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Method for proof of asymptotic theorems in presence of oscillations
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A simple method is derived which gives the asymptotic behavior of the forward scattering
amplitude directly on the physical cub without any restriction on the nature of oscillations.
Applications are given to high-energy theorems such as the Pomeranchuk theorems and con-
sequences deduced from unitarity. Using the phase representation and the method developed,
a number of results due to Khuri and Kinoshita, Jin and MacDowell, and Bessis and Kinoshita
are derived and improved.

I. INTRODUCTION

Within the framework of axiomatic field theory,
very little is known on the high-energy behavior
of the scattering amplitudes. As the energy tends
to infinity, because of the accumulation of branch
points corresponding to normal thresholds of pro-
duction processes, the presence of oscillations is
generally expected. This phenomenon makes it
difficult to study the asymptotic behavior of dis-
persion integrals which is needed in the proof of
the Pomeranchuk theorems for the difference of
particle-antiparticle total cross sections, the
differential cross sections, and also in the proof
of the asymptotic relation between the phase and

the modulus of the scattering amplitude.
There have been many treatments .of this problem

in the literature and widely different methods have
been used. The purpose of this paper is to give
a simple and elementary but nevertheless rigorous
method to handle the problem of oscillations; in

many cases it leads to more precise and general
results than those obtained previously.

Let us briefly review the situation of the proof
of the Pomeranchuk theorem, where the problem
of oscillations was first encountered. Since the
original publication of Pomeranchuk, ' there have
been many attempts to give a precise proof of
this theorem regardless of the nature of the oscil-
lations of the difference hp of the particle-anti-
particle total cross sections. '

The first rigorous proof is due to Weinberg'
who ~sr~ ~he properties of Herglotz functions to
show that the integral

J"dE'
, ao(E')&+~,E'

under the assumption that b,p does not change sign
for large enough energies (together with the usual
physical assumption that the ratio Rey'/ImF is
bounded). The case excluded by Weinberg's proof
is when b, p changes sign indefinitely; in this case,

because of the continuity of hp, it is clear that
~p must go through zero an infinite number of
times. Later Meiman' used a generalization of the
Phragmbn-Linde15f theorem to prove that the set
of limiting values of hp contains zero. Finally a
simple proof of the Pomeranchuk theorem under
slightly more general physical assumptions was
given by Martin. ' Martin's proof has the interest-
ing feature of implying some average constraint
on ~z. This was recently made more precise by
Truong and Lam, ' who showed from Martin' s
result that

1 EdE'lim, ao(E') =0;
lnE

hence they could make a statement about the as-
ymptotic density of zeros and generalized Wein-
berg's result when ~p changes sign indefinitely.
This method cannot however be used to study the
restriction due to unitarity in general. This led
Truong and Lam to introduce a method of averag-
ing to handle the oscillations directly on the phys-
ical cut. The drawback of this method is that
further assumptions must be made in order to
extract physical consequences. This weak point
will be eliminated in this article.

It turns out that the average method of Truong
and Lam after some modifications is especially
suitable for the phase representation. We shall
show that it gives asymptotic Regge-like relations
between the phase and the modulus of the forward
scattering amplitude, in the spirit of the work of
Sugawara and Tubis' and Jin and MacDowell' (see
also Gervais'}. It can also be used to derive in a
simple manner and to sharpen some of the results
given by Khuri and Kinoshita' "on the forward
crossing-even amplitude. The discussion of the
phase representation presented in this paper thus
serves the useful purpose of bridging the gap be-
tween the work of Jin and MacDowell and that
of Khuri and Kinoshita. ' " The Pomeranchuk the-
orem together with the restriction due to unitarity
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will be studied by a direct method which circum-
vents some drawback of the method of Truong and
Lam.

We would like to stress that the asymptotic the-
orems stated in the i.ntegral form given above
contain the maximum amount of information. To
make this clear, let us discuss this point further.

(i) If ho does not change sign, this condition
implies that lim~ „b,g =0, except on a set of points
of zero asymptotic density.

(ii) If Ao changes sign indefinitely, this condi-
tion shows to what extent the cancellation of oscil-
lations exists. As an exa.mple let us take Ao =C
+sin(lnx), with ~C~& 1. This integral condition
shows that C =0, which cannot be obtained by the
usual method (since the set of limiting values by
construction contains zeros).

The plan of this paper is organized as follows.
In Sec. II the problem of oscillations is reviewed.
Our analysis leads naturally to the average pro-
cedure of Sec. III, where the method of Truong
and Lam' is developed into a form which is useful
for the phase representation. In See. IV, the
physical consequences of the phase representation
are given. We give a simple demonstration of the
Jin-Martin lower bound which also gives the den-
sity of the set of points where this bound can pos-
sibly be violated. We also derive the most general
condition on the phase to get a generalized "Regge"
behavior of the Bessie-Kinoshita type" (which is
in our case a behavior in the physical region). As
a special case, our results lead naturally to those
of Gervais and Yndurain. ' " The connection with
the work of Kburi and Kinoshita and its generaliza-
tion are given in Sec. V. Section VI deals with the
direct proof of the Pomeranchuk theorem and the
improved upper bound for

~
b,o ~, as well as with

general consequences deduced from unitarity.
In Sec. VII the case of slowly decreasing function
18 discussed.

Because of the wide variety of subjects dealt
with in this paper, we would suggest the reader
start with the section which is of interest to him.
For example, if he is interested only in the proof
of the Pomeranchuk theorem, he should start first
with Sec. VI and read the other sections later.

II. PROBLEMS RELATED TO THE PRINCIPAL-PART

INTEGRATION

Let us take the proof of the Pomeranehuk theo-
rem as an example to discuss the problem of os-
cillations. The following discussion applies also
to- the phase representation; in this case the imag-
inary part in the dispersion integral is replaced
by the phase of the amplitude instead of the differ-
ence of the total cross sections.

Consider the odd-crossing forward amplitude

f,(Z) =f~(Z) —f„(Z), where f~ and f„are the parti-
cle and antiparticle forward scattering amplitudes
and p is the laboratory energy. Let us now define

It is obvious that f(Z) is even under crossing and
thus satisfies the following dispersion relation:

Z '"dZ' Imf(Z )
v z' z' —z

P
2z' '"dz' imf (z')

m ~ E' E' —E

where Imf(Z) =(I/4v)(q/Z)b, o(Z) by the optical
theorem, q is the laboratory momentum, and 4a
is the difference of particle and antiparticle total
cross sections. We assume in the following b,g,
and hence Imf, is bounded.

Equation (1) can be rewritten in terms of x =Z'
variable as

( )
x f d*' )r'af(x)'

x'0

Let us first assume that lim, ,„Imf (x) = C. A

crude calculation, with Imf(x') on the right-hand
side of (2) replaced by its limit C for sufficiently
large x', yields the following result:

Ref(x) C
1

x '"dx' Imf (x')
+„lng „g' g'+g (4)

which is compatible only with C =0. Equation
(4) already yields some average constraint on
Imf. This point was made more precise recently

which is incompatible with the physical assumption
~f(x}~/Inx-0 unless C =Q. The derivation of Eq.
(3) cannot be regarded as strictly correct, since
it does not take into account the dependence of
the principal-part integration (2} on the derivative
of the integrand. To see this, let us suppose for
the time being that the derivative of Imf (x) exists
(we will not have to make this assumption later).
Subsequent analysis shows that Eq. (3} is correct
only if an assumption is made on the asymptotic
behavior of the derivative of Imf(x). It is precisely
to avoid this difficulty and to do away with any
assumption about the derivative that Martin' uses
the Phragmen-Lindelof theorem to show that the
physical assumption lim, ,+(x}/Inx =0 is valid
also outside the physical cut, in particular when
x- —~. In this region we no longer have to deal
with the principal-part integration and the physical
assumption leads immediately to
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by Truong and Lam, ' who have shown that (see
also Appendix C)

( )
x '"dx' Imf(x')
7( X' X' +X

XQ

1 "dx'
, Imf(x') +O(1), (5)

7r X

where O(l) involves only terms which stay bounded

as x-+~. Using this result in Eq. (4) we have

1 "dx'lim, Imf(x') =0, (6),„lnx

which is the result given by Truong and Lam. '
It is now natural to find the sufficient condition

to get the behavior expressed by Eq. (6), but work-

ing directly on the physical cut. For this purpose,
let us split the right-hand side of Eq. (2) as fol-
lows:

, lmf(~)
Ref(x) = ——,Imf(x')+ —P dx'

7r X
Xp

7 ~
X'-X

Xp

2x dx
, Imf(x')

m ~
x'

z(*) '=~ J' ""'d*' ""' (10)
77 x(y M X X

where 0&) & 1. This principal-part integral was

previously considered by Sugawara and Kanazawa"
and by Gervais and Yndurain. '4 It is only when

J(x) is bounded that one gets the same asymptotic
behavior for f(x) on the physical cut as in other
directions in the complex-x plane. From the def-
inition of the principal-part integral, it is simple
to show that J(x) depends on the derivative of

Imf(x) which is not necessarily bounded for a
bounded Imf (x). If one is willing to make the as-
sumption that d Imf (x)/dx is bounded, it will be
shown in Appendix A that J(x}= O(lnx), i.e. , J(x)/
lnx is bounded (this is a particular case of a more
general situation considered by Lanz and Pros-
peri"}. In fact examples where Imf (x) stays
bounded and its derivative approaches zero, but

where d(x) diverges like lnx on a set of points ex-
tending to infinity are given in Appendix B. In
these cases, although it is possible to bound Ref(x)
by lnx, the unbounded contribution to Ref (x) is
not entirely given by the term -(I/v)(lmf)„ lnx.

