t l=l . 1 l Pl l
l «s, t

which is gauge-invariant since

k, yu, ut =0 for j=s, t .u~

We now turn to the k dependence in the T matrices (2.5), which also give rise to recoil effects.

(2.11)

(2.12}

III. EXPANSION OF THE T MATRICES

The T matrices in (2.5) conserve energy and momentum but not mass for particle one. They will there
fore depend on the squares of the initial and final masses M, ' and M,", and of course also on s and t. In
the case of (2.5) they are

yl= Ml =Ml +2p' k,.
s=

(3.1)

y2=—M, =m, —2P, k,.
s=r 1

(3.2)

y =~*=Pl P.+p,'P.'+P,' k -P.
s=1 s =r+1

y4 = t= (p,' —p, )' . -
(3.3)

(3 4)

(3.5)

We assume that the T matrices are analytic in all these four variables, and can then expand them into
power series around k& =0. To the order e"k ""we then have

+ ~(»SF' u u JT
u u

kL u u

where N» is of essential order e"k " and given by

(3.6)

This is just (2.5) after summation over r, if recoil is neglected in the T matrix. The correction term
p&'~ is of the order e"k ""and given by

I

x T,kp,' k, —T, kp, L k,. k pp, '
k& p, g, k&,}-

l =r+1 =1 l =r+1
(3.7)

Tl T2 and T3 are the first -order partial derivatives with respect to yl y2, and y~.
There are („") elements in D, for a given r Let us fix .one arbitrary out of these II(j, j„)=II' and for

the corresponding term in (3.7) we get
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n pI

l =I Pl ~fl Pl ~f l =r+1 Pj. ~fl
l &s l &s

I

x T,2p~ '
k~

—T22p~' k~, + Ts p2 kq, -p2 k), . (3.8)

We then pick out that permutation II" which corresponds to that configuration, where the arbitrarily chosen
j,th photon in (3.8) is moved from the outgoing side to the ingoing

*I

)=.' Pi'&f Pi '&f l =r+i Pi '&f
l ~s l &s

n

x T,2p,' '
k~, —T2 2p, k, , +2p, kq + T~ p2 kq, -pa kq -p2 k, (3.9)

=1 l ~ l =r i
l &s l ass l ass

If we multiply (3.8) and (3.9) with k,. and add these expressions, we get
I

(ie)" [,[, k' ]I 'k (-1)" "[2p,' k,. T, +2p, ~ k,. T, +(p,' k& +p, k~ )T] .Pl gl l ~+1 Pl gl»s l &s

(3.10)

This is the part of N'~, which is projected out by k„. for a given r and given permutations II' and II". We
then again break out kf and sum over x, s, and II, where II now runs through the set Dy Dy is the same~s
as D, except that the j,th photon is missing. R ') is then obtained to be

R~',l. . . „„=(ie)" g, k
—

k 2p,'„,T, +2p», T, +,
k p,' k, +

k p, k, T, , (3.11)
l &s

where we have made use of the binomial theorem. Components proportional to p,'„and p» are absent in
(3.'I) and therefore also in (3.11).

E|luation (3.10) is nonvanishing and accordingly M '~ given by (2.7) is not gauge-invariant. We therefore
must add a correction M(2), which is the amplitude for radiative processes when not all photons are emitted
from external particles (Fig. 4). This could be understood as follows:

The current given by (3.11) is not conserved. Because of charge conservation it must therefore exist a,
certain leakage somewhere. All processes, where every photon is emitted or absorbed before or after the
scattering, are counted. The leakage must therefore take place during the time of interaction. In the "in-
teraction-bubble" (Fig. 4), symbolically denoted by T, we do not know how matter and charge distribute or
propagate etc. Thus radiation emitted from this state of excitation cannot directly be expressed in propa-
gators and vertices. The corresponding leakage current is denoted by M&'&.

The total matrix element is

—Art(~) + A,rt(2)Mpi. "pn-Mp i ~ i pn+irfp i ~ i pn1 j. (3.12)

Since the over-all current is conserved, for an
arbitrary s such that 1 & s & n, we have k.

