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Strong-coupling limit of Regge trajectories in the P ladder model
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We extend to t &0 a technique, employing the Bethe-Salpeter equation, developed by

Chang and Rosner to study the strong-coupling limits of ladder-graph models. We are able

to calculate the first nontrivial t-dependent term in the trajectory function n (t) for Q

theory. The behavior of n(t) depends upon whether the exchanged particle is massless.
We also indicate how daughter trajectories may be calculated.

I. INTRODUCTION

The strong-coupling behavior g- ~ of Regge tra-
jectories in P' ladder amplitudes at t = 0 has been
widely discussed. The only known analytic solu-
tion is for massless-particle exchange (m=0) with
t= 0 given by Wick, ' Cutkosky, ' and Nakanishi 2

Large-coupling behavior has been studied by solv-
ing the Bethe-Salpeter (BS) equation approxi-
mately' and by investigating individual terms
in the sum of ladder amplitudes. '' Small-t be-
havior has been investigated by solving the BS
equation numerically and by examining individual

ladder amplitude terms with large coupling. '
In a recent paper, Chang and Rosner' developed

a. technique for studying strong-coupling limits
of ladder-graph models at t =0 using the BS equa-
tion in Euclidean coordinate space. In this paper
we wish to extend their method to study Q' theory
for t 40 for both massive- and massless-particle
exchange.

Briefly, Chang and Rosner's approach is the
following: At t = 0 the BS equation can be expressed
in Euclidean coordinate space as a fourth-order
differential equation which is O(4)-symmetric. The
equation is expanded in four-dimensional spher-
ical harmonics and the radial equation is studied.
The leading Regge trajectory o.(0) is determined

by the maximum allowed angular momentum n in

the t channel [ot(0) = n —1]. In the strong-coupling
limit, n is large and a first approximation to the
radial equation leads to a relation n= n(r), where
r is the radius of the orbit. The maximum n= no
= n(r, ) can be obtained, and the BS equation can
then be expanded about these values to obtain
inverse-g corrections to any desired order.

For t e0 the BS equation is O(2)-symmetric
rather than O(4)-symmetric. If we choose to work
in the c.m. frame the equation has the usual in-
variance under spatial rotations, but the radial
equation is now coupled to other four-dimensional
angular momentum states. ' Nevertheless we are
able to calculate n(t) in much the same manner as

was used to obtain o(0). More specifically, we

have obtained the first nontrivial t-dependent term
in the trajectory function in the strong-coupling
limit. The behavior of n(t) depends upon whether
the exchanged particle is massless. The main
results are given by Eq. (3.4) (m = 0) and (4.15)
(m ~O).

Associated With the calculation of a(t) is the

problem of determining its daughter trajectories.
A consequence of the O(4) symmetry at t = 0 is the
existence of daughter trajectories with n(0) = n —2,
n —3, . . . .' '" For t &0 this symmetry is broken.
The daughters do not have the same t dependence
as the parent and hence they are no longer spaced
one unit apart. We shall indicate how these daugh-
ters may also be calculated.

II. BETHE-SALPETER EQUATION

We begin by briefly indicating the derivation of
the differential BS equation we shall study. The
BS equation for a wave function is given by

[(2 P+p) —I ] [(2 P —p) —p, ] Q(P, p)

2

x(pt p )
(p p/}2 ~2 +~~

(2.2)

where m is the mass of the exchanged particles
and g is the coupling constant.

For t(4p. we can perform a Wick rotation on

P and P' to obtain

[(-p' + —,
' t —p, ')' + (p p)'] p(p, p)

d 4p I

,.(,„.K(p, p')e(P, p'). (2.1)

where P'=t is the square of the energy in the c.m.
frame, p is the mass of the particles forming the
bound state, and K(P, P') is an irreducible kernel
describing the interaction. For a Q' ladder am-
plitude the kernel is given by (Fig. 1)
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where p and P' are now Euclidean vectors. We can
Fourier-transform this equation and expand the
resulting coordinate-space equation in four-di-
mensional spherical harmonics. The detailed
transformation is given in Ref. 9 and we shall not
repeat it here. The term (P P)' breaks the O(4)
symmetry of the equation, and so the resulting
radial equation is necessarily a coupled one. How-
ever, by choosing the c.m. frame we preserve the
usual invariance under spatial rotations. The re-
sulting radial equation, derived in Ref. 9, is

(s —1) (n+1) -l (t+1)
2(s —1) (n+1)

1
f~.~+2 =

4(„~1)
(n+t +2) (n+l +1) (n -l +1)(n-l)

X
s(m+2)

l 1
fll II 2 4(n 1)

(2.8)

[(-p, '+ —,
' t —p')'+ p„' tf„' „]0„' (t, x)

= V(r) y„'(t, r),
(2.4)

(n+t)(n+l —1)(n-l -1)(n-t-2) 't'
X

n(n —2}

The potential V(r) is just the Fourier transform
of the kernel K(P, P '):

V(t) = ~K(P, O) e '~'*d p
(2s)' ' E..~

where P„' is the differential operator

1 —n2

dy idr' r (2.5)

m=o

, mK, (mr)
g ', 0.