Let us note parenthetically that if we consider
the "nonoscillating" case, where

1 '"dx' x
+—,, Imf (x') .

7 2. x' x'-x

The last two integrals on the right-hand side of

(7) are O(1) as can be seen by using the change of
variable y' = x'/x and by noticing that Imf (xy'} is
bounded by assumption. Let us now introduce the
average'

lim Imf(x) =C,

—Imf (x}= O(1),d
dx

it is shown in Appendix A that

lim = 0.Zx)
„ lnx

(1la)

(lib)

where

1 2x dxt
R(x) =-—,Imf(x')

r ~
x'

and

1 + dx' x
+—,, Imf (x') = O(1)

7T Q.
x' x' —x

J"dx'
, Imf(x') =(Imf), lnx

XQ

into Eq. (7):

1
Ref (x) = ——(Imf)„ lnx+l(x) +R(x),

(6)

x—Imf(x) =O(1).d
dx

(12)

It is interesting to note that if Imf (x) belongs to
the class of nonoscillating functions introduced by

Gervais and Yndurain, "J(x) may still give trouble;
in fact these authors met basically the same dif-
ficulty as in the general case of oscillations con-
sidered here, and had to use an average procedure
similar to the one to be introduced in Sec. III.

The problem of bounding J(x) appears then to be

quite complicated. It is shown in Appendix A that
a sufficient condition for d(x) to be bounded as

+00 is

s(.) =-'p J ~~™(*'
7 ~

X'-X

It is easy to see that, by changing the variable as
done previously, one can write

f(x) =J(x) +O(1),

with

One should remark that condition (12) follows
automatically from the boundedness of Imf (x) for
some simple nonoscillating functions. We thus
see that with enough smoothness as required by
condition (12), it is possible to bound g(x), and

hence the asymptotic behavior of Ref(x) on the
physical cut is also given by the right-hand side
of Eq. (5), i.e. , the same as outside the cut when
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It appears that we are faced with the possibility
of having to make some assumption on the deriva-
tive of Imf(x) to carry out our program. Fortu-
nately this is not needed as suggested by Martin' s
proof of the Pomeranchuk theorem and its general-
ization by Truong and Lam. Instead of dealing
directly with f(x), we shall work with an average
function which is also analytic in the complex-x
plane and is sufficiently smooth such that (12) is
automatically satisfied by construction. This is
done in Sec. III.

III. AVERAGE ASYMPTOTIC BEHAVIOR OF Ref(x)
ON THE REAL AXIS

Truong and Lam, in their proof of the Pomeran-
chuk theorem, ' introduced the following function
(apart from a factor of lnx):

(13)

(A similar equation for the even-crossing ampli-
tude was introduced earlier by Khuri and Kino-
shita" to construct univalent functions. ) This
integral converges at « =0, since Imf (x) =0 for
«& x, and [Ref(x)/x], , is finite as can be seen
from Eq. (2). The average function g(x) when di-
vided by lnx has the property of preserving the
magnitude of f(x), if f(x) belongs to the class of
slowly varying functions like lnx, lnlnx, etc. It
is analytic in the complex-x plane with the same
cut as f (x) and has the same number of subtrac-
tions. Furthermore its derivative exists and sat-
isfies the smoothness condition (12) since

d Imf (x)—Img =dx' x

and Imf(x) =O(1). We may expect that by working
with the function g(x) it will be possible to get rid
of the difficulties associated with J(x). This in-
deed happens. Since g(x) is analytic, a dispersion
relation similar to Eq. (2) can be written, from
which the analysis of Sec. II shows

1 "dx'
Reg(x) = ——,Img(x') +O(lnx)r x

Xp

dx dx
, Imf(x") +O(lnx);

w ~
x'

~
x"

Xp Xp

(14)

the difference between Eq. (14) and Eq. (9) is that
I(x) and R(x) are not bounded by O(1) but O(lnx)
since Img(x) is O(lnx). Equation (14) was previous-
ly obtained by Truong and Lam by the average
method. It turns out that this method is more
useful and leads naturally to other interesting

x dxf
Reg(x) =, Ref(x')

x
x'

p

1 ' "dx' x
, ln 1 ——, Imf(x').r ~

x' x' (15)

The integral in Eq. (15) can be rewritten as fol-
lows:

1 x x dx
-Reg(x) = — ln —,Imf (x')

7 ~
x' x'

x xl , dx'
+— ln —-1 Imf(x')

7T x x x'
p

+ — ln 1 ——, Imf(x')
1 '" x, dx'
7' x

x' x'

Again the last two integrals are seen to be bound-
ed, if Imf is bounded, by the change of variable
y' =x'/x, hence

x , dx'
Reg(x) = —— ln —, Imf(x'), +O(1) . (16)

7r ~
X' x'

Integrating the right-hand side of Eq. (16) by parts,
we have

1 "dx' " dx"
Reg(x) = —— „ Imf (x")+O(1) .

m ~
x'

~
x"

p Xp

(17)

Equations (16) and (17) show that the asymptotic
behavior of Reg(x) is, in general, given by a con-
volution integral. They have the interesting fea-
tures that the remaining terms are O(1) and not
O(lnx) as given by Eq. (14). Comparing Eqs. (16)
and (17) with (13) and (9), we get

J [f(x')+R(x')] ", =O(1).
p

x' (18)

[One can show that the integrals of I(x) and R(x)
are individually bounded by constants for the case
considered here. ] This is a remarkable result
which illustrates the usefulness of the averaging
technique.

Equation (18) gives a strong condition on f(x)
+R(x) [assuming f(x)+R(x) is continuous, which
is the case if f(x) is continuous]:

(i) If 1(x) +R(x) has a limit as x- +~, this limit
is zero.

(ii) If it does not have a limit, but does not

consequences. We shall now give a more compact
and slightly improved derivation of Reg(x).

We have from Eqs. (13) and (2), after interchang-
ing order of integration which is legitimate, "
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change sign for x large enough, I(x) +R(x) still
tends to zero except on a set of points of zero
asymptotic density.

(iii) If I (x) +R(x) change sign indefinitely, there
must be an infinite sequence (x„) (x„-+~) of points
where I(x) +If(x) =0, and (18) shows to what extent
the cancellation of oscillations of I(x) +It(x) around
zero occurs.

From now on we work directly with Eq. (16).
As it stands, the right-hand side of (16) does

not lead to an easy physical interpretation. We
shall modify it by defining the following average:

1 «(~+ &&g

g,(x) =
( )

"f(x')
«(i-~)

[g(x(I + b)) —g(x(1 —b))],
1

~(b)

where 0& b& 1 and A(b) =lnI(1+b)/(I —b)] is a nor-
malization factor.

g~(x) is an analytic function with the same prop-
erties as g(x), but its advantage over g is that
the average of f(x) is taken on an interval which
moves to infinity together with x.

Using Eq. (16), one gets by direct calculation

*"'"dx' x(1+b)
-wb(b)Reg, (x)=, ln Imf(x') +,ln, Imf(x') +O(1)x' x'

~ x x'
0 0

xd I '"'"dx' x=h(b), Imf(x') +, ln —,Imf(x')«x'
0 «(y y) x x

«(i+a)d i dx'
+l~nl b+~, lmf(x'}+»)I —b[, Imf(x')+O(1).«x' «(i-n) x

The last three integrals are seen to be bounded
by the usual change of variable as above, hence
we end with the result

1
Reg~(x) = ——(Imf)„ lnx+O(1), (20)

or

lim (Imf)„=0
«~+ 00

(21a)

where we have used the definition of the average
as given by Eq. (8). This simple result is some-
what surprising, since in general one would ex-
pect Reg, (x) to be a convolution-type integral.