(3.13}

from which we get that M ' and N'~ are related
by

k"f(')M( ) = -4j'f( )
f s jfj ~ ~ o jfn fs pj ~ ~ &n

j'f(s) Mg(1)
fs Pl ~ ~ ~ Pn

=-u f()R"'
s Pl ~ ~ ~ jfn (3.14}

However, in order to derive the j,th component of
M('), which appears when we know how to break kf
out of (3.14), we must further conjecture

k ~

jn

k ~

&r+s+

k.
jr+ j

FIG. 4. A typical diagram with "internal" radiation.
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(i) M'~ contains no charged one-particle propagator due to the j,th photon, and is accordingly nonsingu-
lar for vanishing k, This has proved to be true for a large number of diagrams, where internal closed-
loop integrations remove the j,th photon singularity.

Conjecture (i) directly excludes terms like (2.11) and (3.6} in M" and thus

(2)Np . . . un1

It further gives the j,th component of N'~ out of (3.14) and (3.10)

(3.15)

(3.16)

1 AS

(3.17)

(3.18)

The T, term in this is different from that in (3.11). Namely, the T, term projected out from the sum of
(3.8) and (3.9) by k& has the form

P, k, , k
P, k,

k Tp' k ' ~~ p k
&s 1 j6}

and provides two possible ways to break out k„: (3.11) and (3.17). The latter has no j, propagator be-
cause of (i}.

From (2.5), (2.7), (2.11), (3.5), (3.11), (3.12), and (3.17) the soft radiative matrix element, to the order
e"k ""is obtained to be

I
Plp7 PygmyM„,. . .q„= (ie)"

~ p' k p kPl l Pl

I I

&&s

I

+ Xj j, k„'k, Ze"' ' k k
s t.

s&t

(3.19)

Denoting the soft current (1.2) without normalization and cutoff by f ' and introducing an f" for the operative
recoil current, we get

Mvz ~ ~ ~ en= fbi(ki)+ fP,(k,) $'f q, (k, ) + y„,„,(k„k,) Qfp, (kg) T(s; &) .
) =I S=

(3.20)
s&t l &s, t

The generalization to arbitrary many particles of arbitrary charge and mass is straightforward.

Pp Pp

Pp

Pi

k.
& a(i)

P) Pi

Pi+ f

FIG. 5. A process with N particle legs.

PN

FIG. 6. A process with N particle legs and an arbitrary
number of photons.
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IV. GENERALIZATION TO ARBITRARILY MANY PARTICLES OF ARBITRARY MASS AND CHARGE

We first consider a process in which —,'N charged spin-zero particles are scattered by an arbitrary mech-
anism (Fig. 5). The corresponding nonradiative matrix element we denote by T, which as before we as-
sume to be an analytic function of the external momenta. The particles have masses m„m„. . . , m„and
charges Q„Q„.. . , (I)„. Thus, attaching n soft photons with momenta k„k, . . . , k„and polarizations
e„e„.. . , e„, we get for the radiative matrix element (Fig. 6)

a ~ (q & )i(i)) -a(i) 1+
Pl ~ ~ ~ Pn

b(v W &&D(1;n) t =1
(v=1, ~ ~ . , N)

P' "i«(i)& ~ i i ( i(o(i)) J(])(i) -&))]p&])(i)))j

P( k(((,.)) [2P, (k(((,.), + +k(( (,.)))+e, (k ((())+ + k ( (,.)
)'])

N br -1
(q.e )()(i)-a(i)+k Pi)' ( (') ' ' '~()'i(()(i))

r= s=a r) I]ED (1;n) 't =.. Pi 'k&i ( «&

' ' 'P ' k' +( )&+
' ' '+ k &b(i)&i&«

X(r pf(a(r)) ~ ~ ~ «&J(s-1) gl f(s) &j(s%) ' ' pr&i(b(r))

P k(e() P tk((()+ +k( )P (k( + +k' ) P (k + +k ))

Here, the sets of permutations D(1; n) and D'(1; n) are given in Sec. II. The e, is defined by

e,. =+1 (-1) if the ith particle is outgoing (ingoing) .

