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The question of the Reggeization of the elementary particles in gauge theories with a
spontaneously broken symmetry is extended to examination of the scalar-meson states of
these theories. Owing to the complexity of the problem, the study is limited to three typical
gauge models, U(1), SU(2), and U(2). It is demonstrated that under special circumstances
the Born approximation for some or all of the J=0 amplitudes can be factorized, the first
time the possible Reggeization of elementary scalars has been reported. However, no mod-
el is found in which all elementary particles lie on Regge trajectories. The crucial role of
an Abelian vector meson, which does not Reggeize, and a fermion, which does, is empha-
sized. Since the Mandelstam counting argument is inconclusive at J=0, our conclusions are
limited to lowest order in perturbation theory.

I. INTRODUCTION

This paper provides a continuation of the discus-
sion of the Reggeization of elementary particles in
renormalizable Yang-Mills theories begun in Ref.
1. Earlier we reported that under fairly broad
conditions the non-Abelian vector mesons and
fermions of these theories may Reggeize. That
is, we have examined the behavior in the angular
momentum plane near J= 1 and J= &, and shown
that the Kronecker 6's found in scattering ampli-
tudes computed to second-order perturbation
theory are turned into moving Regge poles by
higher-order corrections. In this paper, we con-
tinue this program by discussing the behavior of
such amplitudes near J=O.

We restrict ourselves to renormalizable theo-
ries, ' so that we do not consider elementary par-
ticles with spin larger than one. In all the exam-
ples under consideration only one nonsense state
occurs in each vector-vector and vector-fermion
channel at J=1 and J= &, respectively. This non-

sense state in turn generates at most one Regge
trajectory, since, as demonstrated in Appendix
A of paper I, the total number of Regge trajector-
ies is equal to the rank of the complete nonsense-
nonsense matrix. Moreover, for the theories we
have considered, the non-Abelian elementary vec-
tor mesons and the fermions lie on the corre-
sponding trajectories.

The situation near J= 0 is much more complicat-
ed than that near J= 1 and J= 2. Now each vector-
vector channel has two nonsense states which will
generate two Regge trajectories in general. In
addition to these two nonsense states, the vector-
scalar and fermion-antifermion channels have one
nonsense state each at J=O and are capable of
generating more trajectories if they are coupled
to the vector-vector states. Mandelstam counting'
indicates that the theories need not Reggeize at
J=O, although they may do so for special choices
of masses and coupling constants. Thus there is
no reason to expect results which are as general
as those obtained at J=1 or J= &. Nevertheless,
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given the fact that spontaneously broken gauge
theories have good high-energy behavior' and

hoping that they possess simple analytic proper-
ties in the angular momentum plane, one is
strongly tempted to find some models in which
all the elementary particles are Reggeized. We
would like to emphasize again that Reggeization
means the amplitudes exhibit Regge behavior and
the elementary particles present in the Lagran-
gian lie on Regge trajectories. We know that in
Q' theory' the scattering amplitudes have Regge
behavior, but the elementary scalar particle does
not lie on a Regge trajectory. This property of
Q' theory can be traced to the absence of a non-

sense state at J=O in this theory. Nonsense states
are present in gauge theories with spontaneously
broken symmetries (SBSs), but to settle the ques-
tion of the Reggeization of the scalar mesons, one

has to do detailed calculations, especially given
the absence of a conclusive Mandelstam-counting
argument.

We have found that in an Abelian U(1} model
with SBS in which the vector meson does not Reg-
geize, it is Possible to Reggeize the scalar meson

by coupling in a fermion-antifermion channel. This
is the first time, to our knowledge, that the factor-
ization of the Born amplitude at J= 0 has been re-
ported. This is in contrast to the results found

by Gell-Mann et al. ' In their U(1) model without

SBS, the scalar fails to Reggeize.
In an SU(2)-gauge model, we have found that the

I= 2 amplitudes factorize at J=0, and the presence
of (high-isospin) fermion-antifermion states does
not spoil this factorization. The I= 0 amplitudes
do not factorize in this model, and the scalar
particle fails to Reggeize. The situation improves
when we consider a U(2) model, together with

coupled fermion-antifermion states. We find that
the factorization of the I= 2 amplitude persists,
and that for a special choice of the parameters of
the theory, it is possible to factorize the I= 0
amplitudes. However, this model contains an
additional I=1 scalar meson which does not seem
to lie on a Regge trajectory. We note that in this
model in addition to the I= 2 channel there are
other channels which do not contain an elementary
particle, but do have Kronecker 6' s at J= 0 in
second-order perturbation theory because of spin
in the external lines. We find the nontrivial re-
sult that in all such channels Reggeization seems
to occur, the Kronecker 6's being turned into non-
sense-choosing Regge poles (cf. Appendix A of
paper I). We have not succeeded in finding a model
for which the amplitudes factorize for all channels.