Comparing Eqs. (5) and (20), we arrive at the
following important result that for

~ x~ sufficiently
large, the high-energy behavior of f (x) as x- —~
is the same as that of the average of f(x) on the
physical cut. What we have accomplished is, for
the case considered here, the extension of Montel's
theorem" onto the boundary of an analytic function
and its generalization to oscillating functions (see
Appendix C).

As an application of this result, Eq. (20), let
us derive the Pomeranchuk theorem in its most
general form, assuming Ref (x)/lnx 0 or Ref(x)
=o(lnx). It is easy to verify that this condition also
implies Reg~(x) =o(lnx); hence Eq. (20) implies

Ref (x) on the physical cut on the average only.
In order to have Ref(x) =o(lnx) everywhere, we
must assume smoothness in the sense J(x) =o(lnx).
The method presented in this section can be ex-
tended to study the restrictions due to unitarity
and leads to improvements of results previously
obtained. ' It turns out that the method to be dis-
cussed in Sec. VI is more direct and more gener-
al; we hence limit ourself to the application of
the results obtained in this section to the phase
representation, where we derive a number of
important consequences which will be needed for
the proof of the Pomeranchuk theorem for un-
bounded total cross sections and of general theo-
rems for the real part of the even-crossing for-
ward amplitude.

IV. APPLICATIONS TO THE PHASE REPRESENTATION
\

Let us denote f, =f~ +f„ the forward even-cros-
sing amplitude and define x=E' as above. We
shall assume that the amplitude f, is properly
averaged, '9 so that Imf, (x) has no zero on the
physical cut x~ 1, where for convenience the cut
starts at x=1. Since Imf, is positive definite, it
is known that f, has only a finite number of zeros
z, and that the following phase representation
holds'

(21b)lim, dE' =0.,„lnE I E'
0

Conversely if Eq. (21) is valid, it implies only
Reg, (x}=o(lnx), i.e. , it controls the growth of

f.(x) = (x- z, )exp-x
'"dx' 6(x'}

x x —x —c6

(22)
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Reh(x} = —P

1m a(z) = 5(z),

'"dz' 5(z }
x' x' —x

(23)

we can write (22) as follows:

In)f, (x) )

= v Inz+Reh(x) +In(A (+o(1),

where v =(number of zeros —number of poles) and

z is taken positive. It is simple now to apply the
results of Secs. II and III concerning Ref (x). Owing
to the Froissart bound, p can take only the values
of zero or one.

First of all, using the consequences of (18),
there exists at least an infinite sequence of neigh-
borhoods fry (x„-+~), where

(f,(x) [
= (A (x) (

x" (24)

where g~ is the location of the pole and A is a real
constant. If z, are complex they must occur as
complex conjugate pairs. The phase 5(x) is as-
sumed to be continuous and we use the convention
5(l}=0. We shall assume for convenience that

f,(1)& 0, so that using positivity one gets the fol-
lowing bounds for the phase:

0 &5(x) &v.

The case f,(1)&0 can similarly be treated. The
exponential factor on the right-hand side of Eq.
(22) is exactly the same type of integral studied
previously.

Introducing

( ~~) "2& ~f (g) (& C z" ( ~~ ~1 (27)

for x~{xg. This is especially useful when 5(x)
has narrow high peaks which do not show up in its
average (5)„but will nevertheless weaken con-
siderably the bounds given by Jin and MacDowell. '
[See Eqs. (22) and (23) of this reference, where
5, and 5, are bounds of 5(x) instead of (5),.] We
thus obtain a result which represents a definite
improvement over their work. If we do not want
to have a result which is valid on a set of points
then

~ f,(x) ~
in Eq. (27) should be replaced by its

average value exp([ln~ f, ~ ],}.
The meaning of the nonexistence of the limit of

(5), has been examined by Bessis and Kinoshita. "
They pointed out that the short-range oscillations
of 5(x) do not affect the existence of the limit.
This limit does not exist only when 5(x) undergoes
an extremely slow change as z- +~ with rapidly
increasing period of oscillation.

(ii) Let us now examine a more special case
where lim„, „(5)„exists. Bessie and Kinoshita
showed that

It shows the average behavior of ln
~f, ~

is control-
led directly by the average (5},of the phase rather
than the phase 5(x} itself. Let us consider some
special cases.

(i) (5}„does not have a limit, but is bounded be-
low and above by |), and 5, :

0& 5, &(5), &5, ;

then one gets from Eq. (24)

with

Iim ~A(z)[=[A[.
lnf, (z)

lnz
—o. for ~z~-+~ a&argz &7) e&0p

(28a)

Moreover using the result of Sec. III, Eq. (20),
we obtain immediately

[lnlf)], =
(u

——&5) ), 1nx+0(&),
1

where we have defined

x(1+ I) dx'
[»lf. l].= 5»If.(z'} I ~x(~ ))-

and

(25)

(26a)

(26b)

Equation (25) gives the most general result re-
lating the average modulus on the cut and its aver-
age phase. [It should be noted that the averages
on the left-hand side and the right-hand side of
Eq. (25) are different. ] No assumption has been
made on the ratio Ref, /Imf„which may be un-
bounded. Equation (25) gives an explicit average
relation between the modulus and the phase of f,.

if and only if

lim (5), = p)
X~+ oo

(28b)

and vice versa. In general we cannot infer the
behavior of (f, ~

for all z from the behavior of
~f, ~

in complex directions in the z plane. It is sus-

where Rez =x. We would like to point out that their
result can be improved to show that p = w(v —a).
This can be done simply by considering the analytic
function lnf, (z)/lnz, using Montel's theorem and
the method of Truong and Lam in their proof of
the Pomeranchuk theorem for ho. (See also Ap-
pendix C.}

The result given by Eq. (25} enables us to gen-
eralize this result on to the cut. In this case ex-
istence of the limit (5), implies the existence of
the limit of

[In ff. f].
in@
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where

()
,„ in&

(29a)

1
J(x) =-&

«(z-).)
(29b)

A sufficient condition for (29a) to be valid is given

by Eq. (12), namely,

x—5(x) =O(1).d
dx

(29c)

In the more special case, i.e. , lim, ,„6(x) exists,
and with condition J(x)-0 we recover the results
of Sugawara and Tubis, ' Jin and MacDowell, ' and

Gervais. 9 The meaning of the existence of a limit
for 6(x) was previously discussed by Gervais who

showed that it implies that the amplitude has a
nonoscillating behavior in the sense defined by
Qervais and Yndurain'4; one still needs the condi-
tion J(x)-0 to get this behavior at all points on

the real axis.
Condition (28b) yields the following result on

the real axis:

if, (x)i =x cp(x), (30}

where y(x} is a "slowly varying function" in the
sense that

[In@]„
lng

(31)

(It should be noted that a slowly varying function
in our definition can be a rapidly oscillating func-
tion. )

(iii) Regarding some properties of slowly vary-
ing functions, we see that the nature of the slowly
varying function is related to the behavior of the
integral

(32a)

where

pected that it might be related to some sort of
average behavior on the real axis but this point
was never proved. We have proved here this re-
sult, Eq. (25); the average involved is defined by
Eq. (26a).

If one wants to get the behavior of (28a) at all
points on the physical cut, then one must add to
(28b), as discussed in Sec. II, the following condi-
tion:

' dx'
[In(p], = ——,a(x') +O(1) .

X

One immediately sees from (33) that

(33)

lim y(x) =+~ implies lim

lim y(x) =0 implies lim

«d~l
a(x') =-~

(34}
"dx'

, d. (x') =+~.

If, on the other hand, y is bounded from above and
below by constants then j (d»'/x')b, (x') must be
bounded.

As an example, let us consider the case a=-,',
then y = ~f,/E [ is essentially the total cross sec-
tion and p =-,'g. In this case the total cross section
will be bounded from above and below if f, [5(x')
—-', v]dx'/»' is bounded. If we assume moreover
that Ref, does not change sign above some energy,
then this implies essentially that

~
Ref,/Imf,

~
goes

to zero faster than 1/lnx. This conclusion is no

longer valid if Ref, is allowed to change sign in-
definitely. As an example, we can let ~f,/E~ be
bounded and

5(x) = 2m+ sin»

or

5(x) = —,'w + sin lnx.

Similarly if one assumes that C, ln » &y(x) &C, lnsx

with 0& a& P, then

«d I

o. lnlnx& ——,a(x') & pin lnx.
7T g X

Again if Ref, does not change sign, this implies
essentially that (lnx)

~
Ref,/Imf,

~
is bounded above

and below by constants. Similar results can be
obtained when ~ and p are negative.

