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does not have Regge behavior. In addition, the
model lacks an odd-G-parity ground state, and
hence resembles a world in which G parities
have been reversed. As the model stands, there-
fore, it is not suitable for building a realistic
model of hadrons. What is interesting, however,
is the mechanism by which the zero-mass vector
particle apparently either does not exist or de-
couples from the model. Perhaps a more real-
istic model will incorporate the features which

allow for the elimination of the zero-mass vector
particle.
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If there is an additional conserved quantum number, the charm, then the relative parity
between the charmed and uncharmed states is not measurable. This leads to a symmetry
operator W, which turns out to be a finite rotation in SU(4) xSU(4). The existence of W
restrains the pattern of symmetry breaking. Among a number of possibilities, the most
plausible is one in which SU(4) xSU(4) is first broken spontaneously down to SU(3) x SU(3)
x U(1). The latter is then broken both explicitly and spontaneously to U(2) x U(1).

I. INTRODUCTION

For a long time neutral currents have presented
an outstanding question mark in weak-interaction
theories. The situation took a dramatic turn re-
cently on two fronts. Experimentally, ' even though
the AS = 1 neutral currents are known to be very
severely suppressed, first indications of the AS =0
neutral currents seem to have been found. Theo-
retically, ' developments of a renormalizable gauge
theory of the weak interactions also call for the
existence of neutral currents. The absence of the
4S =1 part, however, sets very stringent boundary
conditions on theoretical models. To date the sim-
plest model which can account for these features

appears to be the SU(4) model of Glashow, Iliop-
oulos, and Maiani. '

In the SU(4) model, the charged weak currents
take the form

cl~
= g'r~ p (1 + 'rs) 5R~ tr ~

where the quartet quarks are

and the matrix 3R, is
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0 cos8 sin8 0
0 0 0 0
0 0 0 0
0 -sin8 cos8 0

The neutral current is diagonal, given by

J'„=qy„-,'(1+y, )Ã,q,

(3)

(4)

to isospin, hypercharge, and charm conservation,
given by the group U(2}xU~(1). The important
question is: How is the symmetry broken? If one
follows the corresponding considerations in SU(3)
xSU(3), one would assume that there is an explicit
symmetry-breaking term which transforms, under
SU(4) xSU(4), predominantly as (4, 4) +(4, 4). One
writes

t',';;;)
0 0 -1 0
0 0 0 1

(5)

If we take the quartet model seriously, then it is
natural to consider SU(4}xSU(4) as the symmetry
group of the hadrons.

Let us first establish our notations. 4 The gener-
ators of SU(4) xSU(4} will be denoted as

F; and F5, i =1, . . . , 15.
The combinations

(F;),= ,'(F;+F,')-

(6)

satisfy the SU(4) algebra separately, with

I(F,)„(F,) ) =0. (8)

I =F =
3 3

0 0 0
o-2oo0000
0 000

In the 4X4 representation, the diagonal generators
are given by

H =Ho+EH',

H = Qo+CQS+8Q g5 y

(13}

(14)

where e, c, and d are real constants, and u,
(i = 0, . . . , 15), together with v; (i =0, . . . , 15),
form the (4, 4) and (4, 4) representation of SU(4)
xSU(4). One might also assume, just as in the
SU(3) xSU(3) case, that as c-0 (i.e., no explicit
symmetry breaking), the vacuum is invariant, not
under SU(4) xSU(4), but under SU(4). This means
that physical states would form SU(4) multiplets,
even if SU(4) xSU(4) were exact. A major difficulty
with Eq. (13), interpreted in this way, is that it
predicts an abundance of charmed hadronic states
around 1 GeV. A way out was the suggestion' that
SU(4) is actually spontaneously broken down to
SU(3), so that, as c-0 in Eq. (13), the vacuum
state is invariant, not under SU(4), but only under
its subgroup SU(3). There will now be 21 Gold-
stone bosons, 15 of which are responsible for the
breakdown SU(4) xSU(4)- SU(4), and the other six
(charm carrying} are responsible for SU(4)- SU(3).