(2. f)

n is the four-dimensional angular momentum, and
l is the usual three-dimensional angular momen-
tum. The coupling coefficients are given by

Equation (2.4) may be written in a form which will
later be convenient:

r ——2r ——n +1 —(p ——,t)r r — + r ——n +1 —(p, —&t)r Q„(r}
1 d ' d 2

y' g dr dy dr dr

d 2

r —+2r ——n'+1 t[f„' „P„'(r)—f„' „+,P„' „(r} f„',„,Q„'—,(r)]= V(r) Q„'(r) . (2.8)

The allowed l values are l =n-1, n-2, .. . . We
analytically continue Eq. (2.8) in n and l, leaving
n-l integral. We then concentrate on determining
the maximum n for a given t. To determine the
leading parent trajectory, we maximize n with
l =n- i. The first daughter trajectory is obtained
by maximizing n with l = n —2 (which may result
in a different s) and so on. At t=0 Eq. (2.8) re-
duces to the equation studied by Chang and Rosner. '
In that case the equation has no l dependence and
the maximum n value gives parent [o.(0) =t =n —1]
and daughter [a(0) =l = n —2, n —3, . . .] trajectories.

We shall consider the two eases m = 0 and m &0
separately.

the coupling coefficients, Eqs. (2.6), may be ap-
proximated by

[( — )( — )]' '
0(1~,)n

Our first approximation to Eq. (2.8) now becomes

III. m=o m m

In the strong-coupling limit n is large and we
obtain a first approximation to n by neglecting
the differential terms relative to n' in Eq. (2.8)."
For a finite A=n-t (A. =1 is the parent trajectory) FIG. 1. Ladder amplitudes in 431}3 theory.
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n' 2

+( ~ ~ t) (j)re &
V(y) 4))) ~= t((2g 1) (j))) " [(g 1)(g 2)]~/~ y)) ~ [g(y+1)])/2 y))-)(j

at

g
0 4»(+2 1 t)1/2

4»(g' —,' t)—

(3.4)

(3.5)

The right-hand side of (3.2) may be neglected
for large n provided neither (g:, nor &g+, is O(s)
larger than (j)„".We shall see later that this
proves to be a self-consistent assumption. There-
fore we have a relation for n as a function of r,

n'(r) = r' [V(r)]'/' —(p' ——,
' t) r', (3.3)

and for V(r) =g'/4»'r' (m= 0) the maximum value
of n is

The above expression for np was obtained for small
t by Chang and Yan s

We now proceed to calculate the O(1) correction
term to Eq. (3.4) by expanding Eq. (2.8) about n,
and rp. We will no longer be able to neglect the
l-dependent terms and hence must deal with cou-
pled equations. We begin by making a transfor-
mation of variables introduced by Chang and
Rosner, r=rpe' "p. As we shall see later, in-
cluding the factor 1/~n, makes the expectation
values of y and d/dy in Eq. (3.6) of order 1. After
multiplying Eq. (2.8) by r' and making the sub-
stitution rd/dr = v n, d/dy, we obtain

(
d4

2
2[s2+ 1 +(+2 1 t) + 2 82 / t)0)])s)4(~2 t) + 2 e29/et)ops

p dy4 4 p dy' ' dy

e[e' —1+()e' ——,'t)r, 'e'" e]') p"„(t,e) —r,'e ' V(r)("„(er),
2

—tr,'e" "o np +2 np
&

+1-n' "„„"p„" "t, y — "„„,p"„," t, y — "„,„„"„„"„t, y

(3.6)

For the moment, we assume that d/dy and d'/dy' are of O(1). We shall see that the resulting equation re-
duces to a harmonic oscillator, with the above assumption proving correct. With this assumption in mind
we keep only terms of O(n') or larger in Eq. (3.6). We substitute in (3.1), (3.4), and (3.5), and with some
rearranging obtain

d2—~~+/) y (tr)+8".„. ,. e) g '(tel,
8(p, —4t

([(X—1) (X-2)]~/ (J)"„2"(t, y)+[&(X +1)]'/ ++2 (t, y)) =2(no —n) p„"(t,y) .8 g' ——,'t (3.7)

