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It is shown that for a nonpolynomial anharmonic correction of the form Px'/4(1 + a x') to the
simple harmonic oscillator with 0 = p'+ „-'x, the perturbation series in P is convergent over a
finite domain P & a. The energy eigenvalues have a two-sheeted structure with the cut extending from

to P = —ao, and P = —a is the accumulation point of singularities on the second sheet
along real p & —a. An estimate for the perturbation series, using dispersion relations, is presented.

I. INTRODUCTION

Anharmonic interaction is of considerable in-
terest as a correction to the frequently assumed
simple harmonic interaction. Apart from this
practical importance, it is of independent interest
because of the rich mathematical structure it
provides in terms of the analyticity properties of
the energy levels and the related problems of the
convergence of the perturbation series. Some
recent efforts have made important contributions
in the understanding of the structure of the energy
levels of the Hamiltonian

theories, such as analyticity and unitarity, one
has little or no idea about the convergence or the
region of convergence of the major series in
powers of p. It is tempting to assume that the
series converges for all values of a, though there
is no basis for such hope. The problem is indeed
difficult, but is one which must be solved before we
can fully exploit the attractive properties of the
nonpolynomial interactions. We take a step in
this direction by analyzing the structure of the
corresponding potential problem.

In particular, the following Hamiltonian is eon-
sidexed:

II =P +4X +4PX .

It has been shown' the.t the energy levels of this
Hamiltonian have a three-sheeted structure, with

P =0 being the accumulation point of square-root
branch points on the lower sheets. Furthermore,
we have an asymptotic series in powers of P, so
that the perturbation in terms of the anharmonie
term makes some sense.

Additional intelest 1n the problem 18 due to the
fact that the same Hamiltonian describes the one-
dimensional XP' field theory, but without the
normal ordering. One hopes that the solution
to the potential problem will yield insight into the
structure of quantum field theories. It must be
remembered that it has long been conjectured
that the quantum-electrodynamics series is prob-
ably an asymptotic perturbation series.

While an asymptotic series is better than no
series, it is not an end in itself. One would like
to obtain either a convergent perturbation series
or a nonperturbative expression for the energy
levels. Several such approaches' have been at-
tempted with varying advantages and successes.

Within the last few years, it has become plau-
sible that a class of nonpolynomial Lagrangian
interactions may yield a finite perturbative ap-
proachs to field theory; for example, PP'/(1+a/a)
may yield a finite theory. However, while one
can establish some general properties of these

If =P'+ ,'x'+ ,'Px'f-(x, a-),

where p is the major coupling constant and a is
the minor coupling constant. We prove the follow-
ing properties of this Hamiltonian: Let

1f(x, a =

where a is positive, and m is a positive integer.
Then.

(1) For m~ 2, the energy levels are analytic
in P for all real values of P. The same is true
for f(x, a) =e where a is positive.

(2) For m=1, i.e.,
X' P X4

H=P + +—
4 4 1+ax' '

the energy levels are analytic in P for real P& -a.
However, P=-a is a singular point. Here we get
a two-sheeted structure with the cut starting
from P=-a, which also is conjectured to be the
accumulation point of square-root branch points
along real P& -a, but on the second sheet.

(3) For m =1, the phase of the singular points
of the energy levels, on the second sheet, is 2m

in the limit p-O, in contrast to the eorrespondlng
phase of sit for the Hamiltonian (1). This is shown

by using the dispersion techniques developed by
Bender and Wu, and analytically continuing on to
the second sheet. We also calculate the nth-order
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term in the perturbation series in P for large n.
This series converges for

I pl&a but diverges for
I Pl-a

These results give us a word of warning about
the indiscriminate use of nonpolynomial Lagran-
gians in field theory. If we accept the folk rule
that things can become only worse when we go
from potential theory to fieM theory, then for

PA'
4 4(1+aP')

the theory may converge for I pl& a but will diverge
for lpl&a. Therefore, at least for some types of
nonpolynomial Lagrangian field theories, the
theory may be finite but not for arbitrary values
of the major and the minor coupling constants,
even if both the coupling constants are small.

The analysis is presented in two parts. In Sec.
II, the general properties of the structure of the
energy eigenvalues of the Hamiltonians (2) and (3)
are discussed. In Sec. III, we analyze the detailed
structure of the energy levels of the Hamiltonian
(3}using the dispersion techni(ines developed by
Bender and %u' and the WKB approximation.
These techniques allow us to calculate the coeffi-
cient of the nth term in the perturbation series
for the nonpolynomial Hamiltonian (3}.

II. STRUCTURE OF ENERGY EIGENVALUES

Consider the Hamiltonian (3),
x Px
4 4(1 + ax2)

Multiply the two sides by (t)*(x, P) and integrate by
parts to obtain

5p gp — 2- xp dx

or

M(P=)

/Id�(»)))I'd»
, (»)

s&(p) J{ '/I:4(1+ '))) Iy(, P}l'd
flu(x, p) 'd

for all real P, where n is an integer &1. This, of
course, does not mean that there are no singu-
larities in the complex plane.