In Sec. II we give a detailed discussion of a U(1)
model and a convenient method to treat the effect
of additional channels. We show that with con-

straints on the free parameters of the theory and
the aid of the fermion-antifermion channel the
J=O a,mplitudes factorize. In Sec. III, an SU(2)
model is discussed with the emphasis on the I= 2,
J=0 amplitudes. In the same section we give a
brief discussion of the I=O, J=O amplitudes, why

the factorization fails, and why we are led to the
U(2) model. In Sec. IV we discuss the U(2) model
and why we need the fermion again, while in Sec. V
we discuss all the other channels in the U(2} mod-
el. In particular we point out that the presence of
high-isospin fermions will not spoil the I= 2 fac-
torization found in the SU(2) model. We close in
Sec. VI with some conclusions and speculative
remarks.

There is considerable algebraic complexity in
our calculations. We must deal with matrices of
increasing size and thus find it. convenient to use
a super-matrix notation wherever possible. The
entries in our matrices are labeled by the helicity
states of the channels, with the labeling nn, sn,
and ss used to denote the submatrices connecting
nonsense to nonsense, sense to nonsense, and
sense to sense states. For instance, in vector-
vector scattering B„„will denote the two-by-two
symmetric matrix of the Born-approximation
helicity amplitudes (011T101),(011T11-1),
(1 —11TI 1-1).

Our strategy is basically the following: For a
given system we compute at J=O the sense-sense,
sense-nonsense, and nonsense-nonsense matrices.
If the system has an s-channel pole, we check the
necessary condition that the nn matrix have an
eigenvalue which vanishes at the position of this
pole. If the condition is satisfied or if no s-chan-
nel pole is present, we check the actual factoriza-
tion condition. This check is facilitated by the
following statement which is not difficult to prove':
A necessary and sufficient condition for factoriza
tion to hold is that the rank of the whole Born aP--
proximation matrix be equal to the rank of the
nn matrix.

II. U(1) MODEL

Consider U(1) as a local gauge group, ' with V„
the gauge field and Q a complex charged scalar
field with charge &g. We arrange the interaction
and mass of the scalars such that P acquires a
vacuum expectation value (Q) = v/v 2, and write
P=(1/v 2)(v+o+iv) In the unita. ry gauge, the
relevant interaction Lagrangian is

2 2

Zz= ~gmgV '+8g'g'V ' ——,'g—g' ——g —g'

(2.1)

where m and p, are the masses of vector and sca-
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lar mesons, respectively. There are three two-
body channels: vector-vector, scalar-scalar, and
vector-scalar. Only the first two channels are
coupled, and they contain a scalar-meson pole in
the s channel.

Let us discuss the V- V channel first, and denote
by S„S„andS„the scalar-meson exchange terms
for the s-, t-, and I-channel exchanges, respec-
tively. The total contribution to the amplitude is
S, +St +S„, but S, only contributes to the sense-
sense transitions. We denote by X», Y„and B
the ss, sn, and nn matrices, respectively. They
are

is two. Factorization must therefore fail in this
model. However, if there is a coupling to addition-
al two-body channels (denoted collectively by I'}
which contain a nonsense state, and if the enlarged
Born matrix for this coupled-channel process still
has rank three, while the rank of the enlarged
nonsense matrix has increased from two to three,
factorization will succeed. Equivalently, we can
check factorization directly as follows. Let V and
U be the I'- I' and I'- VV nonsense-nonsense
matrices, respectively, and Z the l - VV sense-
nonsense matrix. The factorization of the VV-VV
channel now requires that

m' 1m z,
( 11)11,11 2 2 k2

( )
2E —m Ez,

(2E' -m')' E'(E'z, 2k')—
(s —p, ')m' m'k'

(2.2a)

(2.2b)

(2.2c)

Utx„=(Y,z) (Y,z)',

which can be written as'

X„=Y,B 'Y, +(Y,B 'U —Z}(V-UB 'U )

x(UB 'Y —Z')

If we can find a set of channels I' such that

(2.'I )