A model along these lines was suggested earlier. '
In fact, choosing c and d in Eq. (14) so that we may
write H' as a quark mass term of the form

H'=m~. d '6 '+m, XZ, (15)

2Y= ~F8=
(';o oo)

o 3

0 0 --, 0
0 0 0 0

(10)

and

1
4

z=('-}'"~,.= ' oo o)
4 0 0

1

o o,-'f
Z is related to the charm quantum number 8 and
the baryon number B by

G=-, Z+ —,'B.2 (12)

We will often denote by Uz(1) the one-parameter
group generated by Z. U(2) shall signify the group
generated by the isospin and hypercharge opera-
tors, with the global relation (-1) =(-1)".

The SU(4) xSU(4) symmetry shall be broken down

with

my /m z = 200, (16)

then shows this H' giving rise to charmed Gold-
stone boson masses of the order of 5 GeV. These
bosons will most probably interact with the exist-
ing uncharmed states to form massive charmed
states. The resulting hadronic spectra can then
be visualized as follows. In the range 0.5-2.5
GeV, we have the known hundreds of uncharmed
states. After a gap, there will again be hundreds
of charmed states, with masses in the range 5-7
GeV. As was already suggested, pair production
of these massive states could provide a natural
explanation of the rise of or(pp) at the CERN Inter-
secting Storage Rings (ISR) energies. ' It should be
emphasized that if the rise in or(pp) is due indeed
to the copious pair production of the charmed par-
ticles, then we expect cr~ to have a step-function
behavior. This is to be contrasted with theories in
which o~ rises without bound, such as a o~-lns
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behavior. We might also add that the existence of
massive charmed states gives a new mass scale
-10 GeV. This would lead to the breakdown of
scaling behavior at such energies. '

It turns out that assuming an explicit symmetry-
breaking term H' to be of the form in Eq. (14) is
by no means an arbitrary matter. ' As was pointed
out" earlier in the case of SU(3) xSU(3), there is
the general consideration of whether H' is well de-
fined. In fact, since a Priori we cannot fix the co-
ordinates in SU(4) xSU(4), H ' can suffer an arbi-
trary rotation R in the SU(4) xSU(4) space. Pro-
vided that there exists an R such that RH'R ' is of
the same form as H', but not equal to H', then H'
is not well defined. Mathematically, one is cer-
tainly free to choose H' or RH'R ' and build a
model accordingly. The important thing is that the
physical results from H' or RH'R ' are different.
To say that one can choose H' over RH'R ' (or
vice versa} amounts to assuming our a priori abil-
ity of fixing the coordinates in the SU(4) x SU(4)
space.

In Sec. II we establish the existence of a finite
rotation R = W=exp(i4vZ ) which meets the above
requirements. The physical meaning of this result
is discussed in Sec. III. It is found that W is the
symmetry operator which corresponds to the phys-
ical equivalence of the two parity operators P and

( 1)4~P In-theor. ies for which there is an explicit
symmetry-breaking term H'wWH'W ', P and
(-I)'~P would no longer be physically equivalent.
Finally, in Sec. IV we discuss the implications of
our results. We find that the pattern of SU(4}
xSU(4)-symmetry breaking is a very complicated
one. Excluding the possibilities of "unlikely" the-
ories, the conclusion is reached that SU(4) xSU(4)
is broken in two stages. First, SU(4) xSU(4) is
spontaneously broken to SU(3) xSU(3) xU~(1). Next,
in a different fashion, SU(3) xSU(3) xU~(1) is bro-
ken down to U(2) xU~(1}. This time the symmetry
breaking is in part explicit and in part spontaneous.