We note finally that if J "(dx'/x')d, (x') is negative,
it cannot diverge faster than lnlng because of the
Froissart bound. It can diverge faster than lnlng
with positive sign corresponding to a total cross
section decreasing faster than any negative power
of logarithm of energy. These results are in
agreement with the analyses of Jin and MacDowell'
and of Khuri and Kinoshita. '

We now return to the further consequences of Eq.
(25).

(i) Regarding the Jin-Martin lower bound, we
see that the most negative value of the right-hand
side of (25) can be obtained by taking v =0 and (5)
=m, where one gets

a(x) = 5(x) —w(v —a}
= 5(x) —p. (32b) [ln lf. I l.~ ln """. (35)

It follows from Eq. (25) that the average of Iny
satisfies

From (35), it follows that there must exist a
sequence of intervals (xg, x„,„, on which
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1
ln —' = —(-,'w —(5)„)lnx+O(1)

E -x

1 "dX'
, [-,'w —5(x')]+O(1) .

7T g X

(36a)

(36b)

It is clear from (36) that
l f,/E l

is bounded from
below in average by 1/E. One sees also that

lf,/El (i.e. , essentially v, ) will be bounded from
above and below in average by finite constants if

f, (dx'/x')[( —,'w) —5(x')] is bounded.
The possibility of

l f/El becoming arbitrarily
small or large depends on the sign of —,'w —(5),.

(a) If (5), ~ —,w, the coefficient of lnx on the right-
hand side of (36) cannot become positive, hence

l f,/E l
is bounded from above in average by a

finite constant. This case is realized in particular
when Ref, stays negative for large x.

(b) If, on the other hand, (5), & —,w, lf,/El is
bounded from below in average by a finite constant,
hence it cannot go smoothly to zero. It is interest-
ing to note that consistency with the Froissart
bound requires in case (b) that lim„, „(5),= —,'w

as shown below, and therefore that
lf,/E l

is a
"slowly varying function. "

To see this, let us use the Froissart bound in the
form

ln —' ~ 2 lnlnx. (37)

It is easy to check that the bound (37) must also
hold for the average on the left-hand side of (36).
This bound is nut compatible with the right-hand
side of (36) when (5)„&—,'w unless lim„, „(5),= 2w.

More precisely, one must have in this case

lf,()l= „
which is the Jin-Martin lower bound. " Moreover,
if

l f, l
oscillates down to arbitrary small values,

(35) gives the density of the set of points where
this bound can be violated. This lower bound was
obtained previously by Sugawara" using the phase
representation under the stronger assumption that

f, has a definite phase at infinity.
Further consequences of (25) can be obtained

according to the number of zeros of f, and the sign
of Ref,.

(ii) If f, has only one zero then v =0 (we have
assumed there is only one pole), and (25) shows
that the total cross section g, is bounded from
above in average by 1/E (the bound being saturated
when (5) =0).

(iii) If v=1, (25) can be written as

one assumes moreover that Ref, stays positive for
large x. Then (38) implies

0 &-,w —5(x) &1 27
lnx

or

Ref, 2w

Imf, lnx '

(39)

1
fi If, II, =(v, ~ -, ——(5$) Lnx+o(1), (40)

where the —,
' factor on the right-hand side provides

the correct signatured phase for an antisymmetric
amplitude and v, is the number of zeros of f,/E.

V. APPLICATIONS TO THE UNIVALENT FUNCTIONS G(E)
OF KHURI AND KINOSHITA

Information on the high-energy behavior of the
forward scattering amplitude can also be obtained
by studying suitable averages of the amplitude
such as those introduced by Khuri and Kinoshita. "
These averages were constructed to be univalent
functions which allow the deduction of various in-
equalities between their phase and their modulus.
We would like to show that some of their results
which are useful to us later can be obtained very
simply and made more precise by the methods
developed in Secs. II-IV.

except on a set of points of asymptotic zero den-
sity.

Let us note finally that even in the most general
case when (5), is allowed to oscillate around —', w,

the amplitude of the oscillations must become
arbitrarily small below —

2m to be consistent with
the Froissart bound.

This analysis generalizes a similar one by Jin
and MacDowell' who treated the case where Ref,
does not change sign for large x. The connection
between the sign of Ref, and the behavior of the
total cross section will be considered in more
detail by a more direct method in Sec. V.

Finally we mention that the methods of this sec-
tion can be applied to the unsymmetric forward
amplitude, ' for which a phase representation also
holds, as well as to the antisymmetric amplitude

f„ if one assumes for instance that av does not
change sign for E large enough. In this case the
phase 5, of f, is bounded and the number of zeros
of f, is finite; one can write a phase representation
for f=f,/E which is identical to that of f, :

dx0 &—,[—', w —5(x')] &21nlnx.
W g X

Equation (38) gives a strong condition on 5(x) if

(38)
A. Properties of the functions G(E)

Following Khuri and Kinoshita we shall denote
throughout this section f, (E) as
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f,(E) =fi, (E) +f„(E}—(pole terms),

( ) ( )
2E' ~('"dE' Imf, (E')

where Imf, (E) = (q/4(()(o~+ o„) by the optical theo-
rem. Let us consider the following average:

G E
dE' g.(E') -f.(o)
EI E(

(41)

(42)

which is an analytic function in the upper half
plane, odd under crossing, and univalent. A di-
rect calculation leads to the following formulas:

whe~e fI„f„are, respectively, particle and anti-
particle forward amplitudes. Because of the
Froissart bound we have

This leads to the following bound for
~
G(E}~:

I G(E)l & C»'E,
and hence in terms of the variable x=E',

ln iG(x)~ &3»I~, (47)

lim (5~), = —,((. (46)

where we have neglected a constant term on the
right-hand side of (47). We now wish to explore
the consequences of the upper bound (47) on the
ratio of ReG/ImG. The proof can proceed the
same way as in Sec. IV. First of all let us note
that due to the bounds (45) and (47) together with

Eq. (44) we must have

I ( dE' E'+E Imp, (E')
E' E' —E E'

dE' Imf, (E')
E( E( )

where

Imf, (E) =0 for ( E~ &)i.

(43a)

(43b)

More precisely Eq. (44) enables us to get some in-
formation on the way 5~(x) approaches 2w and

hence on the ratio ReG/ImG. For this purpose let
us put b, ~(x) =-,'w —5~(x). We can rewrite Eq. (44)
as

«('+')(f '
, »IGI =-, ~c(x')+o(I)

(, )
x ((p x

The essential property which allows us to es-
tablish the univalence of G(E) and which is also
basic in the method discussed below is that ImG(E)
is a positive and monotonically increasing function
of E on the positive real axis; the results of Sec.
IV will be applied to the function G(E), then the
monotonicity of ImG(E) will be used to get bounds
on G(E) at every point.

It is easy to verify from Eq. (42) that G(E) has
no zero on the real axis except at E =0; in partic-
ular ReG(E) is positive for E& 0 since In~(E'+E)/
(E'-E)~ & 0. From Eqs. (41) and (42) it is also
clear that ImG(E) is positive and definite in the
upper half E plane so that G(E) has no complex ze-
ro. These properties are sufficient to establish
the validity of the phase representation for the
function G(E)/E, which has no zero and is even
under crossing so that one can write

«('+»(f '
*,

)«~~G~~ = l --((),)) (n«+ o(1),
«(i-()

(44)

where 5~ is the phase of G. Moreover since
ReG(E) & 0 and ImG(E) &0 on the positive E axis,
one gets the following bounds for the phase:

Hence inequality (47) implies

0 & — —d (x') &31nlnx.1 "dx'
7r xt c

(49)

(50)

Since b.~(x) & 0, there must exist at least an infi-
nite sequence fx„},x„-+~ for which

ReG(x) 3v

ImG(x) lnx
' (51)

2. Unbounded total cross section

We define unbounded total cross section as

lim (c, )s=+~,
Q ~+co

where

The density of the set of points where (51) may be
violated is given by (50) and hence this set has an
asymptotic zero density. This result improves
that given by Khuri and Kinoshita whose method
could lead neither to an evaluation of the constant
involved in the upper bound of ReG/ImG nor to
Eq. (50). Let us examine some more special
cases.

0 &6~(E) & —,'((. (45)

Let us now examine the following consequences.

1 dE'
(c, ), -=, , ~, (E ')

lnE p E' (52)

1. Froi ssart bound

(46)

The upper bound of
~ f,(E)

~
as E-+~ is given by

~f, (E)i & CE ln'E.