For the factorizable part corresponding to (2.5) we obtain

b( t) b(r)

M*„",.' . . „„=(ie)" g $ (a...) )-( II '""- r ,-p. Z;;.= , . .(., ),a
b vW HEDN & =a(i) pi j(i) t =a(r)

V 1 a ~ ~ ~ a N

(4 I)

(4.2)

where D„is the factor set

D„=D(1; n) [] D(a(i); 5(i))

Then collecting all terms of order e"k ""and proceeding exactly like in the previous case, the result is

~
n N

(
~ )a

' 'QieiPi]T))
i

+ie Q„c„' c„k, —e„ ie " ' T
l &s

ke, e, (k„' k, )((e)" '
[ [ (

' 'k' ') T. (4.3)

s&t l &s.t

In a first-order momentum approximation this gives
n

M" "" fl]f" )' +f"' k ]+ k" "' ()f '(O'
I

7''
t =1 =1

s&t ives, t

where the pair-correlation current is now defined by

(4.4)

Xu.] i =(ie)'
r =

and r denote the xth particle channel. Then like before we define

(4.5)

f ]((k) = ie (I);e;
t = t

and for the recoil current

(4.6)
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f "„tk)= ieg Q,.a, 'D, „(k), (4 I)

where the D's are the differential operators

D, IJ(k) =
Pi Pi pi &

(4.8)

The first term in (4.8) corresponds to the translation in momentum, p,. -p,. + e,. k, and the second is the
leakage current. In a first-order momentum approximation (3.20) equals (4.4), which is gauge-invariant
due to charge conservation g,",(I),.e, =0. Derivatives of T with respect to masses,

&( &)

y„=M„' =m„'+2m„p„g k.. .
t =a(r)

do not contribute. This is shown similar to Sec. III.

(4.9)

V. GENERALIZATION TO PARTICLES WITH SPIN

We here choose the case when the source particle has spin one-half and anomalous magnetic moment ~

and will everywhere indicate when some formulas are valid for arbitrary spin. According to the foregoing
it is no simplification to let all photons be emitted from one of the particle legs. The nth-»der matrix
element corresponding to (2.3}is then defined by

(y), (,)-)([y„„,), j(;„])(P,'+k, , +m)
Mp, '. . .„„=(ie)"

II(1 ~ ~ ~ ff)

(y(,(,) —)).[y( „.(,), $,,])(P",+ P,, + k,,+ m)

( r()„)- [y))()„),$, ])(p", + jf,, + ~ ~ ~ +P,. +m)

(5.1)

Straightforward algebraical calculations and iterated use of the spinor relations

u(p,')(p", —m) = 0

and

u(p)')y(, ,(p') + m) = u(p,')2p,'(,

leaves the following formula
P n

Max. ~ ~ s, ="(P)') f u((k()+ f u~(k, ) 0.f),(k, ) +ie, 'k [-,'-))(P",+m)] [ [f(„(k()
- t =1 s= Pl s

+ X(,(((k» k() f )„(k() v(pi~pa~pup2)u(p)) ~

=1 i =1
s&t t &s, t

(5.2)

where the currents are given in (4.5) to (4.8) with N=1. The operative part of the recoil current f" shall
here act only on p and not on the spinors. The form (5.2) is made gauge-invariant as before and is easily
proved by induction. Except for the magnetic terms

r(.&.= 2[r) „&,] = io(,.k", - (5.3)

it is identical to the result in the spinless case (3.20}. Covariance and gauge invariance implies that the
nonmagnetic part is valid for arbitrary spin. The transition rate we derive in two steps and we first dem-
onstrate that anomalous terms, proportional to X, in (5.1) do not contribute. It will do to study the sth

photon contribution, since the rest may for the moment be included in p.

M = ieu(p ') " " ' "" " ' v'u(p )e"'2P) -X[ )1 ](&'+m)
2p,' k, j.