Coupled to Eq. (3.7) we also have equations for P"„,» (t, y), with K = —X+ 1, —X+ 3, . . . , —2, 0, 2, . . . for odd
A,'s and K= —A. +2, —A. +4, . . . , —2, 0, 2, .. . for even A.'s. The lower bound on K comes fromthe requirement
that l =n- A. ~n+K —1. Using (2.6), (3.1), and (3.6) we can write an equation for (t)"„,»(t, y) (see Ref. 13):

+y &g+» (te y) + 2 & t
t f)e+» (te y)

j[(X+K—1) (X+K —2)] ' ' (t)"„,», (t, y) + [(A +K) (A +K+ 1)]' ' (t)„",»„(t,y))8 p —4t

=2(n, -n-K) (t)"„,»(t, y), K= —X+1, ..., —1, 0, 1, . . . . (3.8}

Equation (3.7) is.just a special case of Eq. (3.8)
with K=0. To solve Eq. (3.8) for a given n and
the states coupled to it we assume that the solu-
tion is of the following separable form'4:

y„",»(t, y)=P» '(t) 4"„-'(o,y),

K = —A+1 or —X+2, . . . , —2, 0, 2, . . . (3.9}
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with P", (t) =1 and P» (0) =0 for K 40. Taking

Po "(t)=1 for all values of t fixes the normaliza-
tion of the wave functions.

In writing Eq. (3.9) we have assumed that at t=0
&g+»(O, y) =0 for K40. This is not true I.n fact
there are nonzero solutions at t = 0 for n = n
—n, (n, =0, 1, . . . , A —1), corresponding to different

Lorentz poles. However, we shall show in the
Appendix that these solutions for different n„do
not mix at t x0 up to O(1/n) and so we may con-
sider the solutions for each n„separately as we
are doing here. Using Eq. (3.9), Eq. (3.7) may
now be written as

2(no —n) +, , ([(X—1) (X —2)] 't' p", (t) +[X(3+1)J' p2
" (t ) —(2A. —1)) g (y), (3.10)

8 /l

which is just the harmonic-oscillator equation having eigenvalues

E„=n —n+» {[(X—1) (A. —2)]' ' P":, (t) +[X(1+1)]' P," (t) —(2A. —I))=n, + ~16 /l —4t

n, = 0, 1, 2, . . . . (3.11)

Solving for n we obtain

n=4. . . „, 6, , ([(A.—1)(X—2)]' 'P":, (t)+[X(X+I)]'t'P2 (t) —(2X —I))—n, ——,'+O(1/n, ) .

(3.12)

What we have found is a family (one parent with daughters for each n, ) of Regge poles. Notice from Eq.
(3.12) that the daughter trajectories [o.(t) =n —A.; X ~ 2] are not spaced one unit apart for t NO because n
depends on A..

Equation (3.12) involves the unknown functions P", (t) and P," (t), but we have not yet made use of Eq.
(3.8). We can obtain a set of coupled algebraic equations for the coefficients p» (t) by putting Eqs. (3.9)
and (3.10) in (3.8). The resulting equations are

6 ' ItZ
[(~- I) (~-2)]"P", '(t)+[~(~+I)]"P," '(t)+ ~, ' +2K P"„'(t)

=[(A+K —1)(A+K —2)]' ' p»:2(t)+[(A. +K+1) (A. +K)]' ' p»+2(t),
K= —X+1 or —X+2, . . . , —2, 0, 2, . .. . (3.13)

In principle this set of equations is solvable. How-
ever, since they are nonlinear we are unable to
obtain an exact solution. For small t, one could
use these equations to generate a power series
in t for P", (t) and P2 "(t). We will not do that
here. and

n, = 1.4669 (g/4»m)'t' (4 1)

For the first approximation, we maximize n in

Eq. (3.3) using the potential V(r) =g'mK, (mr)/
4p r. The results are

IV. m 4 0 ro = 2.3867/m . (4.2)

We can see from Eq. (3.2) that the largest t-de-
pendent term in n can be obtained by substituting
p,
' —4 t for p,

' in the t=0 result. This is because
the term (2n'/r ) (p' ——,

' t) y"„isO(n) larger
than the right-hand side of Eq. (3.2}. Chang and
Rosner found for the m &0 case that n does not de-
pend on p' up to O(1/no). We will not repeat that
calculation here but merely quote the results so
that we may use them to calculate the first t-de-
pendent term.