(2.8)

1 mEz,
(YI)11,01 k2

. 1 m'z,
(Y,)111 1=-2

v2

E2
(Y,)M, , = v/2k2 z»

1 2E'z, —k2
01 01 2 k2

.m Ez,
Boi i-i--i

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.4a)

(2.4b)

(2.4c)

S, = (Y,B 'U' —Z)(V —UB 'U') '(UB 'Y', —Z'),

(2.9)

then the factorization in the VV- VV channel will
succeed. (On the other hand, once factorization
has been achieved for some system with a fixed
number of channels, the addition of further chan-
nels containing nonsense states will not spoil the
original factorization only if terms of the type
Y,B 'U'- Z, are zero. Note that this is what oc-
curs in the I= 2 sector discussed in Sec. V. For
a discussion of the meaning of such a result see
Ref. 7.)

In our search for suitable channels I', a natural
candidate appeared to be a fermion-antifermion
two-body state. In this U(1) model the only renor-
malizable interaction Lagrangian which couples in
a fermion of mass M is

with k the c.m. momentum, E'=k'+m', s =4E,
snd z, = (p2//2k2)+1. For simplicity, we shall
henceforth take the gauge coupling constant g= 1.

From Eqs. (2.4), we find that

deta ™2k2' (2.5)

We conclude that the nonsense-nonsense matrix
is of rank two and does not have an eigenvalue
which vanishes at s = p, ', so that factorization is
not satisfied. To see this explicitly, a simple cal-
culation leads to

agyr„yV„, (2.10)

v 2mE'
1)1/2 -I/2, 0 -I iifk2p (2.11a)

where n is the ratio of the fermionic charge to
the scalar charge Note th. at in U(1) gauge theory
+ can be any real number.

We denote the contributions to U, V, and Z from
the I"E channel by a'U„a'V„and a'Z, . They
are

(Y,) (B ')..(Y,)., = (X„),—(S.).. . (2 8)

where S, are the s-channel pole terms of Eq. (2.2).
We also note that the rank of the whole Born

matrix is three, while that of the nonsense matrix

i&2E(2E' —m')
1)1/2 -I/2. 1 -I i}fk2p

1 E'
( 1)1/2 -I/2, 1/2 -I/2 2 M2p2 t

(2.11b)

(2.12)
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m E
( l}l/2 -1/2, 11 MQ2p t (2.13a)

1E'
Hl, l 2y2 s (2.18c)

2m E
( l}l/2 -1/2, 00 My2p

(2.13b)

where P is the c.m. momentum of the FF state.
With the observation that

2E m
Y,B 'U, —Z' M 2 2E2 (2.14)

and 1,, 2E' s -m' 1
Q

2vl-U1B 'Ul-M2 2 2 +3-. 2MP m 4Q

2(m' —p, 2) ~z
m2

(2.15)

with z0=1+m /2k, we find that the conditions

a= — m =p.2 1 2 2

12' (2.16}

VV VV
FF —FF (2.17)

factorizes and has rank three under the conditions
(2.16}. We list the relevant matrix elements in
the Appendix for the interested reader. Three
Regge trajectories are generated in this model.
One of them passes through J= 0 at s =m' and
chooses sense, while the other two choose non-
sense. We encourage the reader to check this and

get some appreciation of these nontrivial results.
Next, let us consider the Vo-Vo channel. As

observed in paper I, this channel has a Kronecker-
6 contribution at J=1, but only has sense states.
The 2x2 sense-sense matrix has rank one, but the
implication for the Reggeization'of the Abelian vec-
tor meson is still an open question. This channel
has also Kronecker-6 contributions at J= 0 with

one nonsense state. We found that the 2x2 Born
matrix H for Ve- Vo factorizes at J= 0 only under
the condition p.'=m'. For this equal-mass case

will give the desired factorization. One can always
redefine g so that the fermionic charge +g becomes
an integer or 3 of an integer to make it look more
physical, but that is not our concern here.

We note that satisfying Eq. (2.9) is not sufficient,
since the entire Born matrix must factorize. We
have checked that the 7X7 Born matrix for the
coupled processes

and one nonsense-choosing trajectory is generated.
The introduction of the fermion will not change this
result since there is no direct coupling of the sca-
lar and fermion in this model. It might be signifi-
cant that this channel has the same quantum num-
bers as those of the scalar meson which has been
"gauged away" in the U gauge after SBS.'