Before we go on, we wish to add a few remarks
concerning the nature of spontaneously broken
symmetries, in contrast with explicitly broken
symmetries. As has been emphasized, "spontane-
ously broken symmetries are not broken, but are
bona fide symmetries. (For this reason, "hidden
symmetries" is probably better terminology. } It
merely corresponds to symmetry realizations for
which the physical states do not exhibit multiplet
structures, so that they also do not form irreduc-
ible representations of the symmetry group. We
should emphasize that the association of multiplets
to symmetry groups is based on the application of
the superposition principle, which enables one to
construct (by superposition) physical states which
are also irreducible representations of the sym-

metry groups. In general, in situations for which
the superposition principle is inapplicable, sym-
metries will be hidden. Examples abound in clas-
sical physics. For instance, rotational symmetry
does not give rise to spherical bodies, nor does
parity produce mirror-symmetric objects.

II. EXISTENCE OF W' AND ITS PROPERTIES

3R 3R' = U~ '9R UL, .
Now, the operator

Z -=—,'(Z —Z')

has the 4x4 representation in SU(4):

(17)

(18)

1 04

0 1

o —;-f

With respect to SU(4)„ it is the identity. Thus,
the finite rotation

W =exp(i4wZ )

has the 4 x4 representation

(20)

-1 0 0 0
0 -1 0 0

W„= ~

0 0 -1 0000-1
(21}

W, =I ~

Also, since exp(i8wZ ) =1,
W2 = I.

It follows immediately that

Wu& W =Wu& W=-u;-1

(22)

(24)

Wvq W=-vg.

Returning to Eq. (13}, we find that if

H = Qo+cu 8+duj5 y

(25)

(26)

As far as the transformation properties are con-
cerned, the operators u; and v; may be written as
qA. ,q and iqA. ;y,q, where A., are the generalization
to SU(4) of the X matrices in SU(3). An expression
of the form Q;(a; u, +b; v;) may be written as
q~3gql, +qI. BR q„, where

2(I+r, )q, qR 2(1 —r, )q,

and II =p, (a;+ib, )A;. A rotation in SU(4) xSU(4)
may be represented by a pair of 4x4 matrices U„
and U~. Under the rotation, the transformation of
Q;(a; u, +b; v, ) is given by
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then

WH'W =-H'. (27)

Wu] W= -u;,

[Wi F, ] =[ Wi F I] = 0.
(36)

(37)

It is readily seen that W is in the center of
SU(4), and hence in SU(4) xSU(4). W thus com-
mutes with the whole SU(4) xSU(4) group:

[w, sv(4) xsv(4)] = o. (28)

[W j' ]=[W j"")=0

However, W does not commute with the parity
operator. In fact, noting that

(29)

PWP = P exp[ i2w(Z —Z ')]P
= exp[ i2v(Z+ Z ')],

we see that

(30)

WPW ' = WPW = WPWPP = (-1} P . (31)

The existence of W and its uniqueness may now

be readily understood by referring to a corre-
sponding analysis" "of SU(3) XSU(3). When we

have the symmetry group U(2) x Z„or isospin,
hypercharge, and parity invariance, there are two

physically equivalent parity operators —P and
(-1}2~P= (-1)"P. The symmetry operator connect-
ing them happens to be a rotation in the SU(3)
&SU(3) space:

W=exp(i2vl ),
wPw-' = (-1)"P

(32)

(33)

It is unique up to arbitrary (and uninteresting) ro-
tations around the I, and Y axes. Going over to
SU(4) xSU(4), one is dealing with the residual sym-
metry U(2) xU(1), or I, Y, and Z conservation.
The additional Z conservation induces yet a new

ambiguity in the parity operator, namely, P and
(-1)4~P. [Note that Z is normalized so that
exp(i8&Z) =1.] The symmetry operator effecting
this equivalence is now W= exp(i4wZ ), a finite ro-
tation in SU(4) xSU(4). It is unique up to rotations
around the I„Y, and Z axes. Mathematically,
W corresponds to the unique outer automorphism
of the group Uz(1} x Z„ for Z and parity conser-
vation.

In particular, W commutes with the electromagnet-
ic as well as the weak currents:

Since, under the assumption of Z and P conserva-
tion, there are two physically equivalent parity
operators P and (-1)4~P, W must be a symmetry
operator:

[w, H]=o. (38)

On the other hand, according to Eq. (36}, if the
symmetry-breaking term H '-(4, 4)+(4, 4), then

[W,H'] = H', -
H' up+cu 8+du y5.