B. Singularity structure of the energy levels
of the Hamiltonian

The singularity structure of the energy levels
for the Hamiltonian (4) around p =-a becomes
transparent if we make the Symanzik scale trans-
formation. ' Let

Hence E(p) is analytic for p real and & -a'. Along
the same lines one can prove the analyticity of en-
ergy levels for anharmonic corrections of the
types

px
4(1+ax'")

and

(1 + p/a) x' px'
4 4a(1+ax') ' (4) for which the corresponding unitary transforma-

tion takes the Hamiltonian (4} into

A. Energy eigenvalues of the Hamiltonian

%e first show that the energy eigenvalues of this
Hamiltonian are analytic for P real and & -a.

The asymptotic behavior of the wave functions is
determined by the simple harmonic term
H(1+ p/a) x'] . For p& -a, the asymptotic wave
function has the behavior

(t)(x}~ exp(--,'X'i'x'),

where A. = (1+P/a). Furthermore, one can take
(t)(x} to be real for p& -a. For a change 5P in p,
let

~(p}-~(p).«(p),
y(x, p)- y(x, p)+5@(x,p),

so that

ff&4(x, p)+op, y(x, p) =5m(p) y(x, p}

+Z(p)5y(x, p).

(f)

Ax' (A. —1)x'
4a' 4a'(1+ax'/a')

where l) = p/a+1. With the choice n4 =X, we get

x' (X —1)x'
+

4 4g(impaia ~2)

so that for X small

X2
ff = &'i'(P'+-,'x') +

4(A.'i'+ax') '

Clearly, (12) and (13) exhibit a two-sheeted struc-
ture for energy eigenvalues. More generally, it
may be observed that going around the origin
twice brings us back to the same value. It is in-
dicated that since the potential acquires poles for
real x when A.

' ' is negative, we come across addi-
tional singularities for A. real and positive, but
on the second sheet. This we are unable to prove
rigorously. However, the results of Sec. IIC,
based on dispersion techniques and %KB approxi-
mation, support this conjecture.
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- —(P/a)' 'E„(0,a), (14)

where the right-hand sides are just the simple
harmonic energy levels, which is absurd. Hence
~ =0 or equivalently p = -a is a singular point.

D. Singularities as square-root branch points

C. Proof of the singular point

One can show rigorously that A. =0, or P =-a is
a singular point.

Suppose ~ =0 is a nonsingular point. Since the
energy eigenvalues are analytic along positive
real A, , we start from large positive X, move along
the real axis, and after circling the origin, go
back to infinity. Since the scale transformation
(10) is unitary, we obtain from (4) and (13)

lim E„(P,a}-(P/a)'~' E„(0,a}
8~~

by means of the dispersion relations for the energy
levels. The imaginary part of the eigenvalues for
negative P is approximated by the WEB result,
as was done for the anharmonic oscillator by
Bender and Wu. '

A. Dispersion relations

The dispersion relations for the energy levels
may be written down from the analyticity structure
of the energy levels. For the Hamiltonian (4),
we deduced in Sec. II that the energy levels are
analytic in the cut P plane with the branch cut
running from P = -a to P = —~. The asymptotic
behavior for P-~ is easily obtained from the
scale transformation p- np, x-x/n, and

4
H-& P +- 4-+4n' 4n'(1+ax'/n') (19)

Take a'= P and let P-, to obtain
We can apply the Bender-Wu proof, ' for showing

that the singularities for 4jex' anharmonic correc-
tions are likely to be square-root branch points,
to the Hamiltonian (4}as well.

Let Po be a singular point, and e =P —Po. Then

a- p"(p'+-,'x'),

so that

E(P) ~ cP' ',
8 ~ oo

(20)

(21)

Let

d' x' p x' z'x'
dx' 4 4(1 +ax~} 4(1 + ax')

= Ey(x, p). (1S)

where c, is a constant. Hence we write a once-
subtracted dispersion relation for E,(P}:

E (P}=E z(z —p)

0 = &i4 + z Ipi + e &4 + ' ' '

E(P) =y, +ey, +e' y, + ~ ~ ~,
d' x' Px4
dx' 4 4(1+ax') '

in terms of which one gets

(16)

Furthermore, if we write

E,( p) = E (0}+g 4'„p",
n=l

we get

1 -~ ImE, (z+ ie)
n

(23)

(24)
840 =yoga

64' =yoki+yiko.
x4

«4+
4(1 )

&4=y &4+y 4 +y 0o

Multiply by P, and integrate by parts to obtain

(17) Therefore, given ImE, (z) for negative z, rela-
tions (22) and (24) allow us not only to study the
structure of the energy eigenvalues but also to cal-
culate the perturbation series in p.