We have demonstrated that with the aid of the
FF channel, one may Reggeize the scalar in the
U(1) model. Since the fermions Reggeize in this
model, if we could Reggeize the Abelian vector
meson, the model would be completely Reggeized
to this order. (We emphasize the fact that we have
no reason to believe that Reggeization will in fact
take place in higher orders since there is no
Mandelstam-counting argument to support such a
belief. ) In Sec. III we turn to a model where the
vector mesons do Reggeize and investigate the
possibility of Reggeizing the scalars.

T0= (3S,+S, +S„)+2(V, —V„),

T, = (S, +S„)—(V, —V„) .
(3.1)

Except for the factor of 3, the scalar-exchange
contributions are those of Eqs. (2.2)-(2.4). We
list below the contribution of V, —V„:

, 2E'+3m'
(Vt V„)1, „=+m 4I4

2E4 —E'm'+4m'
11400 2a4 7

(3.2a)

(3.2b)

'7E m +4E m 4m
(Vt —Vtt)00. 00 2I 4

(3.2c)

III. SU(2) MODEL

The Lagrangian of the model is displayed in
Eq. (2.1) of paper I. It describes an isotriplet
of vector mesons p and an isosinglet scalar meson
o. The 9orn approximation for p- p scattering con-
tains contact terms, vector-exchange terms, and
scalar-exchange terms. We call combinations of
the first two terms V„V„and V„and the scalar
exchanges we denote by S„S„andS„for exchange
in the s, t, and u channels, respectively. At
J=O, p-p scattering has contributions in both the
I=O and I=2 states. The amplitudes are given by
the following combinations:

m2
H a'' (2.18a) ~ Em(2E'+ Sm')

ll, 01 4u4 (3.3a)

1 mE
01 ~2 y2 (2.18b) (Vt —V2)„, , = iV 2m— (3.3b)
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~ Em(3E'+2m')
t tf 00201 2u4

(E2+4m2)zp
(V, —V)pp I I +is 2

(3.3c)

(S.Sd)

E'+5E m -m
t tt 01,01 2a4

(3.4a)

.5Zmz,
( t Vtt)01, 1 -I 2 )'22 t (3.4b)

8E 3m
(Vt tt)1-1,1 I P2 0 ' (3.4c)

Consider first the I= 2 channel. Although the
separate terms (S, +S„)and (V, —V„) have bad high-

energy behavior, the combinations given in Eq.
(3.1}satisfy unitarity bounds, and the Born approx-
imation factorizes. The 2 x 2 nonsense-nonsense
matrix has rank two, and as discussed in Appendix

A, Eq. (All), of paper I it generates two nonsense-
choosing Regge trajectories. If we set the vector
and scalar masses equal (in tree approximation),
the rank of the matrix reduces to one. In this case
only one nonsense-choosing Regge trajectory with
I= 2 is generated, and it passes through J= 0 at
s =m'.

Now consider the I=O, J=0 amplitudes. The
sense-sense matrix has the o-meson pole, so that

as a first check of possible factorization one eval-
uates the determinant of the 2X 2 nonsense-non-
sense matrix to see if it vanishes at s = p. '. It
turns out this is not the case even if one set
m' = p. '. In this model, as in the U(1) model with-
out fermions, factorization fails at I=0, J= 0 and

the scalar meson does not lie on a Regge trajec-
tory. Explicit calculation shows that the whole

p p -p p helicity matrix at I= 0, J= 0 has rank four,
while the nonsense-nonsense matrix has rank two.
Just as in the case of U(1}, we must couple the

p p channel to other two-body channels to increase
the rank of the new nonsense-nonsense matrix to
four. This has led us to the consideration of the
U(2) "extended spectrum" model of Gervais and

Neveu. '
In the I= 1 po-po channel there are Kronecker-5

contributions at J= 0 but no s -channel pole. Just
as in the U(1) case, the 2x 2 Born helicity matrix
factorizes if m'= p, '. From now on we will discuss
only the equal-mass case unless stated otherwise.