(we define o, as the sum of particle-antiparticle
total cross sections). (c, )s is proportional to
ImG(E)/lnE. It is straightforward to show in this
case In~G~ & lnlnx. Using the same method as
above we have the following bounds:



METHOD FOR PROOF OF ASYMPTOTIC THEOREMS IN. . . 2883

w ReG(x) 3w

lnx ImG(x) lnx

or in terms of variable E =Wx,

w ReG(E) 3w

2 lnE ImG(E) 2 lnE '

(53a)

(53b)

(1+b) d «d
, ImG(x') =—,ReG(x')+O(1).

x(~ b)- r. x'
(58)

From Eqs. (56) and (58) it follows that

C x 1 "('+b) dx—ln—+ const ( ImG(x' }
7t Xl S(b) (, , )

x'

which is valid everywhere except on a set of points
of asymptotic zero density.

3. Bounded total cross section

C' x(—ln —+ const .
77 XI

Finally using the monotonicity of ImG we get

(59)

If (o, )s is bounded from below and above by con-
stants, ImG(E) is bounded from below and above by
lnE. Using Eq. (51) we have IniG(E)i =In~ ImG(E)~,
hence

C x C' x—ln —+const & ImG(x) & —ln —+const, (60)
7T X] 77 Xg

which implies that (o,)s is bounded below and
above by constants.

ReG(E) w

ImG(E) 2 lnE ' (54) B. Physical applications

This result is an improvement over that given by
Khuri and Kinoshita who showed that ReG(E)/
ImG(E) must tend to zero not much faster or much
slower than 1/ln. E.

4. Decreasing total cross sections

It is interesting to examine the case where

The previous results allow us to relate the be-
havior of the integral Js(dE'/E')[Ref, (E')/E'j to
that of the average (o, ) defined in (52). They are
therefore particularly useful to discuss the con-
nection between the sign and rate of growth of
Ref, and the behavior of the total cross section at
high energies. We shall consider successively the
cases of unbounded and bounded cross sections.

EdE'lim, o, (E')&+~,
E~+ce p E

i.e., o,(E) tends to zero faster than 1/lnE. In this
case ImG(E) is bounded from below and above by
constants. Using Eq. (51), we have ln ~G(E)~
= ln

~
ImG(E)~ . It follows from Eq. (49} that

I dE'
lim Jl, b, o (E' ) & +~, (55)

which implies essentially that ReG/ImG tends to
zero faster than 1/lnE.

5. Converse of 3.

It is useful to examine the converse of case
examined in Sec. VA3, i.e., we wish to explore
the consequences of

C & ReG(E) & C' for E)E, , (56}

where C and C' are positive constants.
Since G(E) is odd under crossing, it satisfies the

following "inverse" dispersion relation:

1. Unbounded total cross section

Let us first assume that

dE' Ref,lim + 00
E + E' E' (61)

Hence Ref, is essentially bounded from above by
E lnE if it stays positive at high energy.

Condition (61) is equivalent to lime, „ReG(E)=+~.
It then follows from (51) that lime, „(o,)s =+~
except on a set of asymptotic zero density.

Conversely if lime, „(o,)s=+~, (53) shows
that lime, „ReG(E)=+~ on almost all sequences,
so that (61) follows.

Note that condition (61) implies that Ref, takes
large positive values; if one assumes that Ref,
does not change sign for E large enough, it means
essentially that Ref, is positive and larger than
E/lnE. On the other hand, it can be shown as in
Sec. VIA that the Froissart bound gives the upper
bound

~dE' Ref. m

E' E' 4

2E' dE' ReG(E')
w E' E' —E (57) Z. Bounded total cross section

Moreover since ReG(E) is assumed to be bounded,
the methods of Sec. III can be applied to G(E) to
give us

Assume now that

Jl
— f' = O(1), (62)
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so that ReG(E) is bounded from above. Equation
(60}then shows that (a, )s is also bounded.

Conversely if (a, )s = O(1), (51) shows that con-
dition (62) holds on almost all sequences.

It is interesting to note that if one makes the
slightly stronger assumption o, & const, one can
prove condition (62) directly from (43a), without

using the previous theorem. By replacing
Imf, (E')/E' by its upper bound C, one gets

where in the last step we have used the identity

dE' E'+E " dy' y'+1
Jo E' E' —E ~&& y' y' —1

—2'

(the change of variable y'=E'/E has been used).
This example shows that from a bound on o, oqe

can very easily get a bound on an integral of Ref, ;
a similar method will be applied more extensively
in Sec. VI to the antisymmetric amplitude to derive
Pomeranchuk-like theorems. Assuming
lime, „o,(E) =+~, one could have shown in the
same way that lim s,„j (dE'/E')[Ref, (E')/E'] =+~
for case 1 above.

3. Condition for the existence of lim (o,)s

If one assumes that the integral fs(dE'/E')
x [Ref, (E')/E') converges to a finite limit so that

lime, „ReG(E)= C (C may take the value zero),
then (60) shows that lime, „(a,)s = (2C/w)4w =8C.

Conversely it is shown below from (43a} that
lime, „a,(E) = a„ implies

lim ReG(E) =(-,v)o„—=-', o„.
g~+oo "4m

If Ref, does not change sign for E large enough,
the convergence of fs(dE'/E')[Ref, (E')/E'] essen-
tially means that

~ Ref, ~
«E/InE.

5. Converse of 3 and 4

The case where Ref, & 0 for sufficiently large E
is of particular interest, since then one can prove
the convergence of Js(dE'/E')[Ref, (E')/E'] using
positivity. This follows from the fact that this
integral is necessarily bounded from below if
Ref, & 0 for E large enough, otherwise the condi-
tion ReG(E) ~ 0 is violated; since it is also mono-
tonically decreasing in this case, it must converge
to a finite limit; as we saw in Sec. VB3, this im-
plies that lime, „(a,)s exists. We can thus state
the following result, which sharpens a previous

one of Khuri and Kinoshita": If Ref, stays nega-
tive for E large enough, lime, „(a,) exists and

is a finite number (zero is not excluded).
Finally a partial converse to the previous re-

sults is provided by the following theorem, which

is a slight generalization of a result of Sin and
MacDowell' [we do not assume that o,(E) is mo-
notonic] .

4. Consequence of a negative Ref,

If o,(E) tends from above (or from below) to a„
but not as fast as 1/E (in the sense that

~ o,(E) —a„~
& const/E for E & E,) then the integral fs(dE'/E')
x [Ref,(E')/E') converges as E-~ and

~ Ref, (E)~
is unbounded. Moreover f '"(dE'/E')[Ref, (E')/E']
is negative if a, (E) reaches its limit from above,
positive in the opposite case.

Proof Let u. s show lime, „a,(E) = o„ implies
that the integral fs(dE'/E')[Ref, (E')/E'] converges
and that

~['
'"dE' Ref.(E') —f,(0)

E' E/

1 dE' E'+E
E, ln, [o,(E')-o„].

(64)

We first prove that the right-hand side of (64)
tends to zero when E-+~. One can split this in-
tegral into a low-energy and a high-energy part as
follows:

I dE' E'+E
, ln, [o,(E') —o„]

0

E'+E' '

ln, [ o, (E' ) —o„]

dE' E'+E+, ln, [o,(E') —a„].
1

(65)

The low-energy part is O(1/E) since it has a com-
pact support. The high-energy part is bounded by

sup ) a, (E) —a„( J( —,lnf dE' E'+E
g) Ql p E' E'-E

=-,v'sup
~
a, (E) —o„~

8&EI

and can be made arbitrarily small for sufficiently
large E» which proves our statement about the
right-hand side of Eq. (64).

Now one can write
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1 ~ '"dE' E'+E, 1 ~ '"dE' E'+E, 1 dE' E'+E

s dE' Ref, (E') —f.(0)
EI (66)

where in the last step we have used (43a) and (63).
We have thus proved

VI. THEOREMS FOR THE DIFFERENCE OF PARTICLE-
ANTIPARTICLE TOTAL CROSS SECTION

sdE' Ref, (E') —f,(0) " dE' Ref, (E') —f,(0)
B + p E' E'

0 E' E'
y

8 ce ~

Equation (64) follows from (66) and (67). Let us
now consider the case where o,(E) —o„stays posi-
tive and larger than (1/E' ') (0& e& 1) for E&E,.
We have already seen that the low-energy part on
the right-hand side of (65) is O(1/E). The high-
energy part tends to zero slower than 1/E, since
one can write

—,ln, o, E' —rr„
By

'"dE' E'+E 1
EI Ef EE» ~

y

const
Ey- E.

(the change of variable y'=E'/E has been used).
Note that the last integral converges at y' =0. (If
e =0 the high-energy part behaves as lnE/E, hence
the theorem is also true for e =0.)