B. Calculation of the imaginary part of E„(P)
4x 2y, = t, ) y, (x)d y, (x}y, (x) dx, The imaginary part of E~( p) is calculated for

p= -a by using the WKB method. Let X = p/a+1,
so that for A. =O we have

where the integration is along a well-defined path.
Therefore, unless the denominator accidentally
happens to be zero, we have only square-root
branch points.

~x x
4 4(1+ax'} ' (26)

For the energy level E~, and A. small and nega-
tive, the turning points are

III. DISPERSION RELATIONS FOR
ENERGY EIGENVALUES

1/2 1
0 A P 1

II
I(1/2~gA, [

(26)

In this section, we analyze the detailed structure
of the energy eigenvalues of the Hamiltonian (4)

Let us also assume for simplicity that a«1,
which is also quite reasonable since higher deriv-
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d x2
+ —k ——y (x)=0dx' 4 2

(2V)

atives of the potential are expected to be smail.
Then E~ k+ g.

(i) Region x -x,. The equation to be solved is

y, (x) =a„(x)

=2-»"-*'/ ff, (x/W2}

-~2//4x~ e " l4 for large x. (28)

(ii) Region from x0 to x, . In this region we use
the WEB solution,

[4(1 +sxm)]»2 )~(l/2 !* (x2 4E)l/2(x2 I/)s!)[)1/2
[[Aa)(x' —4E)(x' —I/[aA()]'/ '"' —

2 J!.../. (I +gxa) /' (29)

where we have suppressed the index k. For x,
«x«x„

&2x/2
- x

exp --,' (x' -4E)'/'dx,
2~1 2

(3o)

E„(P)=k+—1
2

a comparison of which with (28) leads to

c=,» exp[zE(lnE —1)]. (31)

We are now in a position to calculate the imaginary
part of E(z) by using the second method described
in the Appendix of the work of Bender and Wu';
we have Be -1-— &0. (38)

(37)
As P encircles -a and goes on to the second sheet,
we must distort the path of the integral. Because
of the form of the imaginary part of the energy,
this distortion is allowed for P- -a, so long as

Z(x)
Jx yQ( I}y( l)d I )

g( )
1 yw( }d4(x)

y( )
d4 (x)

The denominator is well approximated by the
solution (28) for all x, which gives

)!)*(x')y(x') dx'= (-'z)' 'k!
0

Furthermore J(x) is given by the continuation
of (29) to x&x, so that

J(x) =c'exp -~W~'/'Jt dx
(1 +ax')'"

x0

n 1—c exp —
4 ~~~l/2

+

Finally,

exp[E, (lnE, —1)]exp(1/a)
(2z)'/'k!

C. Continuing E„(P) to the second sheet

(32}

(33)

(34)

(35)

(38)

Writing P+a =pe'e, this condition is equivalent to

z(e —z)&-,z or |)&2z, (39)

and we meet our singular points for 8=2m. This
confirms our conjecture of Sec. II, that for P--a
there are singularities on the second sheet along
the real axis for P& -a.

It may be noted that for the Hamiltonian (1), the
imaginary part of E„(P) for small p has the be-
havior

D. Evaluation of A„"

The evaluation of A'„ is now fairly direct From
(24) and (35), one gets

f, - exp[-w/[4a~1+(z/a)~'/']} „fl n+1

so that for analytic continuation, the distortion
of the path is allowed for HBP&0. This means
that after encircling the origin, we come across
the singularity at

(41)

as has been shown earlier by different methods. "

We can now analytically continue E~(P) on to the
second sheet by using (22) and (35):

f. " exp(-y"/s)y" ' „za", (1 +y }"" (43)
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It should be remembered that the imaginary part
is properly represented only for z = -a, which
means that our approximation becomes good for
large n. Though the integral is difficult to evalu-
ate, it can be estimated for large n by the saddle
point method, which yields

f (
~~ )I/O

-
2qs i/3

i/2' 0's 5/8 ~ e» —
4 ag Q S g 9

which also shows that the series converges for
[ p[& a, but diverges for

) p[& s.

IV. CONCLUSIONS

The choice of anharmonic corrections to the
harmonic osgillator, in the nonpolynomial form,
allows one to obtain a finite perturbation series.
However, in general, the energy levels are not

entire functions, so that the domain of convex-
gence of the perturbation series may be finite.
%e have discussed the anharmonic correction of
the form Pz'/(1 +ax') and shown that the domain
of convergence of the major series in P is deter-
mined by the value of the minor coupling constant
and is given by

~
p~& a. We have further shown that

the energy levels have a two-sheeted structure,
with the cut extending from -a to -~ and P = -a
being the accumulation point of singularities on
the second sheet at real P& -a. It would be most
interesting to find whether these results general-
ize to a nonpolynomial field theory, i.e., an inter-
action of the form PP~/(1+a/'). We have also
derived an approximate expression for the pertur-
bation series for the potential by using dispersion
relations for the energy levels.
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