IV. U(2) MODEL

This model is similar to the SU(2) model dis-
cussed in Sec. III, but has an additional isoscalar
vector meson co and isovector scalar meson s.
The interaction Lagrangian in U gauge is

gt -—-g S „p,x p „~p„——' g ( p „xp)' + 2 g m o (td „+p „)+ g m tdp ~ s + 2 g p &
~ s x S „s+ 2 g '(o' + s ) (&II

&
+ p „')

+ —,'g '
p „~spl „o——,

'
g —"(o2 + So s ') —,—', g ' —",[o '+ (s')'+ 6o' s '], (4.1)

where m and p. are the masses of vector and

scalar mesons, respectively. We have discussed
the situation at J = 1 in paper I, where we argued
that the p Reggeizes, with no information as to
the Reggeization of the co. At I= 0, J = 0 both the

p p and coco channels have two distinct nonsense
states. Let us denote by A. , B, and v 3 B the p p-p p, coco - coco, and coco -p p nonsense-nonsense
matrices, respectively, so that the entire non-
sense-nonsense matrix is

(A ~SB)

B B
(4.2)

The matrix B is the same as in the U(1) model
[see Eq. (2.4)]. The matrix A can be read from
Eq. (S.l). As we discussed earlier, factorization
in the p p -p p channel demands that the determin-
ant of N have a zero at s = p, ', and that N be of
rank four. In fact, one obtains the desired zero
for detN at s = p, if p, = m, but the rank of N is

only three. Thus factorization still fails, since
the rank of N is less than that of the complete
Born matrix. Detailed calculation shows that one

can express the result in a way similar to Eq.
(2.3) of the U(1) case, i.e.,

(Y) (X-')„„(Y)„,=(X)„-3(S,)„, (4.3)

where Y=(Y„vS Y,), Y, and &SYI are the non-
sense-sense matrices of the pp-pp and coco-p p
processes, respectively, and X is the sense-sense
matrix of the pp-pp channel. The matrix Y, is
the same as in the U(1) model [see Eq. (2.3)]. The
matrices Y, and X can be read from Eq. (3.1).
This result again suggests that we consider the
coupling of a fermion-antifermion channel to this
system.

To obtain (4.3) a technical note is in order. In
the equal-mass case, m' = p, ', detN = 0, and N
will not exist. However, Y annihilates the eigen-
vector belonging to the zero eigenvalue of N, so
that the inversion of (4.3) can be carried out in
the orthogonal subspace corresponding to the non-
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singular part of N.
Let us introduce a fermion with mass M and in-

teraction Lagrangian

&r =sty„(»„+T'p&) 0 (4.4}

where T is the appropriate isotopic-spin matrix
and ag is the coupling constant of the fermion to
the ur. [Note that n can be any real number, so
that the interaction (4.4) reduces the group U(2)
to SU(2)x U(1).] The complete nonsense-nonsense
matrix for the I=O, J=0 part for the reaction

Y B- U -Z~) (P }
V -U~B- U

x(Y B 'U'-Z ) .
By comparing to (4.3}, we see that the first term
of (4.7) will reproduce all of the p p- p p sense-
sense amplitude except for the pole term 8, . We
therefore require that (4.9) reproduce the pole
term. We note [cf. (2.8)] that it already has the
correct residue of the s-channel pole. From the
requirement that it have the correct pole position,
we get the condition

1s

PP pp

CO(d ~ QP (d

FF
i

FF

N U'

(4.5)

~+ 3(p —y)' = 12y'. (4.12)

pp

For given isospin n can be calculated from Eqs.
(4.7) and (4.11). For instance, for I=0, we find
n= —,'. By using this condition one can check (with
effort) that the whole 12x12 1=0 matrix of

where U = (W3P U„y U,). The sense-nonsense
matrix for pp-(pp, &u&o, and FF I is

FF } ( FF

V =(Y, &3 pZ, ) . (4.6) SS SS

p = —,
' [I(I+ 1)(2I+1)'I'],

y = n'(2I+ 1}'I',

Z = c.' I(I + 1) .-
We can write a result similar to Eq. (2.8):

V V„„'V„,= YN Y'

(4 7)

+(YN 'U'-v3 PZ, )(AV —UN 'U') '

In the above P, y, and A, depend on the isospin I
and coupling parameter n of the fermion in (4.4).
We find

factorizes and is of rank four. Four trajectories
are generated; one choosing sense and three
choosing nonsense. We will list the complete
12X 12 matrix in the Appendix for the interested
reader.

V. OTHER PROCESSES IN THE U(2) MODEL

We discuss in this section the situation at J=O
for the various channels of the U(2) model. To
begin with, we list all possible two-body states
that communicate with each other in the Born ap-
proximation. There are six sectors:

Now

x(YN 'U'-v3 pZ, )'. (4.8}

+ oY, B 'U, —PZ, ], (4.9)

UN 'U'=3(p —y)~U, (A —3B} 'Uj+ y U, B 'U', .