It follows that in the case considered here the
asymptotic behavior of the right-hand side of (65)
is controlled by the high-energy part, which has
the same sign as c,(E) —o„. In particular using
(64) one sees that f '"(dE'/E')[Ref, (E') —f,(0)]/E'
is negative and tends to zero slower than 1/E.
Since the subtraction constant f, (0) gives a contri-
bution of order 1/E, it can be neglected. We
therefore end with the result that f '"(dE'/E')
&& [Ref,(E')/E' ] becomes negative for E sufficiently
large, and tends to zero slower than 1/E (which
implies that Ref, (E) is unbounded).

The case where a, (E) reaches its limit from be-
low can be similarly treated; in this case
f'"(dE'/E')[Ref, (E')/E'] becomes positive for suf-
ficiently large E.

f (E)
'

P
"'"dE' Reft(E ) —&E'

(68)
77 Jp

where b is a subtraction constant at Z =0. This
is to be compared with the ordinary dispersion
relation

Ref (E)=bE+~ P
'"dE' Imf, (E')'r E/2 EI2 E2Pp

Let us integrate Eq. (68) between 0 and E:

"p
Imf, (E'),2

= —— ln, Re f,(E'), dE' 1 t'" E'+E, dE'

(69)

where we have interchanged order of integrations
which is allowed, " and neglected a constant bv/2
on the right-hand side of Eq. (69). Since Im f,(E)
=0 for ~E~ & p, the threshold, the left-hand side
of (69) converges at E' =0. This equation is basic

We have shown in Secs. II-V that the integral

f (dE'/E')Im f(E') is a useful quantity to express
the asymptotic behavior of the scattering ampli-
tude in the presence of oscillations. In this sec-
tion we deal with asymptotic theorems for 40.
Although the methods developed in Secs. II-V in
particular Sec. III can also be used, they do not
lead to the most general result when Im f(E) be-
comes unbounded. We give in this section a differ-
ent method to prove directly theozems related to
Ao (and similarly theorems related to Ref„ the
real part of the even-crossing forward amplitude).
The method presented below is rigorously valid
even when Imf is unbounded. "

Let us denote f, =f~ —f„, the difference of the
forward particle-antiparticle amplitudes. It is odd
under crossing. The optical theorem is Imf,
= (q/4v)b, o. Instead of writing an ordinary disper-
sion relation which relates the real part of the for-
ward amplitude to its imaginary part, we write the
inverse dispersion relation relating the imaginary
part to its real part. Using the odd-crossing
property of f,(E), we have
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to derive asymptotic theorems below. Although

we have assumed the existence of the dispersion
relation, the technique developed here is applica-
ble to the situation where there is a finite region
of nonanalyticity.

l f~„l &CEln E, (70a)

where C = I/(4p') and p is the pion mass. It is
obvious that

lRe f,(E) l
-

l f pl +
l f„l & 2CE ln'E, (70b)

A. Upper bound for 60

From a simple example f,(E)-E(lnE —wv), we

have P ~ 2 because of the Froissart-Martin bound

and hence 60 is bounded by lnE. The problem is
then to generalize this result. Roy and Singh"
showed that if 60 is a monotonic function of E for
sufficiently large E, then b,o is bounded by lnE.
A weaker result but without assumption on the

high-energy behavior of bo was discussed by
Cornille. ~ We give here the most general result
for the upper bound of the average of b,a without

making any assumption.
It is known that

l f~ „l obey the following upper
bound.

r2
l(d,o), l

-—,lnE.

This result holds for any high-energy behavior of
hv.

B. Pomeranchuk theorem for bounded total cross sections

It is known that the Pomeranchuk theorem for
bounded total cross sections cannot be proved from
unitarity. We give here the proof of this theorem
for Lo under the usual assumption that

l f~ „l are
bounded and hence lRe f, l is bounded. Restrictions
due to unitarity for bounded total cross sections
will be given later. Let us impose the condition
lRe f, (E) l

&M for E &E, in Eq. (69) and use again
the change of variable. We get immediately

w p

do(E'), &— ln —, (72), dE' M' "'" 1+x dx
E' m „EgE 1-x x '

1

where we have neglected an integral from 0 to E
as above. From Eq. (73) it follows that the set of
limiting values of the left-hand side of (78) is
bounded, or

Putting the above results together into Eq. (70c) and
using (71}we have finally

which holds for sufficiently large E&E,. Using
this in Eq. (69) we get lim ao (E'), & mM',, dE'

(74a)

~E
, dE' 1 i E'+E dE'

Im f,(E') „&— ln, lRe f,(E')
l

& Q
7T + Q

and if ho does not change sign, then the integral
converges:

EIlT E

+ oo

, dE'ho(E'), & mM'
a p

(74b}

(70c)

The first integral on the right-hand side has a
compact support and behaves as 1/E as E-+~.
After changing the variable of integration to x
=E'/E, we see that the second integral I, yields

2C "+"

E~/E

which yields the leading term in I, as (the other
terms behave as lnE and constant)

1 "'" 1+x dxI,= 2C ln2E — ln
/E 1 x x

1 "" 1+x dx
& 2C ln'E—

m Q
1 —x x

and hence finally

I, &wCln'E.

Let us now define

Equation (74b) shows that if Ao does not change
sign, it must go to zero faster than 1/lnE. If we

make the weaker assumption (Refp„)/(Im fp „lnE)- 0 and hence (Ref, )/(E lnE) -0, it is straightfor-
ward to show one has in this case

lim (Ao)x=0. (75)

C. Consequences of unitarity on b,o and proof of the
Pomeranchuk theorem for unbounded total cross sections

(76a)

We shall now deal with consequences of unitarity
on bo in general and prove in particular the Pom-
eranchuk theorem for unbounded total cross sec-
tions.

It is known that unitarity restricts the growth
of the modulus of

l f~l and
l f„l for sufficiently

]arge Ee22 ~ 24 26

(71)
where eel P, A refer, respectively, to the particle
and antiparticle elastic cross sections. Using at
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&Oej, we also have

1
lfP, AI -4~ EinE(otot P,

A)"
4 mp,

(76b)

any assumption on the functional dependence of
0'p and 0'g.

For this purpose, let us note that for sufficiently
large E, inequalitites (76a) and (76b) also imply

Since the following analysis applies equally well
for et, t or o.~, we shall drop the subscript total and
elastic.

Using inequality (76b} together with the assump-
tion oP-CP(lnE), oA "C„(lnE) with m&0, Eden
and Kinoshita"" showed that Cp = Cg Our pur-
pose is to generalize this result without making

1
If.(&)I- ~„EI~[(o,(E))"+(o (E))"'].

Using this inequality in (69) and following the
above analysis, we arrive at

(77)

~E dE' + oo dE'
Im f,(E') „&,&, J

ln, lnE'[(O'P(E'))' '+(oA(E'))' ']
0

(78)

pE
G(E) =

Q p

dE'
H(E') (80a)

We want to express the right-hand side of (78) in
terms of quantities which are easier to handle.
For this purpose let us construct the following
function H(E) which is the analytic in the upper
half plane:

2E " InE'[(cr (E')}t~'+(o„(E'))'~ ']
W -0 E2

(79)

Let us construct the following univalent function
G(E) which is also analytic in the upper half plane:

of (81), we finally arrive at

VS E"'
l(«&EI- [((oP&E)"+ ((oA&E)" '] ~

2p
(82)

This is the most general restriction on bv due to
unitarity and analyticity in terms of the average
elastic or total cross sections (to get meaningful
results on the asymptotic behavior of hv and 0»,
it is necessary that InE(«&E, lnE(oP „&E diverge
as E-+~).

Let us now examine the consequences of (82}
for unbounded total cross sections. For this pur-
pose, let us define the unboundness of the total
cross sections as

E dE'
ImG(E) = ) (lnE')[(oP(E'))' +(oA(E'))' ']

0

lim (o„,p „&E=+ ~ .
E~+~

(83)

ReG(E) = — (lnE') ln
1 '", E'+E
1T 0

(80b)

x[(o (E )) +(o (E )) ) E,
dE'

ReG(E) ~ ImG(E) .

Using this result, the optical theorem, and Eq.
(71) in (78), it is simple to show

&3/2 S
l(«&E I- 2, ,E [(oP(E')"+(oA(E'))" ']

2p, ln'E

, dE'
x lnE' (81)

Using the Schwarz inequality for the right-hand side

(80c)

%'e have discussed in Sec. VA the properties of the
function G(E). Because of the Froissart bound,
using Eq. (51) we have I(& )I

E + (OP +OA&E
(85)

This equation is valid for any behavior or any type
of oscillation of o p and 0„. This version of the
Pomeranchuk theorem for unbounded total cross
sections as given by Eq. (85) can be regarded as
strictly a consequence of axiomatic field theory.