For the second-order correction, r4V(r) is ex-
panded about its maximum, ~„ in terms of the
variable y introduced in the last section:

2

r4V(r) = » (mr}'K, (mr)

(4.3}

where
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4g2m2(u'=- —, r —[r4V(r)] =0.5759 .
4 g dr

Keeping terms of O(n') and larger in Eq. (3.6),
once again we obtain a harmonic-oscillator equa-
tion,

(4.4)

(4.7)

We must also include two more terms in the ex-
pansion of the potential in Eq. (4.3). We then ob-
tain

5

r'V(r)=n, 4 1 — — '„, + ', +0

and hence

E„=—,
'

(no —n'/n ') = (n, +-,') (u

(n„=0, 1,2, . . . ; (u=0.75886) (4.5)

where

(4.8)

= 0.4049,

n =1.4669 (g/4vm)'~' —(n„+-,') (u+O(1 /s) . (4.6)

As in the t=0 massless exchange case we have a
Lorentz pole for each n„.

We are now ready to calculate the O(1/n ) cor-
rection to Eq. (4.6) to obtain the first t-dependent
term. We must expand about our wave function
(1),'„ in Eq. (4.4):

(d4'= —
2 r — r Vr =0.5632 .

We now put (4.7) and (4.8) in (3.6) and neglect all
terms of O(n, ' ') or lower, remembering that, in
contrast with the massless case, ro is now finite.
We obtain

4 2

0 0

Since Eq. (4.9) does not depend upon l, we shall
drop the superscr ipt. The harmonic-oscillator
eigenfunctions are

((])~ „ = e ' 'H„ (2((u y) = e ~'H„ (x), (4.10)

where n„ is the harmonic-oscillator quantum num-
ber and H„(x) is a Hermite polynomial. We now

make another transformation of variables x = W(u y
and introduce a new function:

(4.11)

Putting (4.4}, (4.10}, and (4.11) in (4.9) we obtain
a differential equation for f„(x):

2 n„df „„ dHnr-2(u, " +4(ux "-4n, (uf„+ ',i, x'f„+4(u'xdx2 dx dx

2 2
~ 9'(—'+24, +24, ) 42 [((4' —' t)r ' —1] 44„—44'x' ', 44 2' 42 —+ x IH„=O, (412)

where

5„=—(n-[n, -(n„+-,') (u]J .1
nr (4.13)

a finite-order polynomial. The result is
2

5„„=—', --', (i),' -', t) r,'+,', (2n„'+2n„—2) +&

——,'8(14n, +14n, +5) (4r"

Equation (4.12) may be solved by assuming a
power-series expansion for f„(x)and demanding
that the wave function behave properly at ~. This
places an eigencondition on 5, and f„(x}becomes

(d
++~ (11+ 30n„+30m„)

Using Eq. (4.13) we solve for n:

(4.14)
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n =1.4669(g/4«m)' ' —(n, +-,') ~
2 2

+——,'--,'(g'-4' t) r,'+ —,', (2n, '+2n„+1) ' —,—', (14n,'+14n, +5) uP ++(11 +3 On„+30n„')
0

(4.15)

Since n does not depend upon l in Eq. (4.15), the

daughter trajectories all have the same t depen-
dence to O(1/n, ). It would be necessary to cal-
culate n(t) to O(1/n, ') to obtain an l dependence
through the term f„' „P„'tP„'. The equation for
(t)„' is not coupled with P„'„and P„', until O(1/n, ').
This is because (t)„'„,(t)„'~ -(1/n, ')p„' T.his suggests
that for a nonzero-mass exchange and an even
moderately large g it may be a good approximation
to neglect the coupling to other n states. This was
found to be the case in a numerical study by Wyld. ~

Summarizing our results, we have found that
u(t, p,') = a(t = 0, g' ——,

' t) through the order at which
the first t dependence occurs. For massless ex-
changes this is of O(n, ) and for massive exchange
it is of O(1/n0). The next order in both cases
introduces l -dependent terms, indicating that
daughter trajectories will no longer be spaced one
unit apart for t &0.
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The maximum n-=n is of course given by n„=0.
The solutions to the oscillator equation are

(t)-.—„(0 y) = e & „(y)

where H„(y) is a Hermite polynomial.
The restriction l =n —X &(n —n„) —1 implies that

at t = 0 we have y). nonzero solutions (n„=0, 1, . . . ,
X —1). Each n, corresponds to a Lorentz pole with

a leading Regge trajectory given by I =n0 —(n, + —,')
—1 plus integrally spaced daughters. Because
of the coupling between different n states at t 40,
we might expect the solutions (A3) to become mixed
at t&0. However, we shall show that the wave
functions and trajectories for different n„do not
mix at t 80 up to the order of 1/n which we are
considering. To illustrate this we assume, for
the moment, that the wave functions for different
n„do mix at t 40. We then postulate the following
separable form" for the solutions to Eq. (3.8):