YN-'U'-&3PZ, = v3 [(Y, -3Y',)(A-3B)-'(P -y) U',

I =0: pp, ~(gp, FF, go', s s;
I =0: ps' QJV~

I =1: vp, ps, FF, so;

I = I: per, us;

I =2: pp, FF, ss;
I =2: ps.

(5.1)

(Y —3Y,)(A —3B) ' U,
' = Z, ,

U, (A —3B) 'U,' = —V, .
(4.11)

The second term of Eq. (4.7) therefore becomes

(4.10)

Explicit calculation gives the interesting relations

We have calculated and displayed in the Appendix
the relevant Born-approximation helicity ampli-
tudes for these sectors, and checked whether fac-
torization holds. Here we only discuss the re-
sults.

As already discussed in Sec. IV, factorization is
established for the I =0 pp, sou, FF, cro, and ss
channels if the condition given by Eq. (4.11) is
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satisfied. The sector has a complete Born ampli-
tude expressible as a 12X12 matrix of rank four.
Four Regge trajectories are generated, with one
of them choosing sense and three of them choosing
nonsense. The I =0 ps, ~v and I =1 po, us sectors
also factorize just as in the Vo sector of the U(1)
model. The 4X4 matrix for each of these two sec-
tors is of rank one, and one nonsense-choosing
Regge trajectory is generated. The results are
similar to that of Eq. (2.19). As discussed in Sec.
III, the I = 2 sector of the p p amplitude also fac-
torizes. In the unequal-mass (equal-mass) case,
the nonsense-nonsense matrix is of rank two (one),
and two (one) nonsense-choosing Regge trajectories
are generated. In the U(2) model, with the cou-
pling of the FF channel with fermion isospin I ~1,
the I = 2 p p, FF, s s sector is described by a 7X7

matrix, and the rank of the nonsense-nonsense
matrix is increased to three (two). There is no

obvious reason for the factorization to persist.
However, one can show using the identities (4.11}
that the factorization still holds, the VxV matrix
is of rank three (two), and three (two) nonsense-
choosing Regge trajectories are generated. This
remarkable result leads us to believe that the
Reggeization might persist in higher-order calcu-
lations. Similarly, in the I =2 ps sector, the
2&2 Born matrix also factorizes and is of rank one

(in the unequal-mass case), so that one nonsense-
choosing Regge trajectory is generated. In the

equal-mass case the amplitude is identically zero.
However, factorization fails for the I = 1 (&up, p s,
FF, so) sector (for any coupling strength of the
fermion}. [As in the I =2 case, the fermion gives
zero contribution in the sense that FB 'U' —Z =0,
cf. Eq. (2.9).] This means that the scalar meson
s does not lie on a Regge trajectory. So far we do

not have any general explanation to offer for these
results. It therefore remains an open question
whether the enormous calculational effort required
to obtain these results can be encompassed by a
general analysis on the order of Mandelstam's
counting argument, which is so valuable in under-

standing Reggeization at J= 1 and —,'.

VI. CONCLUSION

In this paper we have discussed the Reggeization
at J=O of some typical renormalizable Abelian
and non-Abelian gauge models. Mandelstam
counting suggests that in general the scalar states
need not Reggeize at J =0, although they might
for some special values of the parameters of the
theories. We have investigated this possibility
and we have achieved some partial success, a
summary of which follows.

(i) We find that sectors which contain elementary

scalar mesons (o and s) are difficult to Reggeize.
It is possible to factorize the Born matrix in the
scalar meson (o) sector in theories whose gauge
grouP contains a U(1) subgrouP and fennions which

are coupled with a special value of the coupling
constant to the Abelian gauge mesons. We have
demonstrated this explicitly in a U(1) and a U(2)
model. The generalization of this result to U(n)

should not be very difficult. We have not succeeded
Reggeizing the s scalar meson. Higher-order cal-
culations should shed more light on the question
of Reggeization of the e scalar meson and the pos-
sible persistence of our findings from lowest or-
der.

(ii) High-isospin (e.g. , I =2) J'=0 sectors seem
to readily Reggeize, without any constraints on

the parameters of the model. We believe that sim-
ilar results will be encountered when arbitrary
gauge models are discussed. We also believe that
calculations performed in higher order will not
change the conclusions derived from lowest-order
calculations.