(39)

(40)

P
I q& =+I q&,

then

P(w(q&) =w'P(w(q))

(42}

The existence of W as a finite SU(4) xSU(4) rota-
tion thus rules out an explicit symmetry-breaking
term which transforms like (4, 4) + (4, 4}.

If, however, there are explicit symmetry-break-
ing terms transforming differently, such as

H'-(6, 6)+6, 6) or (10, 10)+(10,10) or (15, 15),

(41)

then we can readily establish that [W,H'] = 0.
Therefore, W does not have any restrictive power
for these possibilities.

Because a (4, 4)+4, 4) term can be written as a
quark mass term, Eq. (38}may be said to imply
that quarks must be massless.

Equation (38) might appear surprising, all the
more so because it proves to be highly restrictive.
As was emphasized earlier, while it is very easy
to construct mathematical models violating Eq.
(38}, such models have definite physical implica-
tions. Namely, any such model, in which there is
an explicit symmetry-breaking term H' with
WH'W4H', entails the physical inequivalence of
the parity operators P and (-I}'zP.

On the other hand, even though [H, W] =0, it cer-
tainly does not follow that all physical states must
necessarily exhibit the W symmetry. Indeed, if
~ q) denotes the quartet quark states, and if we as-
sign "positive" parity to them,

III. PHYSICAL INTERPRETATIONS
= w[(-I)"P]

I q &

= -(W
I q&) (43}

W'=1,
WPW=(-1)' P,

(34)

(35)

In the previous section we have found a finite
SU(4) xsv(4} rotation W=exp(i4vZ ) with the fol-
lowing properties:

This means that quarks must have parity doublets
(( q) and W (q)) if it were to exhibit the W symme-
try. However, to the extent that only SU(3) multi-
plets are presumed to exist in the limit of Sv(4)
XSU(4) symmetry, and since W is a chiral rota-
tion, it is clear that W itself should be realized as
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a spontaneously broken, discrete, symmetry.
That is, while

[W,Hj=o (44)

physical states are not eigenstates of W. In par-
ticular, the physical vacuum is doubly degenerate,

W]0) = /O)~ [0). (45)

0 0 0

~i9 s
=

p p p p

0 0 0 y

(47}

then the term Q,. qA. ;qy; would give rise to an effec-
tive symmetry-breaking term of the form

H ' up+cu 8+du ys. (48)

Summarizing, under the assumption of no explicit
symmetry-breaking term in SU(4) xSU(4), the

quarks may acquire mass through the spontaneous
breaking mechanism. In this case, W, as part of
SU(4}xSU(4), is itself spontaneously broken.

IV. DISCUSSION

In this paper we considered the breaking of
SU(4}xSU(4). It is assumed that the symmetry
breaking is dominated by a (4, 4)+(4, 4) term or
the quark mass term. The existence of a finite
rotation W= exp(f4vZ ) with the properties

1Wu;W = -u&,

however, severely restricts the options of the
model. We found the following:

( 49)

As long as we have Z and P conservation, W is a
symmetry operator and there can be no physical
distinction between

~
0) and

~
0).

So far we have been considering the case when

there is an explicit symmetry-breaking term in

SU(4) xSU(4). It is found that the quarks must be
massless, according to Eq. (38). Let us now turn
to the case when there is no explicit symmetry-
breaking term. It is well known that the quarks
may acquire masses by coupling to a scalar-me-
son multiplet which has nonvanishing vacuum ex-
pectation values. The coupling itself is fully SU(4)
xSU(4)-symmetric. Thus the theory is also fully

symmetric. The asymmetry is introduced by
picking a particular vacuum state and a set of non-
vanishing vacuum expectation values. Explicitly,
let us consider a (4, 4)+(4, 4) scalar-meson multi-
plet y„ i = 0, . . . , 15. They will be coupled to the
quarks in an SU(4) xSU(4)-symmetric way:

g qX, qq, . (46)

If cp, develops the vacuum expectation values

(1) If SU(4) xSU(4) is broken down to U(2}xU(1)
exPlicitly, then the symmetry breaking cannot be
due to a term transforming like (4, 4)+(4, 4). In
this case, the quarks are massless.