From this we get a recoil (by use of the notation I' =yol'~y }

(5.4)
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)M, „~ = —
2 ', "

2 Tr{(p,'+m)&(p', +m)y f[p„),J(p'~+m)Spy

+ (p", +m)[$„$,](p", +m) v'(p', +m)P)

, Tr(y'(p", + m)ty'[f)„), ](p", +m) v'(p', +m)p

+ (p", + m) [g„p,](p,'+ m )v (p', + m) f') = 0 . (5.5)

This is because from p,' = (p,'„0)we have y'(p,'+m) & y'=(p", +m), and then (5.5) is always identically zero,
which follows from, covariance. It now remains to be demonstrated, the role of the non anomalous mag-

netic terms in (5.2) when it is squared and spin is summed over. For the moment we drop pair effects
and anomalous terms and the matrix element is then given by

M,~=((e) u(P')", ,'+'+ gz ',

& g,' „' + e. (),'(a.) P ~,' " r(P,') ((,) (5.6)

and the corresponding transition rate is proportional to

~M„, (
= 4, ,

' ' Tr[(P", +m)&(P, +m)F]4m;, p

e'"
~

p,' e, j p,' e, N, (e,(p", +m)K(p', +m)i (p", +m)g, P, t'(p', +m)q
4m ), P~ k, , ;, P,' k, 2Pj''k 2p,' k,

l wg

+4, ,
' ',' k' Tr,'+m e, D, k, &,+mp

m 1 =1 Pl l = — Pl

We then insert

+(p,'+m)v'(p, +m)[e, D, (k,)T]) . (5.7)

(p", +m)g„p, + jf,,g,(p,'+m) 2p,' e.).-2p,' k, g,
2p,' k, 2P,' k,

=e, D,(k, )(P,'+m)

which gives

IM+ I
=e'" fl( ', ') I)'I'+ e'" ]Q( ',

) ')g Q( ', )')e, D ( )I I'))
1&s

=e'" Q(p', q'} ff( ) q' +e, )), (a,))(l)'I

where T is defined by

IT]' = Ql&(px) &~(pi) I'

(5.8)

(5.9)

, Tr[(p", +m)v'(p', +m)q ] .1 (5.10)

Including also pair correlations we obtain

(M~( =e" jQ
' ' Q ', '+e, 'D (k, ) +2 g II ' ' e x(k;k, ) ~ e)

) i p( k( ~, i pi k( ',
, &=i', =x Px k(
S&t i AS, t

(5.11)

independent of spin. In the one-photon case this agrees with the result of Ref. 2. For simplicity we have

here dropped the cutoff functions and the normalization factors of the currents. The generalization to arbi-
trarily manyparticles of arbitrary mass and charge now follows trivially from the preceding section, Eqs.
(4.1)-(4.4}. As mentioned before the validity of (5.11) for arbitrary spin follows from covariance and

gauge invariance. (See also Ref. 8.)
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VI. SUMMARY

We have thus derived a generalized first-order recoil theorem for real soft quantum emission to infinite
order in the coupling constant, including pair-correlation effects. It is valid for any process with an arbi-
trary scattering mechanism and where the source particles have arbitrary mass, charge, and sPin, when

spin is averaged over. When polarized particles are studied the nonmagnetic part of the amplitude is al-
ways the same, whereas the spin part naturally varies with spin. Nowhere in our derivation have we used
the assumption that the coupling constant shall be small, and we therefore can apply this result to theories
with an arbitrarily large coupling constant. Straightforward generalization of (5.2) to a process with arbi-
trarily many (N) spin--,' particles with arbitrary mass and charge Q gives the soft radiative transition am-
plitude

n , n

+ g e, g(k, k, ) e, [][f'(k,) e, v'u(p ) .
s, t =1

l dies, ts&t

Ms ——u(pe) p[f (k, ) e, + f"(k,) e, IIf (k, ) e, + Q,
' ' —~ (p',. +I) f (k, ) e,

s= l=1 s 1-i=1 Pi 'ks 2 Q;
p&s »s

(6 1)

Here the spinors stand for the direct spinor products of ingoing and outgoing particles, respectively. For
spinless particles the magnetic term disappears and we obtain (3.20). In a process where the initial par-
ticles are unpolarized and where final spin is unobserved the transition rate follows from (5.11) and (6.1).
Defining f=f '+f" and summing over photon polarizations we obtain