(iii} In the sectors defined by the quantum num-

bers of the scalar mesons that are gauged away in
the U gauge, the J=0 Born matrix will factorize
if p' =m' in both the U(1) and U(2) models consid-
ered. This might have some significance in that
it is possible that there is some relation between
the Reggeization of the po sector at J=O and J=1."
If this is the case, the analogous situation in the
uv sector would suggest that & would Reggeize at
J= 1. So far we have not been able to find non-

sense states which can generate a Regge trajectory
for an Abelian vector meson.

We conclude with some general comments.
(a) Recently one of us (H.S.T) and Lee, Rawls,

and Wong" have separately arrived at the conclu-
sion that the requirements of factorization of the
Born matrix at J=1 give the same constraints on

the Lagrangian as those found from the require-
ment of unitarity bounds in generalized Lagrangian
theories containing vector mesons. In fact, these
requirements demand that the theory be of SBS
type for the non-Abelian sectors of the theory.
However, not all SBS theories Reggeize all vector
mesons because of the absence of a sufficient
number of nonsense states with the U(1)-gauge
model as a trivial example. The requirement of
the Regge factorization condition is thus more re-
strictive than that of unitarity bounds, since fac-
torization demands that the rank of the complete
Born helicity matrix be equal to that of the non-
sense-nonsense matrix. There is no reason to ex-
pect that the requirement that the unitarity bound

be satisfied will give some information about the
rank of this matrix.

(b} We feel that our examples shed some light
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on the Mandelstam argument, and the two aspects
it emphasizes: good high-energy behavior and
counting of constraints and free parameters. At
J=1 or J=-,' the counting conditions indicate that
Reggeization should take place, and the fact that
it does in examples with renormalizable field theo-
ries and does not in nonrenormalizable ones illus-
trates the importance of good high-energy be-
havior. (However, good high-energy behavior for
J=1 is not sufficient to guarantee Reggeization if
Mandelstam counting does not hold, i.e., when
there are more elementary vector mesons than
the rank of the nonsense matrix. ) At J= 0 our mod-
els have good high-energy behavior but the counting
conditions do not hold, and indeed we find that
Reggeization will not take place in general.

The fact that we can achieve factorization for
special cases (equal masses or special values of
the coupling constant) might be considered an ac-
cident which will disappear when higher-order cal-
culations are performed. Yet minor miracles take
place which might support some faith in persis-
tence of Reggeization in higher orders: It may be
an accident that in the U(2) model with fermions
one can factorize the I =0 p p part of the Born ap-
proximation. But it is remarkable and unexpected
that the condition which ensures the above factor-
ization leads to factorization of the whole 12x12
matrix for the I =0 pp sector. Similarly, the fac-
torization of the I =2 p p amplitude would actually
be destroyed by the coupling of the fermions were
it not for the identities (4.8). There is no obvious
reason why they should hold. Nonetheless, in the
absence of Mandelstam counting, explicit higher-
order calculations are required to shed more light
on the question of Reggeization at J=O. The whole
matter will be discussed further in a future publi-
cation. '

(c) It is not clear what relations our results have
to the real world. Our finding that spin-1 and spin-
—,
' particles Reggeize is consistent with a phenom-
enological interpretation of observed Regge tra-
jectories. However, few scalar particles have
been observed in nature, and this fact, together
with the difficulty we have in Reggeizing scalars,
suggests that a phenomenological interpretation is
not complete. We have discussed elsewhere the
relevance of our findings to the bootstrap of low-
spin particles. "

(d) We have emphasized the role that the scalar
meson plays in bringing the high-energy behavior
of vector-vector scattering within unitarity bounds.
It is conceivable that in theories now being consid-
ered with "color" gluons and quarks" one could
dispense with the scalars. In such theories, mas-
ses would arise from dynamical symmetry break-
ing, "and good high-energy behavior would be

achieved without scalar-meson exchange, with all
observed particles composite and lying on Regge
trajectories S. ince this cannot be studied in per-
turbation theory, there is no obvious way in which
our findings are related to this possibility.
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APPENDIX

In this appendix, we list the matrices V„, V,
and V (see Appendix 3 of paper I for their def-
initions) for the processes we discussed in the
main text.