The auther would like to thank Professor S.-J.
Chang for suggesting this investigation and for
helpful comments.

g,» (t, y) = Q P „" «(t ) (g „(0,y),
n„=0

with

(A4)

APPENDIX

2

y Iy„"(0,y)=y(, —n)("„"(0,y), (A1)

which is just the harmonic-oscillator equation
with eigenvalues

In this appendix we wish to justify the assump-
tion made in Sec. III that the solutions to Eq. (3.7)
at t=0 corresponding to different Lorentz poles
do not mix at t&0.

We begin by considering the solutions present
at t = 0 found by Chang and Rosner. In that case
Eq. (3.7) becomes

p."„,".„(0)=1,
p".„,»(o) = o

(K 0 —n„' K = —y). + 1,—y). + 2, . . . , —1, 0, 1,. . .) .

(A5}

(A6}

Conditions (A5) and (A6) ensure that Eq. (A4)
gives the correct solutions for t=O. We have pos-
tulated that the solution for any e state is a linear
combination of the t=0 wave functions with coeffi-
cients that depend on t. Note that the n's in the su-
perscripts of the p's are n(t) but the n's in (I)„"=„(0,y)
are n(t =0}. To see if Eq. (A4) is in fact a so-
lution to Eq. (3.8) we combine the two and obtain

(
d2 2~ K-1

+y' —2[n, —n(t) -K]+, , t P„",»(t) 4)„"-:„(0,y)

[(A+K —1) (A. +K —2)1'l' g p „"«,(t) (t)»:„(0,y)-
8 tt~= 0

[(y). +K) (y(. +K+ I)]'l' Q p"„„(t) (t)"„:„"(0, y) = 0 . (A7)
nr 0

Making use of (A1) and (A2) we may rewrite Eq. (A7) as
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2n„+1 —2 [no —n(t) -K]+, , t P„",«(t)
2(&+K) —1

n&=0— 8 p —4t

([(A+K —1)(A+K-2)]' ' p"„„zi,(t)+[(A+K)(3+K+1)]' ' p„" «„(t)] Q"„:„(0,y)=0. (A8)
8 p, —4t

Since the wave functions g„"-:„(0,y) are orthogonal, the coefficient of each in Eq. (A8) must be equal to

zero. Thus we now have the set of algebraic equations

2e„+1—2 [no —n(t) -K]+, , t P"„»(t)2(~+K}-1
8 p, —4t

([(P.+K —1)(X+K—2)]' ' p„"» 2(t)+[(A.+K)(X+K+1)]i ' p„"»„(t})=0. (A9)

Different K states only couple to K+ 2m states where m is an integer, and since P„"»(0) = 0 for K & —n„,

we see that P"„«(t)=0 for K —n„odd. For a given n„we may choose some K value (such that K —n„ is

even) and solve Eq. (A9} for n(t} in terms of P"„«(t), P„"„»,(t), and P„"»„(t).We choose K = —n„ to solve

for n(t) and obtain

2(X- g„) —1
n(t}=n, --,' — (, ,

)
t

} ([(X—n, —1)(X—n, —2)]'t' p„" „(t)+[(X—c„)(A.—n„—1)]'t' p"„„„(t)j.
(A10)

Equation (Alo) shows that for a fixed X, s(t) is
different for each n„." This means that the pro-
posed solution (A4) cannot be correct because it
assumes that n(t) is the same for all s„. There-
fore the wave functions for different n„are not

mixed at t &0 and we should just write

y„",»=p„",I"„"„'„I(t,y)= p„" '«, „"'(t)4„" ""'(o,y) .
(A12)

Def ining A.
' = A. —n„and K' =K —n„we have

y""'(t, y}=g." (t, y)= p".„," (t) y". '(o, y),
, '= p"„,'(t) -y"„:„"(0, y), (A11) (A13)

where

K = —1+1, . . . , —n„—2, —n„, .. . (n„—A. odd),

K = —X+2, . . . , —n, —2, —I„.. . (n„—A. even),

where

K'=- A.'+1 or —A.'+2, . . . , —2, 0, 2, . . .
which is just Eq. (3.9) if we pick the normalization

Finally, we show that Eq. (All) is really the same
as (3.9). Using n=n n„, Eq. (A11)—becomes p".„,.(t) =1. (A14)
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