M~ — 1 *
kl kl +2 y ksy kt

po i =1 l =1 =1 =1
s&t i&s. t

l ves, ts&t

With the densities

=(-1)" Q(f'(k, )~'+ g f (k() f'(kg) +2 g f' (k,) ~ y(k„' k, )f' (k, ) g[ (f'(k, )(' )T('. (6.2)
l =1 l =1 s, t =1 l =1

Eq. (6.2) is

)M,"~) =(-1)" Q6 (k, )+ Q6"(k, ) +2 Q f *(k,) ')((k, k, )f *(k,) Q 5 (kg) )T(
po - l =1 s, t =1 l =1

s&t l ves, t

(6.3)

where the first term is the well-known exponen-
tiable part.

The obtained result shows how correlation effects
modify the exponentiation. Still, however, it is
partially factorizable and explicitly obtainable to
infinite order in the coupling constant, and is
therefore in exact correspondence with the Lagran-
gian model in the soft corner of momentum space.
In a second paper we shall treat the complete an-
swer by including also virtual recoil effects in an
elastic nearly forward scattering process. Tech-
nically we have got the clue to this since the ap-
proximation in a certain infinite-momentum limit
is exactly the same. We are then able to study

how eikonalization' should be modified in an exact
treatment and not by selecting certain graphs. It
is also nice to notice the form invariance of the
result with respect to change of mass, charge, and

spin, which enables us to sum also over interme-
diate resonances of the charged particles.
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The effective potential is computed to order 5 in an Abelian gauge theory —scalar electrodynamics.
The calculation is performed first in the ghost-requiring R

&
gauges. The corresponding expression is

also derived from the unitary Lagrangian. We discuss the gauge dependence of the effective potential
and its minima in connection with spontaneous symmetry breakdown; and we interpret the unitary
computation to( be the physically relevant one.

I. INTRODUCTION

Minima in the field-theoretic effective potential
V indicate symmetry properties of solutions for
the theory. ' Unfortunately, an exact calculation of
V is rarely possible; often the best answer to be
had is the first few terms in a loop expansion. ' '
In general, one goes beyond the lowest tree ap-
proximation, so that effects due to accidental sym-
metries, ' finite temperature, ' or radiative cor-
rections s can be examined. However, any approxi-
mate calculation may be unreliable; it may exhibit
unphysical minima. (For example, we show in
the Appendix that in ordinary quantum mechanics
one frequently commits errors when the exact V
is approximated by a finite series since the series
does not converge in the region of the true mini-
mum. )

In gauge theories the effective potential is gauge-
dependent. '~ ~ This presents difficulty in assess-
ing the validity of any approximation to the com-
plete V, since the gauge dependence may create
false minima. Also, a direct physical interpre-
tation cannot be given to a gauge-dependent quan-
tity. Furthermore, it has been alleged that in
some gauges (the R

&
gauges ') V cannot be defined. '

In this paper we compute the effective potential
to order I for an Abelian gauge theory —scalar
electrodynamics. We show how even in the p

&

gauges a potential can be defined. The calculation
in this gauge is of additional interest as it involves
a treatment of ghost loops. The problems with
gauge dependence are vividly portrayed in our
calculation. In the p

&
gauge, V is already gauge-

dependent in the tree approximation and possesses
stationary points which do not correspond to physi-
cal solutions of the theory.

We suggest that the difficulty of the gauge depen-
dence may be resolved by considering the unitary
Lagrangian Z~ (frequently called the Lagrangian
in the unitary gauge). This unitary Lagrangian can
be obtained as the lixnit of the corresponding ob-
ject in the &

&
gauge. However, we shall argue

that S~ may be viewed not merely as a Lagrangian
in a special gauge, but also as the Lagrangian for
the theory when all gauge degrees of freedom have
been removed. ' The unitary Lagrangian reflects
the physical spectrum for its fields, and the ef-
fective potential V~ associated with it merits the
physical interpretation given by Symanzik. '

The danger with computations based on the uni-
tary Lagrangian is that they may not be renor- .