Equation (82) shows the same result holds if
only one of the total cross sections is unbounded;
it then follows that the other total cross section
must be unbounded too. From Eq. (85), it is
clear that there exists an infinite sequence of

Dividing both sides of (82) by (oP+ oA&E, where oP,
a„refer now to the total cross sections, it is
straightforward to show

iS E3~0

(&~.&,&"* (&~ &,P*)'
(84)

Since (oP&E and (oA&E are unbounded as defined
by (83) the right-hand side of (84) tends to zero
as E- + ~, hence
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points (E,), E, -+ .~ on which (ho}/(o~+o„)-0;
in particular if (ho)/(op+a„) has a limit, this
limit is zero .Equation (84) also gives the rate of
~(&o)~/(o~+o„) tending to zero depending how fast
(op „)sdiverge.

As it was remarked above, the Pomeranchuk
theorem cannot be proved for bounded total cross
sections using unitarity. In this case, it is still
possible to get a restriction on the magnitude of
(ho)s in terms of the particle-antiparticle total
cross sections or elastic cross sections. It is
straightforward to show ReG/ImG (v/InE and
hence

ps/ 2

l«o)s I-
~~ [(&op&s)" '+ ((&g)s)"1,3 p.

(86)

VII. DECREASING TOTAL CROSS SECTIONS

where (o~}~ and (o„)s are again either elastic
or total cross sections. Equation (86) is a general-
ization of the results of Roy and Singh, " ~ who
discussed the special case where 40 has a limit.
For pion-nucleon scattering, if isospin invariance
is assumed, a restriction on (ho)s in terms of
the charge-exchange cross section w p- n'n can be
similarly obtained. ~ The same remark holds
for the K, K system.

p+on
, dE'

5 = -Im f.(E')
7T ~ p

[b is nothing but f, '(0)].
Now Eq. (69) can be written as

(90)

4 p

, dE' 1 "'" E'+E , dE'
Im f,(E') „=—— ln, Re f,(E')

7T
0

+ ~g f, '(0), (91)

where we have included the constant -', bv = 2v f,'(0) . —

It follows that (90) is equivalent to

The meaning of (89) is thai f, (dE'/E')no(E')
converges faster than f (dE'/E')o, (E'); in the
simple case where op~-C~„(lnE} "'' (with e)0},
condition (89) says that Cp

= C„, i.e., that
lime „(Lo/o, ) =0. The form (89) of the Pomeran-
chuk theorem is more general than those proofs ''
which have to introduce slowly varying functions
which are analytic in the upper half plane.

In the course of the proof, it will be useful to
give the necessary and sufficient condition which
allows us to write an unsubtracted dispersion
relation for f,/E, assuming that f,/E requires at
most one subtraction. We therefore begin with
the discussion of this point.

It is clear that this condition is given by

For total cross sections which decrease in such
a way that lim

~ ln, Ref, (E') „=0,
E'+E, dE'
E' —E

i

(92)

Q p

, dE'
o,(E'), (+ ~ (&r,

=op+a„)-, (87)

Re~q (const
Imfp „

implies that

(88)

f ' bo(E'}(dE'/E')'
E-+" f o,(E')(dE'/E')

provided that the integral f, a, (E')(dE'/E') con-
verges slower than any negative power of E [it is
known that the Pomeranchuk theorem in the form
lime, „(Ao/o', ) =0 does not hold for rapidly de-
creasing cross sections]. [A similar proof can be
given with the more general condition Re fp „/
Im f~ „=o(lnE). ]

(89)

i.e., essentially faster than I/lnE, the previous
method has to be modified, since the average
(o,)s does not reflect the asymptotic behavior of
the cross section. In this case, since ~no~(a„
the integral fs [~ (Eo')](d 'E~E') converges also,
and it is shown below that it is convenient to state
the Pomeranchuk theorem in the form of a restric-
tion on the rate of convergence of this integral.

More precisely, we want to show that the physi-
cal condition

which is the condition we wanted to derive.
Using (90), we see that Eqs. (91) and (92) can be

written in the form

, dE' 1 "'" E'+E , dE'
Im f, (E') „=— ln, Ref,(E')

77 Jp

(93)

Note that a sufficient condition for (92) to be valid
is Iims, „Ref,(E)/E =0 [the proof is identical to
that given at the beginning of Sec. VB 5 replacing
o,(E) —o„by Re f,(E)/E].

This condition is weaker than the condition
lime, „f,(E)/E =0 generally assumed when one
writes an unsubtracted dispersion relation for f,/E.
When Re f, /E tends to zero slower than 1/E (in the
sense of Sec. VB 5), (93) gives a useful correlation
between the asymptotic behavior of Im f, and Ref, ;
in p rticular Im f, and Re f, must have the same
sign asymptotically (if they keep a constant sign
for sufficiently large E).

In order to prove the Pomeranchuk theorem in
the form of Eq. (89), we want first to show that
conditions (87) and (88) imply that the dispersion
relation for f,/E needs no subtraction. This is
expected, since from (87) one knows essentially
that lime +„o,(E) = 0, which in turn implies
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Iims„+„Ref,/E = 0 using (88). To give a rigorous
argument one has to prove that condition (92) is
satisfied. But (88) implies

ReK(E) = ReG(E)

1 t'" E'+E, dE'ln, o,(E')
7T g p

(98)

Re f.(E}

so that we have the following bound:

E'+E , dE'ln, Ref.(E')
4 p

(94) 1 '"
, dE'

ImK(E) = ——f o,(E')
E

We see from (98) that ReK(E) & 0, ImK(E) & 0 for
E & 0. Using the convention 5w(0) = ——,'w [5w(E) is
the phase of K], we have the following bounds for
the phase:

--,'w &5r(E) &0 (E &0). (99)

&C
w p

E'+E, dE'ln, o,(E'}

+ 00 E' E

(96)

Equation (92) follows from (96) and (87}. [The
bounds (51) and (96} may be violated on some ex-
ceptional sequences. However, from (91}and the
convergence of

(95)

The right-hand side of (95) is just 4wC[ReG(E)]
[where ReG(E) has been defined in Sec. V], and we

get, using (51)

These conditions prove the validity of the phase
representation for K(E); applying Eq. (25) to
K(E) =—iK(E) [K(E) is symmetric under crossing],
we get

px(z+ s)
lnlKI

a(b) J,(, ,)
x'

1 dx'
[-,'w+6r(x')], + O(1)

7T ~ p x

lnlK l

lnx

It follows from (100) that

(101}

(x=—E') (100)

[it can be shown from the Froissart bound and the
bounds (99) on the phase that one must take v =0
in (25)].

Let us now assume that lKl is a slowly varying
function in the sense that

, dE'
Im f, (E')

p

px dx'
[-,'w+6, (x')J, =o(lnx).

p

(102)

+ oo

, dE' C f
+" E'+E, dE'

Im f,(E') „&— ln, o,(E')
E 7T g p

(9'I)

We now follow a procedure quite similar to that
used in Sec. VI. We would like to simplify the
right-hand side of (97) and compare it to f &r,(E'}
x(dE'/E'). For this purpose, consider the func-
tion

K(E) = G(E) —i
p + CO

4 p
o,(E'),

dE'

which is the boundary value of a function analytic
in the upper half E plane and odd under crossing
[since K(-E+ ie) = -K*(E+is)] We have.

which follows from (87) using the optical theorem,
we know that the limit of the left-hand side of (92)
exists; since it is zero on a set of points, it must
be zero on all sequences. J

Since (92) has been checked we can use Eq. (93)
and write (95) in the form

Since w+ 5w(x') & 0, (102) means that

ReK(E)
,„ImK(E)

(103)

except on a set of points of asymptotic zero den-
sity. We thus conclude using (97}, (98), and the
optical theorem, that

f no(E')(dE'/E')
'"f '

o,(E')(dE'/E')

which is the desired result. The condition (101)
is crucial; its physical meaning becomes clear
if one notes that a sufficient condition for (101) is
that

(104)Inlr~l
lnx

Condition (104) means that f [o,(E')J(dE'/E')
converges slower than any negative power of E;
it provides a convenient average definition of
"slowly decreasing cross section. " For instance,
a behavior like o, (E)- (lnE) "' (e &0) is allowed
by (104}, but o,(E) -E ' is forbidden.
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VIII. CONCLUDING REMARKS

We have presented in this paper a comprehensive
treatment of oscillations for a class of slowly
varying functions (but which can be rapidly oscil-
lating) which are directly connected with the Pom-
eranchuk theorem, related theorems, and the
phase representation. We are hopeful that the
method discussed here can be extended to other
problems in high-energy physics.