1. U(1) mode1

vv fx„
V„=FF & X21

oo (X„'
a X,2
e'X22
X32

x„)
X23

X22 /

(Ala)

VV FE ao

VV Y, a' Y2 Y3
Vna =Fy &2Z Z Z (Alb)

VV FF
VV B 'U,
FE e'U, e'V, (Alc)

m'
( 12)ll, l/2 1/2 y2p t

(
-2m

11)00, 1/2 1/2 $2p

1
( 22)1/2 1/2. 1/2 1/2 2p2 )

=-3 '
( 13)0,11 s 2222 2/2 t

-3(2Z'-m') m'
13 0 00 m2 k2

(A2a)

(A2b)

(A2c)

(A2d)

(A2e)

(A2f)

The matrices X11 Y1 Z1 and V have already
been given in the text [Eqs. (2.2), (2.3), (2.4),
(2.11), (2.12), and (2.13)]. Since there is no direct
scalar-fermion coupling, X» =X» =Z, =0. We list
below the remaining entries (in the equal-mass
case, p,

2 =m'):
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WsmE
( Y2)01,1/2 1/2 k2p

i-2(2E'-m')
2 1 1, 1/21/2 k2p

(Y,)„=—

(Asa)

(A3b)

(Asc)

The matrix II has been given in Eq. (2.19}.
(c} 1=2 pp, FF, ss; I=2 ps sector. The pp-pp

amplitudes can be read from Eq. (S.1}. pp- FF,
FF-FF is essentially the same as in the I=0 case
except for isospin factors. All other processes
are zero in the equal-mass case.

(d) I=1, po/, ps, FF, so sector.

1 2g -m
(Y2)1 1=-i—

1 E
2)1/2 1/2, 1/2 -1/2 2 MP2

'

2. U(2) model

(a) I=0 pp, 0/&u, FF, oo, ss sector.

(A3d)

(Ase)

P(d

~p& t x„
ps FF so

Xi4 aXi2 Xi3

0 bX22 0FF aX2,

sv X3, X34 0 X33

ps X~ X~ 0 X
V„= (A6a)

pp
(d QP

V„=FI'
O'0

ss

pp

X~
Dsx„
Rs px„
Wsx„

SX3,

Hsx„
Xi,

yX2i
X~i

Dsx„

Ws px„
yXi2
AX22

X32
Hsx„

isx„
Xi3
X23

X33
Hsx„

ss

SX„
Wsx„
Dsx„
&SX22
3X33

P(d

V„, =ps

FF

p~ ps FF so

Y, Y, aY, Y,

Y,' Y~ 0 Ys

aY, 0 bZ, 0

(A6b)

pp (d(d FF

pp t Y, vt3Y, WspY2

V„,=&4//4/ v 3 Y, Y, yY,
FF (~SPZ, yZ, LZ

(A4a)

ss

WSY, SY
Y, &3Y,
Z', WSZ', i

'

P(d

V~= ps

p(d ps FF
B U2' aU)'

U, V, 0 (A6c)

(A4b) where a and b are functions of I and n:

PP

pp/ &
V =0/&o v SB

WSB WSPU, )
Ut

yU, ~V, j
(A4c)

a=a',
b = u —1+I(I+1};

4&2kE 1 E(2E -m2)
&-m' 1/2 k'

(A7}

(A8a)

Most of the amplitudes in this model can be
readily obtained from those of the U(1) model. For
most processes the only differences are because
of isospin factors. The other major difference is
the existence of p meson self-interaction, which

gives additional contributions to the pp- pp ampli-
tude. The matrices A. , Y, Xpo can be obtained from
Eq. (3.1).

(b) I= 0 ps, 0/o sector and I= 1 po, &us sector. The
complete Born matrices are

4&2kE(2E -m )
14 OOI 0 m2(e m2)

&2E(2E —5E m 4 4m4)
m'k' 7

4k2 2(2E2 +m2}
44 O, O e 2

6&2kE &2E
s-m' k

(A8b)

(A8c)

(A8d)

PS 470'

ps SH SH

PCT Q)S

td2 (2 H )

(A5a)

(Asb)

(,)
m(2E —3m')

( Y,)
m(E' —2 m')

1 0021 k3 t

m'
( Y4)o1. o

=
k2

(A9a)

(A 9b)

(AQc)
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. E(2E' -m')

2v 2Em
4 i, o

( yl) ~
m
a '

(Agd)

(A10a)

(A10b)

—E(E' —2 m')
(U2)oi. i ~2yo

—im(2E'-m')
2 1-1,1

Q2 2

(V,), , =

(Al la)

(Al lb)

(A 11c)

and All the other quantities have already been defined.
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