(2) If SU(4) xSU(4) is broken spontaneously in to-
tal, and hence also the usual SU(3), then the quark
mass term is arbitrary. The "ur -Hamiltonian"
(original Hamiltonian) is entirely SU(4) x SU(4)-
symmetric. Symmetry breaking is induced through
the nonvanishing vacuum expectation values of a
(4, 4) +(4, 4) scalar-meson multiplet. The operator
W, while a symmetry of the Hamiltonian, is spon-
taneously broken. To these two possibilities we
now wish to add a third.

(3) SU(4) xSU(4) is broken in part spontaneously
and in part explicitly. Specifically, the symmetry
breaking is considered to occur in two stages.
First SU(4) xSU(4} is broken spontaneously down

to SU(3}xSU(3)xU(1). This will be induced by a
(4, 4) +(4, 4) scalar-meson multiplet, with the vac-
uum expectation value

0 0 0
0 0 0 0+ '~'), =
O 0 O O

0 0 0 a

(50)

It gives the (P' quark a mass proportional to a.
Next, SU(3) xSU(3) is broken down to U(2), in the

usual fashion. That is, there is an explicit sym-
metry-breaking term eH'. When e- 0, the vacu-
um is only SU(3)-invariant. We have now the chain
of symmetries:

SU(4) xSU(4)- SU(3) xSU(3) xU(1)- U(2) xU(1).

(51)

The symmetry operator W is then spontaneously
broken, since. it is contained in that part of SU(4)
xSU(4) which is spontaneously broken. Also, since
SU(3) is explicitly broken, the symmetry operator
W, described"'" and discussed in earlier works,
restrains the explicit symmetry-breaking term
eH' of SU(3) xSU(3). However, W itself is sponta-
neously broken.

Of the three possibilities listed above, which one
is the most plausible? It seems to us that case
(1), in which all four quarks are massless, is a
rather unlikely choice. We also believe that the
explicit breaking of SU(3) to SU(2) is called for. It
is true that a clear distinction between spontane-
ously broken and explicitly broken symmetry is
lacking. However, the success of SU(3} as a bro-
ken symmetry is based on perturbation calcula-
tions, using an explicit, small, symmetry-break-
ing term. These considerations make case (2) also
unattractive.
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In summary, we believe that the most plausible
picture of the broken SU(4) xSU(4) symmetry is
one in which the symmetry breaking occurs in two
stages. In the first stage SU(4) xSU(4) is broken
down spontaneously to SU(3) x SU(3) xU(1). The lat-
ter is then broken, both spontaneously and with an
explicit symmetry-breaking term, dominated by
(3, 3)+(8, 3), while maintaining the symmetry W,
which is itself spontaneously broken.

Even though this picture is rather complicated,
it does have a few nice properties. The physical
constraints that charmed states, if they exist,
must be very massive could be reflected in our
model by the quark mass relation mp
» (m &„mq, m~). This is easily accommodated
since mq. is generated in the first stage of the

symmetry breaking. From a group-theoretical
viewpoint, our analysis brings out the difference
between SU(4) and SU(3) when combined with pari-
ty. It renders less arbitrary the assumption that
SU(4) is spontaneously broken to SU(3), but SU(3)
is explicitly broken down to U(2). Finally, the
suppression of quark masses by the W operator
has another interesting feature. It may offer a
rationale for hadronic quarks to have a different
mass scale as compared with ordinary hadrons.
In deep-inelastic lepton-hadron scattering, very
light quarks or partons, rather than massive ones,
seem to be called for by the existing experimental
data. The existence of W could provide the mecha-
nism for understanding these phenomena.
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