An obvious application of the technique developed
here is the proof of the Pomeranchuk theorem for
the forward particle-antiparticle differential cross
sections, "where no assumption other than conti-
nuity is needed (after a smoothing procedure):

„E fp(E t 0) dE
f~(E', t =0) E'

The constant C can explicitly be evaluated and de-
pends on only the fact that the phases of fp and f~
are bounded because their imaginary part is posi-
tive. (This improves previous considerations~
as explained in the Introduction. } This result can
be extended to the case t0; in this case one must
assume that the phases of fp and f„are bounded or
more generally -o(lnE).

If one assumes that Imf satisfies a Holder condi-
tion uniformly in x:

IImf (x+y')-1m f (x) I
D-y'~ (n&0),

where 0&y'&A. and D is a constant independent of
x, then

Imf(x+ y')-Imf (x-y')
yl

pa-z

so that using this bound in (Al) we get

2Dz
7T

In the particular case where dIm f(x)/dx exists
and is bounded, one can take +=1 and D=

sup, I dImf/dx I
in the previous bound.

At this stage one can already give bounds on
J(x) and assuming

C,&Imf(x)&C, ,

one gets

-~ lnx &J,(x)&-~ lnx,
C C
r '

7T

APPENDIX A: BOUNDS ON J(x)

(1) Let us first show that J(x) is O(lnx) if Imf (x)
is O(1) and satisfies a Hblder condition uniformly
in x. One can split J (x) as follows:

~ (x)=~,(x)+&,(x)+J,(x),

~ inxM, (x)&~ lnx.C C
r '

7T

Hence

C~-CI 2D A.
"' lnx- ——&J(x)

7T 7T Q

( )=-
«(i-X) X'-X

()
"" f( ')„„,

X X

g(1+X) ~f ( g)J ~(x)=—,dx'.
«+X

Assuming IImf(x) I
& C, an explicit integration

shows that J, and J, are bounded by lnx:
«~ X dXI

IZ, (x) I-—,= —lnx,
7T «(y» g) X X 7T

«(j.+X)

l~s(x}I-—
7T «+g X X 7T

J, can be written by a simple change of variable
in the form

2g) ~n
— lnx+ ——.r 7T Ot

This last result leads immediately to Eq. (26) of
Ref. 8.

(2) Let us show now that if we make the "non-
osci11ating" assumptions

d
lim~+„Imf (x)=C and —Imf (x)=O(1),

we get J(x}=o(lnx). Since dImf(x)/dx=O(1), J, is
bounded as shown above. J,+J3 can be written as

)
Imf(x ) C

7T «(y Q X X

~""Imf(x'}-C
+—,dX',

X X

(Al)
1 Imf(x+y') Imf(x y') „, --

Z, x=- dg
7f 0

the contribution of the constant C being identically
zero. We therefore get
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I Ji(x}+Jz(x) I
& sup

I
lmf (x') -c I

«'g[x(g- X.),x(g+ X)]

i.e.,
2

I
J',(x)+J,(x) I

&— sup IImf(x')-C
I lnx,

~ x'e[x(x-k), xtx+ X)j

which shows that J|+J,=o(lnx), hence J'(x)=o(lnx) ~

If we make the further assumption that Imf(x)-C
=O(1/lnx) [together with dImf(x)/dx=O(1)], we get
J,(x)+J,(x)=O(1), hence J(x)=O(1)~ What happens
here is a cancellation between J, and Js (due to the
opposite signs of the denominators x'-x in these
two integrals), which is made possible by the non-
oscillatory character of Imf (x).

We give now a more interesting condition of
"nonosci11ation" which is expressed only with the
derivative of Imf (x).

(3) Let us show that a sufficient condition to have
J(x)=O(1) is given by condition (12): xdImf(x)/
dx=0(1). By a simple change of variable J(x) can
be put in the form

APPENDIX B

The following counterexamples are constructed
to show that it is not possible to improve the
bound J(x)=O(lnx) obtained in Appendix A under
the assumptions Imf(x)=O(1), dImf(x)/dx=O(1)
without further assumptions.

Let us consider the integrand h, (y') of the right-
hand side of (A2). At y'=0, h, (0)=2xdImf/dx (as-
suming the existence of the derivative at point x).
For y'40, Ih, (y') I&2C/y' if IImf(x) I&C.

This suggests the construction of an example
where, around a set of points {x„),(x„-+~}one
has

h (y')= —for &y'&z,2C C
«5

h, (y')=2x„D„ for 0&y'&
tl fi

where D„=dImf (x= x„)/dx and D„ is assumed to be
positive. Then sJ(x„) is equal to the area under
the curve drawn in Fig. 1.

We get

J(x„)= —[2C ln(x„D„)+2C(l-lnC}],
1

1 Imf(x+xy')-Imf(x-xy')Jx =—
W 0

Introducing

Imf(x+xy') -Imf (x-xy')
h, y'=

we can write, assuming Imf(x) is derivable,

(A2) hence

J(x „)= O(ln(x„D„)).

A simple choice for Imf(x) which satisfies the
previous conditions is drawn in Fig. 2. In this ex-
ample, Imf(x) is defined by

1 cf
h, (y') = —, —Imf (u) du .

r-xy'

Now using (12) we can introduce the upper bound
D of xdImf/dx and write

d
u —Imf &D.

du

It follows that

D "'"du D 1+
Ih, (y )I

r-ry' u

From (A2) we now get

I&(*&I- f(—,
which is the desired result.

We can state the intuitive meaning of condition
(12) as follows: It makes the oscillations of Imf(x)
slow enough to allow a cancellation between J, and
~s.

C
Imf (x)= -C for x„(I-X)&x&x„-—

C CImf(x)=(x-x„)D„ for x„-—&x&x„+—,

APPENDIX C

Consider the analytic function f(z) defined by

z + Imf(x) dx
71 g x z x (C 1)

Imf(x)=+C for x„+—&x&x„(1+X),
C

with lim„, „x„=+~, and an arbitrary behavior
for Imf can be chosen between two neighboring in-
tervals [x„(1-X),x„(1+X)]and [x„+1(1-X},x„„(1+X}].
(It is assumed that the x„are spaced in such a
way that these intervals do not overlap. ) Even if
D„ tends to zero when x„ tends to infinity, but
slower than 1/x„[so that lim„, „(x„D„)=+~],
J(x„) wQ1 tend to +~. For instance, if D„=(1/x„)
(0&a(1), J (x„) will increase like lnx„.
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h„(y') „ Imf (x) „

2xn Dn

xn(I y)

I-C —————

X

C xn(l+g)
Dn

C X

xnon

FIG. 1. A simple choice for h„(y').

yl

where Imf (x)=O(1)~

We would like to show that FIG. 2. A simple choice for Im f(g).

lim I f(z}i=+~
g ~+we

g fixed+0

(where z=re'8) implies

Ii
-(1/w) J;Imf(x}(Cx/x)

8 fixed &0

Proof. From (Cl) one has

The last two integrals on the right-hand side of

(C3) are bounded as can be seen by changing the
variable of integration as done previously and re-
calling that

Imf(x)=O(1).

We therefore end with the result

r ' (xcos8-r)Imf(x) Cx
Re z=

w, x*+r*-2xr cos8 x '

r '" sin8 Imf (x}
Im z=— 0w, x'+r'-2xr cos8

It is clear that Imf (z) is O(1) ii' Imf (x) is O(1),
since

1 " dxf(z)=-- Imf(x) —+O(1),
W x

z =tre' (8 fixedv0),

which shows that if

(C4)

1 '" sin8 Imf (yr}
w .ii, y -2ycos8+1 dg ~

where we have changed the variable of integration
to y=x/r. On the other hand, one can express
Ref(z) as follows:

F elf
Ref (z)= -- Imf (x)—x

lim jf(z) i
=+~,

l ~+Is
8 fixed sw0

(C2) is valid.
Result (C4) gives information when one goes to

infinity along any radius in the complex plane (or
for 8= w along the negative real axis). This is to
be compared with Eq. (20), which gives a result
on the cut (8=0):

1 " (xz-xr cos8) Imf(x) Cx
x'+rI-2' cose x

r(X+ a)
rn(r) = f(x)—

&(&) .(i-a)

r '" (xcos8-r)Imf(x) Cx
+ w, x'+r'-2xr cos8 x (C 3)

dx
Imf (x) —+ O(1) .

7T x (C 5)
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